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Different protein-protein interface 
patterns predicted by different 
machine learning methods
Wei Wang1, Yongxiao Yang2, Jianxin Yin1 & Xinqi Gong   2

Different types of protein-protein interactions make different protein-protein interface patterns. 
Different machine learning methods are suitable to deal with different types of data. Then, is it the same 
situation that different interface patterns are preferred for prediction by different machine learning 
methods? Here, four different machine learning methods were employed to predict protein-protein 
interface residue pairs on different interface patterns. The performances of the methods for different 
types of proteins are different, which suggest that different machine learning methods tend to predict 
different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our 
result. Our proposed methods taking advantages of different single methods also got a good prediction 
result compared to single methods. In addition to the prediction of protein-protein interactions, this 
idea can be extended to other research areas such as protein structure prediction and design.

Protein-protein interactions are of great importance in living organisms. Many biological processes are accom-
plished with the association and dissociation of different proteins. With the advancement of biotechnologies, the 
relevant data regarding protein-protein interactions become more and more sufficient1. Protein-protein interac-
tions can be categorized into different types according to their biological functions or other features2. Different 
interface patterns made by these protein-protein interactions could be characterized by different types of data 
such as mRNA expression, essentiality, localization and functional annotation which imply different interaction 
mechanisms.

The formation pattern of protein-protein complex interface is crucial for protein-protein interactions and rec-
ognitions. The importance and difficulty of theoretically understanding and computationally predicting the inter-
face pattern have attracted many scientists trying to make the underlying mechanism clear3–5. Although some 
individual and simply combined prediction methods have been proposed, usually different prediction methods 
give out different results6–8. What makes a surface residue of a protein monomer become an interface one when 
the monomer binds to the partner? Is it possible to predict all the specific kind of interface pattern uniformly and 
correctly using specific methods? These are our interests.

It is well known that different machine learning methods are suitable to deal with different kinds of statistics 
problems. For example, classification problem can be used to treat with Support Vector Machine9, Random for-
est10 and so on while clustering problem can be used treat with K-means11, DBSCAN12 and so on. When faced 
with a specific problem, one always prefers a commonly used or newly developed algorithm, but it is difficult to 
prove that the selected algorithm is the best one compared to the other unused algorithms. Usually, one compares 
several algorithms on different datasets to prove that one of those algorithms is the most effective under certain 
criteria but there are few literatures analyze why different algorithms make the difference. And there is no golden 
criterion that tells researchers what method is applicable for the new coming data. Different machine learning 
methods on microarray gene expression data and IP traffic flow13,14 were compared systematically to construct a 
better framework for these data, which inspires us to consider the differences between different methods when 
analyzing protein dataset.

In fact, many machine learning methods have been used to predict protein interfaces in the past years15–19. 
But the performances of different machine learning methods for different types of proteins have not been inves-
tigated. In general, the performances of different methods will be compared in the whole dataset to find a general 
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rule (Fig. 1A). It doesn’t work when the rule is extremely complicated. The complicated rule can be decomposed 
into some simple ones. These simple rules are implied in different types of proteins which are suitable to be tack-
led by different machine learning methods (Fig. 1B).

Here, we used four machine learning models including linear support vector machine, random forest, logis-
tic regression with lasso penalty and logistic regression with hierarchy interaction to train effective models for 
predicting interface residue pairs of different protein-protein complexes. The complexes were described and dis-
tinguished using several attributes containing their nature properties and indexes we constructed. Then, we eval-
uated the preferences of different machine learning methods on predicting different classes of dimers.

Methods
Models.  In this paper, we used linear SVM, random forest, logistic regression with lasso penalty and logistic 
regression with hierarchy interaction to forecast the interacting pair-residues. By comparing the results of these 
four methods, we want to learn how different methods treat protein-protein data and to find their applicability. 
Afterwards, we briefly introduced the basic ideas and advantages of the four methods.

Given a training dataset of n points = ... ∈ −x y i n y( , ), 1, , , { 1, 1}i i i . If there exists a vector w and a scalar b 
which make the following inequalities hold:
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we can define that the training data are linearly separable. Linear SVM3 tries to find optimal linear hyperplane

+ =wx b 0, (2)i

which separates two classes of data and the distance between two classes is maximal. SVM is based on the prin-
ciple of structural risk minimization and the final decision function of SVM is determined by important support 
vectors. It means that SVM can alleviates problems of over-fitting and is stable for new data16. SVM is convex 
optimization problem so it avoids local minimal problem. Besides, by defining a suitable kernel, SVM is able to 
generate nonlinear decision boundaries and classify data without obvious vector space representation20. SVM is 
widely used in computational biology20 due to its large-margin nature and good accuracy over previous unseen 
examples18. In the field of protein-protein interactions, linear SVM16, SVM with Gaussian kernel21 and SVM with 
pairwise kernels18 were used to predict interacting residues and got good performance.

Random forest10 uses bagging algorithm to combine a multitude of decision trees and output the mode class 
of these trees. Random forest has the strengths of decision trees and are more robust. Besides, importance of var-
iables can be obtained in a natural way through random forest. Random forest can perform well with imbalance 
data and high dimensions because it selects features and training examples randomly for each tree and outputs 
importance of features19. However, when the noise in data is large, it faces the problems of over-fitting. Benefits 
from the easy adjustment, high robustness and suitability for high dimension data and imbalanced data, random 
forest has often been used for protein-protein interactions. Chen and Liu22 and Zhu-Hong You et al.23 inferred 
protein interactions using random forest with novel feature representation while Mile šikić et al.19 used parallel 
random forest.

Given a training dataset of n points = ... ∈x y i n y( , ), 1, , , {0, 1}i i i . Logistic model24 is as follows:

Figure 1.  Sketch map of the two ways to find rules in a dataset. (A) Traditional way to find a general rule. 
Different machine learning methods are used to find a general rule in the whole dataset. (B) Alternative way to 
find some simple rules decomposed from a general role. Different machine learning methods prefer to find the 
different rules implied in different types of data or proteins.
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and the log-likelihood is
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The loss function is defined as β− |βyL( ),0 . By adding a penalty, we can get a logistic model with variable selec-
tion function whose coefficients are obtained by solving
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Logistic model applies maximum likelihood estimation and outputs probability between 0–1 so it is easy to 
operate to real data and can be well interpreted. When we assume that the features are independent in a classi-
fication problem, it is a good choice to adopt logistic model. Several logistic models were employed to predict 
protein-protein interactions such as kernel-based logistic regression models25 and logistic regression with lasso 
penalty26.

Logistic regression with hierarchy interaction27 learns pairwise interactions with strong hierarchy which 
means that an interaction is estimated nonzero only if its main effects are estimated nonzero. The model is
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where = ×x x xi j i j:  and θi j:  means the interaction effect between xi and xj.
The log-likelihood of logistic regression with hierarchy interaction is
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By adding overlapped group-lasso penalty into the log-likelihood, we can fit logistic model with hierarchy 
interaction while selecting variables.

Logistic regression with hierarchy interaction consider pairwise interaction effects that satisfied strong hier-
archy so it mines more information of data and perform better compared to logistic regression when the model 
is identifiable. In other words, logistic regression with hierarchy interaction considers the dependence of features 
and expands the feature space. As a result of researches such like SVM considers pairwise kernels and random 
forest considers feature representation, it is reasonable to consider the interaction effects between features espe-
cially between receptor protein and ligand protein. So comparing logistic regression with hierarchy interaction 
to logistic regression with lasso penalty helps to conclude the independence of features and find more important 
features.

In protein-protein interactions prediction, there doesn’t exist a best method suitable for all data. To compare 
the performance of different methods in protein-protein interactions prediction, Nan Lin et al.2 compared ran-
dom forest, logistic regression and the Bayesian network method and Yanjun Qi et al.28 compared decision tree, 
logistic regression, Naïve Bayesian, SVM, random forest and kernel random forest. Without prior information, we 
excluded Bayesian method. Instead, we considered logistic regression with hierarchy interaction to supplement 
the representation of features. Therefore, we finally chose linear SVM, random forest, logistic regression with 
lasso penalty and logistic regression with hierarchy interaction as the methods of study.

Algorithms.  The data used in this paper are protein-protein docking benchmark version 5.029, which con-
tained 67 unbound state dimers. The benchmark version 5.0 (BV 5.0) was updated from benchmark version 3.0 
(BV 3.0) and benchmark version 4.0 (BV 3.0). We chose the unbound dimers in BV 3.0 as our training set which 
contained 34 dimers. BV 4.0 and BV 5.0 were used to test the effects of different methods. Number of surface 
residue pairs of BV 3.0 was 1306311 and only 2676 residue pairs interacted. The other details of data were given 
in “data” section of Supplementary. Each residue pair contained 18 features of 9 receptor features and 9 ligand fea-
tures. These features described geometric information and hydrophilic information of residue pairs, which was in 
“variables” section of Supplementary in detail. We faced imbalanced problem and small amount of features when 
dealing with this data. To improve the performances of the methods, EasyEnsemble30,31 and feature engineering 
were adopted. The whole algorithms was shown in Fig. 2. The details about the tuning process of model were in 
the “tuning” section of Supplementary.

EasyEnsemble algorithm was developed to deal with class imbalance problem. Interface residue pair predic-
tion is such a problem because the percentages of true interface residue pairs among all the possible residue pairs 
made by the surface residues from different monomers are very low (Table S1). Class imbalance is induced by the 
great difference between the numbers of the samples belonging to different classes. If it is difficult to discriminate 
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one class from the other classes according to the descriptors, class imbalance will make the problem more diffi-
cult. If the descriptors are powerful, class imbalance is not a problem. Although the algorithm is just a palliative, 
it is effective to improve the performances of the methods. This algorithm is also helpful in variables selection 
according to stability selection method32. The main idea of stability selection is to record selected variables in each 
model and select high frequency variables among these models.

Besides the problem of imbalance, we also faced a few variables of big sample. As we known in deep learning 
process, initial inputs are transferred by some functions to large number of nodes which contains the informa-
tion of inputs. The amount of nodes are often times of the amount of inputs. Although the nodes are hard to 
be explained but after recoding they can make sense in prediction. Inspired by the feature engineering ideal of 
deep learning, we have expanded our variables by adding difference, quadratic and divided terms without losing 
interpretability. Like the machine learning methods, feature engineering is also used to explore the best perfor-
mances of the original features as the amount of our original features is only 18 which is very small compared 
to the sample size. By feature engineering, that is expanding our original features, features are more variously 
represented and easier to mine their own information. The linear or nonlinear discriminants made by feature 
engineering can not only be directly used to predict interface residue pairs but also be regarded as new features 
and the input of the machine learning methods. In this paper, feature engineering algorithm expended 18 orig-
inal variables standardized by BV 3.0 to 243 variables including 18 original standardized variables, 9 differences 
items between receptor and ligand residues, 27 quadratic terms of variables of receptor, ligand residues and their 
differences items, 18 × 17/2 divided terms of original variables of receptor, ligand residues and 9 × 8/2 divided 
terms of differences items.

Results
Improvement of the performances of the methods without distinction of protein types.  In 
order to test the effects of algorithms, BV 4.0 and BV 5.0 were predicted in different algorithms. We compared the 
results of three different treatments and three different ensemble methods on four different classification mod-
els. One of three treatments used original data without EasyEnsemble and feature engineering. One only used 
EasyEnsemble without feature engineering. And the other used both EasyEnsemble and feature engineering as 
shown in Fig. 2. And we used mean, median and weighted mean in both algorithm with only EasyEnsemble and 
algorithm with EasyEnsemble and feature engineering. The final results were shown in Fig. 3.

First, we compared the effects of three ensemble methods. As we could see from Fig. 3, except the result of 
weighted mean in the feature engineering and EasyEnsemble algorithm in random forest was pooler than the 
results of mean and median in the feature engineering and EasyEnsemble algorithm in random forest, results of 
three ensemble methods using mean, median and weighted mean of the estimation probabilities in each algo-
rithm were similar. Especially in logistic regression with lasso and logistic regression with hierarchy interaction, 
we could see that three ensemble methods were almost identical. And the poor result of weighted mean in the 
feature engineering and EasyEnsemble algorithm in random forest might be blame to the over-fitting problem of 
random forest on training set. Because the results of median and weighted mean didn’t show significant excellent 
than that of mean, so we still used the most simple and interpretable ensemble method which used the mean of 
the estimation probabilities in the following analysis.

Figure 2.  Algorithm flow chart. Training set and testing set were constructed by expending the features of BV 
3.0, BV 4.0 and BV 5.0. Sample subset of negative class was combined with positive class to generate a balance 
training sample dataset. And the size of Sample subset of negative class was set to be the same with that of 
positive class that was 2676. The balance training sample can be trained by one of four classification models 
shown before and the tuning process was described in Supplementary. Then the model was used to predict 
testing set and the estimation probabilities of all models on testing set were collected. We compared different 
ensemble methods using mean, median and weighted mean of the estimation probabilities of all models 
on testing set. And the results were shown in Fig. 3. The weights were chosen to be the numbers of correct 
predicted dimers on training set. And a dimer was regarded to be correct if the top 20 residue pairs chosen by 
final result contained at least 1 interactive residue pair.
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Second, from Fig. 3 we found that EasyEnsemble increased the prediction effect while feature engineering 
didn’t help in improving forecast effect for SVM. For random forest, three treatment performed similarly as we 
know that random forest already contains ensemble process. For logistic regression with lasso penalty, the result 
of EasyEnsemble algorithm without feature engineering seemed similar to the result of original data. While the 
result of EasyEnsemble algorithm and feature engineering was much better than other results of treatments. For 
logistic regression with hierarchy interaction, the result of EasyEnsemble algorithm and feature engineering was 

Figure 3.  Effects of three different algorithms in four methods. (A,B,C,D) each presents the results of SVM, 
random forest, logistic regression with lasso penalty, logistic regression with hierarchy interaction. The abscissa 
means numbers of residue pairs chosen to be interacting residue pairs in a dimer and the ordinate means 
numbers of correct predicted dimers as long as there is one truly interacting residue pair chosen correctly. In 
the legend, “original” means algorithm without EasyEnsemble and feature engineering, “EasyEnsemble” means 
algorithm that only using EasyEnsemble without feature engineering, “feature engineering and EasyEnsemble” 
represents the results obtained by both EasyEnsemble and feature engineering. In addition, “mean”, “median” 
and “weighted mean” indicated three ensemble methods that were used in both “EasyEnsemble” and “feature 
engineering and EasyEnsemble”.
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the best when the number of selected residue pairs was small in each dimer. When the number of selected residue 
pairs became large, the result of EasyEnsemble algorithm without feature engineering was better than the results 
of the other two treatment.

Combined with the properties of four classification methods, we had the following results. First, it told us that 
ordinary linear SVM doesn’t deal with the problem of imbalance and is sensitive to variables. It’s better to choose 
significant variables for linear SVM. Second, as random forest is an ensemble method of trees, it already treated 
the problem of variable selection and imbalance so EasyEnsemble and feature engineering didn’t help much for 
its prediction. Third, for logistic regression with lasso penalty, EasyEnsemble and feature engineering helped a lot 
for prediction, which suggested that there are indeed many hidden information in 18 variables that is not found 
by logistic regression and needed to be added in by feature engineering or other algorithms. At last, EasyEnsemble 
improved the prediction effect for logistic regression with hierarchy interaction compared to original treatment, 
which suggested us that logistic regression with hierarchy interaction also need to deal with the problem of imbal-
ance. EasyEnsemble and feature engineering improved the prediction effect when the number of selected residue 
pairs was small but its effect didn’t hold when the number of selected residue pairs increased, which told us that 
EasyEnsemble and feature engineering do find more information but need to be more robust.

Comparison of the best performances of the methods without distinction of protein types.  We 
showed the forecast situations of top 20 residue pairs of four models using different treatments on BV 4.0 and BV 
5.0 in Table 1. It’s not unexpected that the outcomes of two dataset are inconsistent because we have showed in 
data and variables section (Supplement) that three dataset may have different distribution and the percentage of 
interacting residue pairs differs up to a factor of two between BV 4.0 and BV 5.0. In BV 4.0, we saw that logistic 
regression with hierarchy interaction perform best but in BV 5.0, logistic regression with lasso penalty had high-
est prediction accuracy. Especially we found that the accuracies of SVM and logistic regression with lasso have 
little difference between the prediction of BV 4.0 and BV 5.0 while the accuracies of random forest and logistic 
regression with hierarchy interaction reduce a lot from the prediction of BV 4.0 to BV 5.0. It told us that SVM 
and logistic regression with lasso may find more general patterns of protein-protein data while random forest 
and logistic regression with hierarchy interaction may find more details of data and present the characteristics of 
over fitting.

Let us observe the prediction results of four methods on BV 4.0 and BV 5.0 in more detail through Fig. 4. 
We could see that the logistic regression with hierarchy interaction performs not well when abscissa is not too 
small nor too large both on BV 4.0 and BV 5.0. Other three methods didn’t have this phenomenon in prediction 
process. And when the number of selected residue pairs was smaller than 30, the performance of logistic regres-
sion with hierarchy interaction was the best of four methods. Logistic regression with lasso penalty was always 
a good choice no matter how the number of selected residue pairs change. Its accuracy was only lower than that 
of logistic regression with hierarchy interaction when the number of selected residue pairs was less than 30 and 
lower than that of SVM when selecting more than 120 residue pairs in prediction each dimer. SVM performed 
the worst when the number of selected residue pairs was less than 60 while when the number of selected residue 
pairs was larger than 120, SVM became the most accurate method. The performance of random forest was always 
not satisfying except when the number of selected residue pairs was between 55 and 70.

The machine learning methods with the best performances changed with the increasing of the number of 
selected residue pairs in a dimer from logistic regression with hierarchy interaction to logistic regression with 
lasso penalty to SVM. There was no machine learning method that was superior to the other methods all the 
time. One reason may be that there doesn’t exist a universal discriminant to recognize interface residue pairs on 
different protein-protein interfaces.

Relationship between different machine learning methods and different proteins.  Table 1 
showed some similarity between four methods. For example, in Table 1 the first three dimers were correctly 
predicted by all four methods and some dimers were not being correctly predicted by all the four methods. We 
thought this phenomenon may be caused by the collective effect of attributes of different dimers and properties 
of different classification methods. Firstly, it was a simple idea that the size of dimer may have an effect so we 
used NSRP (Number of Surface Residue Pairs) to represent size. We calculated the percentage of interaction 
residue pairs in each dimer recorded as P to characterize the activity of a dimer. Besides, we constructed an easy 
Euclidean distance recorded Distance to indicate the dispersion of interacting residue pairs and non-interacting 
residue pairs. To calculate Distance, first standardize 18 original features of residue pairs in individual dimers, 
then calculate the Euclidean distance of the mean of features of interacting residue pairs and non-interacting 
residue pairs. In addition, we used complex category labels29 to describe dimers.

To show the relationship between prediction results and several dimer attributes, we formed Table 2 by finding 
the rank of first true positive interacting residue pair of each dimer on BV 4.0 and BV 5.0 using four methods 
with different algorithms. From Table 2, we saw that dimers such as 1CLV, 1FFW and 1GL1 that had small NSRP 
and large P were well predicted by all methods while dimers like 2A5T, 3AAD and 4M76 that had large NSRP 
and small P were not well predicted by all methods. So we could approximately conclude that larger P, smaller 
NSRP help the prediction of interacting residue pairs. But when NSRP were especially large such like 1ZM4 and 
2GAF, logistic regression with lasso penalty had a good prediction. And the category of dimers also mattered in 
prediction. If the dimer belonged to EI, it seemed to be easy to be predict correctly. If the dimer belonged to OX, it 
seemed to be hard to be predict correctly even it had small NSRP and large P such like 1H9D and 1SYX.

In order to find the reasons of the above situation, we constructed Table 3 which included the analysis of 
variance (ANOVA) tables of four methods between first detected true positive ranking and dimer attributes. The 
ANOVA tables were computed according to Table S5 which contained the results of the linear models between 
first detected true positive ranking and dimer attributes. From Table 3, we could see that only category labels in 
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the lasso logistic is significantly correlated with the first detected true positive ranking at significance level of 0.1. 
Besides, NSRP and P in SVM were statistical significant at significance level of 0.1. P in random forest and logistic 
regression with hierarchy interaction were significantly correlated with the first detected true positive ranking at 
significance level of 0.05. To visually present these visual thoughts, histograms of correctly predicted dimers were 
constructed by discretizing NSRP, P and Distance in to three parts in Fig. 5.

From Fig. 5, we could see more clearly the difference of the four methods in different values of attributes of 
dimers. When dimers belonged to EI, all methods performed well and logistic regression with hierarchy inter-
action performed best. When dimers belonged to OX, all method preform badly. When dimers belonged to ES, 
only SVM and logistic regression with lasso penalty had correct prediction and only logistic regression with 
hierarchy interaction had correct prediction when dimers were regarded to be OR. And we can saw that all 
methods performed well when the P of dimers were large. When the P of dimers were larger than 0.004, logistic 
regression with hierarchy interaction had the biggest number of correctly predicted dimers and when the P of 
dimers were smaller than 0.002, logistic regression with lasso penalty performed best. In addition, when the 
Distance of dimers were larger than 2, logistic regression with lasso penalty performed best. When the Distance of 
dimers were between 1.5 and 2, logistic regression with hierarchy interaction had the biggest number of correctly 
predicted dimers. Besides, when NSRP of dimers were larger than 35000, logistic regression with lasso penalty 

Dimer BV 4.0 NSRP[a] NIRP[b] SVM RF Logistics Interaction logistic

1CLV 12928 91 1 1 2 2

1FFW 7316 41 2 2 1 5

1GL1 7548 71 1 2 2 2

1H9D 14796 99 0 0 0 0

1MQ8 25725 59 0 0 0 0

1OC0 12456 46 0 1 1 2

1OYV 25536 105 0 2 0 1

1R6Q 10611 62 2 0 0 1

1SYX 7080 46 0 0 0 0

1US7 22184 44 0 0 0 0

1ZM4 144948 65 0 0 1 0

2A5T 65260 73 0 0 0 0

2ABZ 16226 69 0 1 2 1

2G77 44688 94 0 1 0 0

2I9B 30360 107 0 0 0 1

2J0T 18600 71 1 0 0 0

2O3B 26875 69 1 0 0 1

2OUL 22568 93 0 1 2 1

2VDB 30672 75 0 0 0 0

4CPA 10526 56 0 0 0 1

BV 5.0 NSRP NIRP SVM RF Logistics Interaction logistic

2GAF 117448 129 0 0 1 0

2GTP 35910 59 0 0 1 1

2YVJ 36531 61 2 0 2 1

3A4S 11476 38 0 2 1 0

3AAD 37548 59 0 0 0 0

BAAD 37548 58 0 0 0 0

3FN1 16490 79 0 1 0 0

3K75 32109 54 0 1 0 0

3S9D 31408 69 0 0 0 0

3VLB 78764 96 1 0 1 1

4H03 138852 59 1 0 0 0

4IZ7 28014 44 0 0 0 0

4M76 39772 43 0 0 0 0

Accuracy 0.018 0.023 0.026 0.032

Correct dimers 9 11 12 14

Table 1.  Prediction results of top 20 residue pairs on BV 4.0 and BV5.0 set[a]. NSRP: Number of Surface Residue 
Pairs, obtained by multiplying the number of residues on the surface of receptor and ligand[b]; NIRP: Number 
of Interacting Residue Pairs, given by23. The result of SVM was got only using EasyEnsemble. The result of 
random forest was got without EasyEnsemble and feature engineering. The results of logistic regression with 
lasso penalty, logistic regression with hierarchy interaction were obtained using both EasyEnsemble and feature 
engineering.
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performed best. Random forest and logistic regression with hierarchy interaction performed pretty well when 
NSRP of dimers were smaller than 35000. And by comparing the histograms of different levels of NSRP and P, we 
found the histograms in different levels of P and NSRP were approximate inverse.

The result of Fig. 5B also proofed that the result of Table 3 that only P in lasso logistic was not significantly cor-
related with the first detected true positive ranking. But from Table 3, we couldn’t see the significant correlation 
between other protein attributes and the first detected true positive ranking expect category labels of lasso logistic 
and NSRP of SVM at significance level of 0.1. This result did not conform to the representation of Fig. 5. In order 
to find out the reason, we calculated the Pearson correlation coefficients between the attributes of proteins and 
constructed the analysis of variance table in Table S6. As a result, P was significantly correlated with Distance and 
NSRP. Distance was significantly correlated with NSRP. And the corresponding coefficient and p-value between 
P and Distance were −0.38 and 0.027. The coefficient and p-value between P and NSRP were −0.65 and 4.6e-5. 
The coefficient and p-value between Distance and NSRP were 0.54 and 0.0012. So P and NSRP has strong negative 
correlation and P and Distance has weak negative correlation. NSRP and Distance has positive correlation. And 
reflected in Fig. 5, it’s obviously that the performance between P and NSRP was opposite, while the performance 
of Distance was not obviously reverse compared to the performance of P and the performance of Distance was 
not the same as the performance of NSRP. But when Distance was large than 2, the prediction result was just like 
the result of NSRP that is large than 35000.

In Fig. 6A, we summarized the rules between different machine learning methods and different levels of 
attributes of dimers from Fig. 5 and above results. The relationship graph shown in Fig. 6A gave us an inspiration 
and a possible framework about how to choose suitable machine learning method by turning the arrows back. 
Although the relationships have not been mathematically and biological proven, but the phenomenon could not 
be denied and it sure could give us some guidance when treating with protein-protein data even other kind of 
protein data.

According to the above analysis, it is better to use lasso logistic when P was small because others methods 
performed worse as P decreased. But when facing a new dimer, we don’t know its interacting residue pairs so 
we cannot calculate its P and Distance. Luckily, P and Distance were strong correlated with NSPR which was 
known before prediction. Therefore, when NSRP was large which means P was small, using lasso logistic was 
a good choice. Besides, category labels also should be considered before prediction as it was not significantly 
correlated with P. As can be seen from Figs 5 and 6A, logistic regression with hierarchy interaction had biggest 
advantage when predicting the dimers belonging to EI and OR while random forest and lasso logistic predicted 
well when predicting the dimers belonging to ES. But we found that two dimers which belonged to ES all had 
large NSRP and small P. Thus we consider to choose logistic regression with hierarchy interaction when the new 
dimer belongs to EI or OR. When the new dimer doesn’t belong to EI or OR, take NSRP in to account. If NSRP of 
the new dimer is larger than 20000, lasso logistic should be chosen. Otherwise, choosing logistic regression with 
hierarchy interaction or random forest is the best choice. The above process was shown in Fig. 6B. In addition, dif-
ferent groups of dimers classified in different levels of attributes had a marked difference in prediction accuracy.

Figure 4.  Prediction results of six methods including two proposed methods by us and four single methods 
mentioned before. The abscissa means the number of residue pairs chosen to be interacting residue pairs in a 
dimer and the ordinate means the number of correct predicted dimers as long as there is one truly interacting 
residue pair chosen correctly. The results of logistic regression with lasso penalty and logistic regression with 
hierarchy interaction were obtained by both EasyEnsemble and feature engineering. We got the result of SVM 
by only using EasyEnsemble. The outcome of random forest was predicted without EasyEnsemble and feature 
engineering. The method used to get “final 1” and “final 2” was the method we proposed, in which “final 1” 
presented using random forest and “final 2” indicated using logistic regression with hierarchy interaction when 
NSRP was less than 20000. The vertical dotted line pointed out the difference of six methods choosing the 
number of selected residue-pairs in each dimer to be 20.
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Compared with the single methods, the methods proposed in Fig. 6B were presented in Fig. 3 named “final 1” 
and “final 2”. The result of “final 1” was obtained by using random forest and the result of “final 2” was obtained 
by using logistic regression with hierarchy interaction when NSRP was less than 20000. It is important to note 
that we were most concerned with the prediction result choosing the number of selected residue-pairs in each 
dimer to be 20 as the conclusions in Figs 5 and 6 were all based on it. The vertical dotted line in Fig. 4 showed that 

Dimer BV4.0 NSRP NIRP SVM RF Logistics Interaction logistic P[a] Distance[b] category labels[c] category number

1CLV 12928 91 11 7 4 12 0.0070 1.52 EI 1

1FFW 7316 41 9 4 10 2 0.0056 2.04 OX 8

1GL1 7548 71 10 4 16 1 0.0094 1.25 EI 1

1H9D 14796 99 66 24 149 75 0.0067 1.23 OX 8

1MQ8 25725 59 55 787 230 242 0.0023 1.52 OX 8

1OC0 12456 46 194 16 18 10 0.0037 1.70 ER 3

1OYV 25536 105 31 5 27 13 0.0041 1.34 EI 1

1R6Q 10611 62 16 329 104 5 0.0058 1.42 ER 3

1SYX 7080 46 108 120 222 103 0.0065 2.29 OX 8

1US7 22184 44 96 488 74 247 0.0020 2.09 ER 3

1ZM4 144948 65 157 1147 2 122 0.00045 2.76 ES 2

2A5T 65260 73 62 1107 60 155 0.0011 1.79 OX 8

2ABZ 16226 69 110 5 5 9 0.0043 1.30 EI 1

2G77 44688 94 283 19 33 151 0.0021 1.33 OG 6

2I9B 30360 107 140 56 24 12 0.0035 1.81 OR 7

2J0T 18600 71 2 55 59 198 0.0038 1.69 EI 1

2O3B 26875 69 16 135 29 7 0.0026 1.87 EI 1

2OUL 22568 93 94 18 10 1 0.0041 1.58 EI 1

2VDB 30672 75 145 260 380 183 0.0024 1.03 OX 8

4CPA 10526 56 22 43 48 14 0.0053 1.83 EI 1

DimerBV5.0 NSRP NIRP SVM RF Logistics Interaction logistic P Distance category labels category number

2GAF 117448 129 662 52 8 525 0.0011 2.20 ER 3

2GTP 35910 59 42 125 15 6 0.0016 1.48 OG 6

2YVJ 36531 61 3 25 5 19 0.0017 1.90 ER 3

3A4S 11476 38 35 11 1 27 0.0033 2.72 EI 1

3AAD 37548 59 266 60 86 168 0.0016 2.14 OX 8

BAAD 37548 58 35 269 136 293 0.0015 1.45 OX 8

3FN1 16490 79 62 17 163 280 0.0048 1.24 ER 3

3K75 32109 54 189 2 72 300 0.0017 1.90 ER 3

3S9D 31408 69 69 441 127 42 0.0022 1.01 OR 7

3VLB 78764 96 18 604 19 11 0.0012 2.37 EI 1

4H03 138852 59 10 198 787 578 0.00043 2.62 ES 2

4IZ7 28014 44 622 213 297 1041 0.0016 1.74 EI 1

4M76 39772 43 74 153 434 303 0.0011 2.02 OR 7

Table 2.  Rank of the first detected true positive residue pair in each dimer of four methods. This table shows the 
rank of first true positive interacting residue pair of each dimer in four methods[a]. The percentage of interaction 
pairs[b]; The Euclidean distance between interacting residue pairs and non- interacting residue pairs[c]; Complex 
category labels: antibody-antigen (A); enzyme-inhibitor (EI); enzyme-substrate (ES); enzyme complex with 
a regulatory or accessory chain (ER); others, G-protein containing (OG); others, receptor containing (OR); 
others, miscellaneous (OX)23.

Variables

SVM RF Logistic Interaction logistic

F-value Pr(>F) F-value Pr(>F) F-value Pr(>F) F-value Pr(>F)

Category 0.39 0.85 1.99 0.12 2.47 0.06. 0.49 0.78

P 3.74 0.07 4.55 0.04* 0.31 0.58 5.25 0.03*

Distance 0.06 0.81 0.26 0.62 1.09 0.31 0.3 0.59

NSRP 4.04 0.06 0.61 0.44 0.82 0.38 0.1 0.75

Table 3.  ANOVA table between the first detected true positive ranking and protein attributes. Significant codes: 
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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the performances of “final 1” and “final 2” were both better than other four single methods. 16 correct dimers 
were found by “final 1” and “final 2” while the best of four single methods found 14 correct dimers. In addition, 
this phenomenon appeared not only when the number of selected residue-pairs in each dimer was 20. When the 
number of selected residue-pairs in each dimer was less than 20 or between 100 and 150, we could see that “final 
2” was better than “final 1” and they were both better than other single methods. Similarly, “final 1” predicted 
more correct dimers than “final 2” and they both performed better than other four single methods when the 
number of selected residue-pairs in each dimer was between 20 and 100. So we could conclude that the methods 
proposed have advantage in prediction compared to four single methods if we select residue-pairs in each dimer 
less than 150.

In addition, for further studying the difference between different methods and understanding the meaning 
behind reference methods, we tried to learn variable selection of each method. As proposed methods in Fig. 6B 
didn’t include SVM, so the variable selection of SVM was ignored. Because random forest was applied without 
EasyEnsemble and feature engineering, it was easy to get its importance of variables in Table S7 using basis R 
code. And we found the most 5 important variables of random forest were the geometric features of receptor. The 
geometric features of ligand also made an important impact on prediction process in random forest. While the 8 
hydrophilic features all had small importance in variable measurement. This result might tell us that for dimers 
whose NSRP are smaller than 20000, geometric features rather than hydrophilic features play an important role 
in prediction of protein-protein interactions. Logistic regression with lasso penalty and logistic regression with 
hierarchy interaction all used EasyEnsemble and feature engineering so we could get stable selection of variables 
by using stability selection algorithm. The details of stability selection were referred to Meinshausen, N. and 
Bühlmann, P.23 and our supplementary material. We chose main effects whose frequency were larger than 90% 
and chose interaction effects with frequency larger than 80%. The stability selection results of two methods were 
in Table S8. We could found that there were many of the same main effects and unlike random forest, there were 
many important hydrophilic features in models. And we found that eight interaction effects selected all contained 
at least one geometric feature. This phenomenon also matched the result of random forest and enhanced the 
inference that geometric features played a more important role than hydrophilic features in predicting dimers 
with NSRP less than 20000. Logistic regression with hierarchy interaction considered more representation of 
features so it performed well when predicting most protein-protein interactions. But facing dimers different with 
common sample, it became its weakness. And simplify of logistic regression with lasso penalty compared to logis-
tic regression with hierarchy interaction meant that it was more robust when predicting distinctive dimers with 
NSRP larger than 20000.

Discussion
Extremely imbalanced data have been studied for decades but many techniques used to overcome imbalance 
problem don’t have explicit mathematical properties. The main technique of this paper is EasyEnsemble and 
feature engineering. The prediction results of four methods using different algorithms in this paper indicate that 
this technique has a certain help in our prediction problems. But there is also a lack of theory and principals of 
this technique as four methods gain different improvement by using this technique. In this paper, we compared 

Figure 5.  Histograms of four methods on BV 4.0 and 5.0 in different levels of attributes of dimers. The 
histograms recorded the numbers of correctly predicted dimers by choosing top 20 residue pairs in each dimer. 
(A) Histograms in different categories. (B) Histograms in different levels of P. (C) Histograms in different levels 
of Distance. (D) Histograms in different levels of NSRP.
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the effects of mean, median and weighted mean probabilities and finally chose the mean probabilities to assemble 
results of different classifiers as three ensemble methods performed similarly in our results. Ensemble method 
using mean treated all classifier fairly but might be affected by particularly poor or good results. Assigning weights 
to different classifiers might help improve the result of prediction but we have not found effective weighting 

Figure 6.  (A) Relationships between four methods and different level of attributes of dimers. (B) Reference 
methods in different level of attributes of dimers. The two numbers in parentheses under method represented 
the correct prediction number in corresponding group of dimers when choosing the number of selected 
residue-pairs in each dimer to be 20. For example, logistic regression with hierarchy interaction predicted 9 
correct dimers in all 14 dimers belonging to EI and OR.
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method yet. The numbers of correct predicted dimers on training set were used as weights in our paper and its 
performance was not outstanding. Based on this, there is a lot of work can be done about how to generate, choose 
and assemble balanced samples optimally and how to expand variables reasonably in imbalance data problem.

This paper tended not to value the prediction effect of classification models or the specify algorithm. Instead, 
we compared four different classification methods on protein-protein to find the relationship between these 
methods and different classes of dimers. Global prediction results show that some dimers were easy to be pre-
dicted by all four methods while some dimers were only correctly predicted by some specified methods. The 
results suggest that different discriminants are suitable to recognize different protein-protein interface patterns. 
From this phenomenon, we then chose original properties of dimers including category labels and NSRP and 
constructed P and Distance to describe and distinguish the protein-protein data. Our final result was presented in 
Fig. 6. We found that different classification methods preferred different categories of dimers and different values 
of attributes of dimers. The relationship graph gave us a new idea that we could separate our dataset as we usually 
treated our dataset as a whole and chose one appropriate method to analyze it.

Specified machine learning method only generates discriminants with one or some linear or nonlinear for-
mations. The common model used to recognize interface residue pairs can be regarded as a fixed linear or non-
linear function. It may be an appropriate way that interface residue pairs forming different interface patterns are 
recognized by different models as shown in Fig. 6A. Besides, although using methods presented in Fig. 6B had 
advantages compared to single methods, new protein-protein interactions data is still needed to validate the 
correctness of laws we found.

In our thought, different kinds of dimers may be corresponding to different distributions so it’s necessary to 
choose suitable methods. As shown in above results including ANOVA and variable selection, the choice between 
methods centered on logistic regression with lasso penalty and logistic regression with hierarchy interaction. It 
inspired us to construct that an algorithm that can detect the interaction in explanatory variables and response 
variable in unknown data. Besides, in protein-protein interaction problem, we are interested in the interaction 
position and the protein 3D structure. Next, more attributes of dimers such like 3D structure and more machine 
learning methods should be considered. More causal relationship and mathematical principles between methods 
and attributes of dimers need to be found and proved.

Conclusions
In this paper, we used four effective classification methods to predict the interaction of residue pairs in dimers and 
compare their results. As we described the data of BV 3.0, BV 4.0 and BV 5.0, we found the distribution differs 
among different benchmark version, so it was important to deal with the data in difference problems. In addition, 
we combined EasyEnsemble and feature engineering to overcome the imbalance situation and learn deep infor-
mation of protein-protein dataset. And this algorithm helped to enhance the effects of logistic models. Besides, 
this algorithm also could select stable variables and the selected variables are significant in logistic model.

Most important of all, we found some relationship between properties of proteins and different methods from 
the phenomenon that four methods behaved differently. We employed ANOVA and variable selection to study 
the reasons why different methods performed dissimilarly. And we constructed the relationship graph to give a 
guidance on the study of protein-protein interaction analysis and related problem. By controlling the amount of 
interacting residue pairs selected in a dimer under 150, our proposed methods performed better than all four 
single methods.

Significance.  It was found that different machine learning methods should be adopted for predicting dif-
ferent protein-protein interface patterns. This phenomenon may widely exist in different research areas, which 
reminds us that the scope of application of different methods should not be ignored when trying to solve a sci-
entific problem.
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