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Combination of optical coherence 
tomography and near infrared 
spectroscopy enhances 
determination of articular cartilage 
composition and structure
Jaakko K. Sarin  1,2, Lassi Rieppo1,3, Harold Brommer4, Isaac O. Afara  1, Simo Saarakkala3,5,6 
& Juha Töyräs1,2

Conventional arthroscopic evaluation of articular cartilage is subjective and poorly reproducible. 
Therefore, implementation of quantitative diagnostic techniques, such as near infrared spectroscopy 
(NIRS) and optical coherence tomography (OCT), is essential. Locations (n = 44) with various 
cartilage conditions were selected from mature equine fetlock joints (n = 5). These locations and their 
surroundings were measured with NIRS and OCT (n = 530). As a reference, cartilage proteoglycan 
(PG) and collagen contents, and collagen network organization were determined using quantitative 
microscopy. Additionally, lesion severity visualized in OCT images was graded with an automatic 
algorithm according to International Cartilage Research Society (ICRS) scoring system. Artificial 
neural network with variable selection was then employed to predict cartilage composition in the 
superficial and deep zones from NIRS data, and the performance of two models, generalized (including 
all samples) and condition-specific models (based on ICRS-grades), was compared. Spectral data 
correlated significantly (p < 0.002) with PG and collagen contents, and collagen orientation in the 
superficial and deep zones. The combination of NIRS and OCT provided the most reliable outcome, 
with condition-specific models having lower prediction errors (9.2%) compared to generalized models 
(10.4%). Therefore, the results highlight the potential of combining both modalities for comprehensive 
evaluation of cartilage during arthroscopy.

Articular cartilage is an aneural tissue that enables near frictionless contact between articulating bones. The tissue 
consists mainly of water, collagen and proteoglycans (PGs)1, and due to its limited regenerative capability, it is sus-
ceptible to progressive degeneration after trauma and wear. Cartilage defects can result from various reasons and 
lead to degenerative conditions, such as osteoarthritis (OA) and trauma-induced post-traumatic OA (PTOA), 
affecting millions of people worldwide2, 3. Although these diseases have similar initial stages, including superficial 
PG loss and disruption of superficial collagen network, PTOA mainly impacts the young, whereas OA mostly the 
elderly. These alterations in cartilage composition and structure often lead to excessive strains within the tissue, 
and therefore progressive deterioration. As no cure currently exists for OA, it would be essential to reliably diag-
nose cartilage injuries and evaluate their surrounding tissue to prevent the initiation and progression of PTOA, 
e.g. via surgical intervention.

Arthroscopic repair surgery is often performed to treat joint conditions diagnosed via clinical examination, 
computed tomography (CT) or magnetic resonance imaging (MRI). Due to poor soft tissue contrast in conven-
tional CT images and relatively poor resolution of clinical MRI4, arthroscopic examination may reveal previously 
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undetected cartilage lesions. However, clinical assessment of such conditions during conventional arthroscopy 
is often subjective and poorly reproducible, regardless of the scoring system5, 6. Therefore, the implementation 
of quantitative arthroscopic techniques could enhance the detection of the initial stages of PTOA and, thus, the 
outcome of the repair surgery.

Multiple techniques, including near infrared spectroscopy (NIRS)7, optical coherence tomography (OCT)8, 9, 10 
and ultrasound8–10 have been proposed for arthroscopic evaluation of articular cartilage. The optical techniques, 
i.e. NIRS and OCT, are complementary as NIRS enables quantitative evaluation of cartilage composition11, 12, 
while OCT provides images with superior resolution compared to CT and MRI. However, scoring of the severity 
of lesions visualized in these high resolution images is as unreliable as traditional arthroscopic scoring9, 10, thus 
requiring the adaptation of user-independent automatic scoring9, 10, 13.

Analysis of near infrared (NIR) spectral data requires application of univariate and multivariate regression 
techniques, e.g. principal component regression (PCR) and partial least squares regression (PLSR), with the latter 
being the most commonly adapted14. Furthermore, deep learning algorithms, such as multi-layered artificial 
neural networks (ANN), have performed well with large and complex data due to their ability to model both 
linear and nonlinear relationships15, 16. Additionally, the employment of variable selection methods enables the 
extraction of the most essential wavelengths and wavebands from variable-rich data, thus resulting in more robust 
models17.

In this study, we hypothesize that the combination of OCT and NIRS provides a comprehensive estimate of 
cartilage condition, and that ANN can accurately describe the relationship between NIR spectral data and tissue 
composition and structure. To test these hypotheses, ANN was employed for the first time to model the rela-
tionship between cartilage NIR spectroscopic data and its reference parameters, including collagen orientation 
and PG and collagen contents determined via histological imaging. Furthermore, cartilage lesions visualized in 
OCT images were evaluated according to the ICRS scoring system with an automatic scoring algorithm9, 10, 18. 
Subsequently, the data were grouped based on their ICRS grades and modelled using ANN, in order to investi-
gate the potential of injury-based (condition-specific) models compared to a generalized model based on all the 
samples.

Materials and Methods
Distal metacarpal and proximal 1st phalanx sections were extracted from five limbs of mature equines (n = 5), 
obtained from a slaughterhouse (Equine Slaughterhouse Van de Veen, Nijkerk, Netherlands); thus, no ethical 
permission for sample collection was required. Cartilage locations (n = 44) with various conditions were vis-
ually inspected and selected by a board certified equine surgeon (with experience of >500 arthroscopies), and 
subsequently each location was divided into a grid containing 25 points (15 mm × 15 mm, Fig. 1). The central 
and outermost lines of the grid (15 points) were measured with NIRS and OCT. Measurement points with fully 
eroded cartilage were excluded from the study, thus resulting in 530 measurement points. Following NIRS and 
OCT measurements, each point was subjected to histological analyses by extracting a tissue block for histology. 
Seven sections (three for both polarized light microscopy (PLM) and digital densitometry (DD), and one for 

Figure 1. Study design and workflow. During measurements, each cartilage location (n = 44) was divided 
into a 5 × 5 grid (lower left corner) of which the central and outermost lines (filled circles) were measured. 
After rejecting locations with fully eroded cartilage, 530 measurement points remained. All 530 locations were 
measured with NIRS, OCT and quantitative microscopy (FTIR, PLM and DD).
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Fourier transform infrared (FTIR) microspectroscopy) were prepared for quantitative microscopy. Due to the 
large number of measurements required for multivariate modelling and limitations induced by joint anatomy, the 
NIRS and OCT measurements were not performed arthroscopically.

Near infrared spectroscopy and spectral preprocessing. The NIR spectra collected in Sarin et al.19 
were utilized in this study. Briefly, the instrumentation consisted of a halogen light source (AvaLight-D(H)S, 
Avantes BW, Apeldoorn, Netherlands), a spectrometer (AvaSpec-ULS2048XL, Avantes BW) and a diffuse reflec-
tance fibre optic probe. Spectral data in the region 400–1100 nm was acquired with the instrumentation, of which 
the NIR region (λ = 700–1100 nm) was employed in the analysis as the region consists of stronger overtones of 
chemical bonds compared to the VIS region20. An average of eight consecutive absorbance spectral measure-
ments was collected in three repetitions with reorientation of the probe between rounds (coefficient of varia-
tion = 0.82 ± 0.32%19). The probe was oriented perpendicular and in contact with sample surface during the 
measurements. The average spectrum of the three repetitions was smoothed using a third order Savitzky-Golay 
smoothing filter with a window size of 39 data points (approximately 25 nm) to eliminate any hardware-induced 
noise. Additionally, 1st and 2nd derivative spectra were calculated as these preprocessing techniques are known 
to accentuate subtle absorption peaks21, therefore improving the prediction accuracy and decreasing errors of 
calibration models. Furthermore, the effectiveness of normalization methods, i.e. multiplicative scatter correction 
(MSC) and standard normal variate (SNV), were investigated.

Optical coherence tomography and automatic scoring algorithm. The NIRS measurement points 
were imaged using OCT (wavelength 1305 ± 55 nm, axial resolution <20 µm, lateral resolution 25–60 µm; 
Ilumien PCI Optimization System, St. Jude Medical, St. Paul, MN, USA) to detect and evaluate possible cartilage 
lesions22. An OCT imaging catheter was orientated parallel and as close to the cartilage surface as possible with-
out making contact. The samples were submerged in phosphate-buffered saline during the imaging.

A customized automatic algorithm was utilized for scoring the lesions visualized in the OCT images according 
to ICRS scoring system9, 10, 18. The algorithm, introduced by te Moller et al.18, was refined by introducing adaptive 
smoothing, thus enhancing the detection of cartilage-bone interface. In summary, the imaging catheter (d = 0.9 
mm) is detected and removed from the OCT image (2048 × 2048 pixels). The catheter size is later utilized as a 
scaling factor to quantify cartilage surface roughness. Next, a region of interest (width = 2 mm), matching the size 
of the fibre optic probe applied in the NIRS measurement, is chosen. This is followed by the detection of cartilage 
surface and the interface between non-calcified and calcified cartilage, in order to determine OCT roughness 
index (ORI)23, i.e. articular surface roughness, and cartilage thickness. Thresholds for ORI (8 μm) and cartilage 
loss (8%) were applied, as in our previous studies9, 10, 18, to differentiate between ICRS grades 0–1 and 1–2, respec-
tively. According to the International Cartilage Research Society scoring guidelines24, defects extending deeper 
than 50% of cartilage thickness are categorized as grade 3, and defects extending into subchondral bone as grade 4.

Histology. Osteochondral samples extracted from the measurement locations were fixed in formalin, decal-
cified in EDTA and embedded in paraffin blocks. Sections (n = 7) were cut with a microtome along each meas-
urement line for the histological imaging modalities, i.e. FTIR microspectroscopy (n = 1), PLM (n = 3) and DD 
(n = 3). The section thicknesses for the imaging modalities were 5 μm, 5 μm and 3 μm, respectively.

Fourier transform infrared (FTIR) microspectroscopy. Collagen and PG distributions were deter-
mined from the histological sections via FTIR microspectroscopy by mapping 500-μm-wide areas covering the 
full cartilage thickness in mid infrared (MIR) region. Same sized areas were also measured with PLM and DD. 
FTIR measurements were conducted with the Thermo iN10 FT-IR microscope (Thermo Nicolet Corporation, 
Madison, WI, USA) in transmission mode using a spectral resolution of 4 cm−1 and pixel size of 25 × 25 μm2. 
Four repetitive measurements per pixel were acquired and averaged. The collagen and PG contents were deter-
mined as the integrated area of the amide I peak (1584–1720 cm−1) and the carbohydrate region (984–1140 cm−1), 
respectively25.

Polarized light microscopy. The orientation and birefringence of collagen in the samples were determined 
by imaging with Abrio PLM system (CRi, Inc., Woburn, MA, USA) mounted on a conventional light microscope 
(Nikon Diaphot TMD, Nikon, Inc., Shinagawa, Tokyo, Japan). The Abrio system consists of a green bandpass fil-
ter, a circular polarizer, and a computer-controlled analyser composed of two liquid crystal polarizers and a CCD 
camera. All specimens were imaged at identical orientation with a 4.0x objective, which resulted in a pixel size of 
2.53 × 2.53 μm2. In the orientation images, 0 degrees corresponds to the orientation parallel to cartilage surface 
and 90 degrees perpendicular to cartilage surface.

Digital densitometry. The 3 µm sections were stained with Safranin-O and measured with quantitative 
DD system to determine PG distribution26. The system consists of a light microscope (Nikon Microphot-FXA, 
Nikon Co., Tokyo, Japan), equipped with a monochromatic light source and a 12-bit CCD camera (ORCA-ER, 
Hamamatsu Photonics K.K., Hamamatsu, Japan). The system was calibrated with neutral density filters (Schott, 
Mainz, Germany) covering optical density (OD) range from 0 to 3.0. The samples were imaged with a 4.0x objec-
tive resulting in a pixel size of 1.56 × 1.56 μm2.

Determination of cartilage zones. The interface between uncalcified and calcified cartilage was manu-
ally determined from the histological (Safranin-O) images. Additionally, the depth-wise profiles of the reference 
parameters were divided into two zones, with the first defined as the traditional superficial zone and the second as 
a combination of the traditional intermediate and deep zones. In the context of this study, these zones are referred 
to as superficial and deep zones. The interface between the superficial and deep zones was determined as the 
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minimum point of the birefringence profile, indicating random orientation of collagen fibers26. The minimum 
superficial zone thickness was 12.5 µm, which was observed in severe cartilage defects (ICRS2).

Artificial Neural Network. ANN models were created to predict cartilage composition and collagen 
orientation from the preprocessed NIR spectral data. For ANN model training, one hidden layer with a maxi-
mum of 10 neurons was chosen to minimize overtraining, which can result from too many neurons and inputs. 
Additionally, an input variable selection (IVS) technique, i.e. filter-based forward variable selection, was utilized 
to discover the most important variables17. In this IVS technique, the single most reliable wavelength is first 
determined, followed by iteratively identifying the next most reliable variable. The IVS was terminated after the 
most relevant 200 variables were determined. The Levenberg-Marquardt backpropagation algorithm was chosen 
for ANN training due to its optimization efficiency in modelling complex data. The transfer functions in the hid-
den and output layers were hyperbolic tangent and linear functions, respectively. To ensure reproducible results, 
the effect of initial weights was tested and recorded during model building. The sizes of training, validation and 
test groups were 60%, 30% and 10% of all measurement points, respectively. The validation and test groups were 
determined by randomly selecting measurement points (30% and 10%, respectively) within each ICRS grade 
group formed using the automatic scoring algorithm. The ranges of the reference parameters in the validation 
and test groups were within the range of the training group. ANN training was terminated when the validation 
error did not decrease in six successive iterations. The optimal model was chosen based on the root mean square 
error (RMSE) of the test group.

Two separate protocols were adapted to investigate the potential of condition-specific models. In the 1st pro-
tocol, an ANN model was created with all the samples (generalized model). In the 2nd protocol, separate training, 
validation and test groups were created for each ICRS grade (condition-specific models). Furthermore, these 
groups were subgroups of the training, validation and test groups of the 1st protocol (Fig. 1). Similar optimiza-
tion was performed in the development of the models in both protocols. Additionally, to compare the various 
preprocessing methods and the effect of IVS and condition-specific division, the normalized root mean square 
error (NRMSE) was determined as RMSE divided by the range of the reference parameter. ANN modelling was 
performed in MATLAB (Matlab R2016b, MathWorks Inc., Natick, MA, USA) using the neural network toolbox 
(Version 9.1).

Statistics. The statistical significance of the test group (n = 53) correlation was evaluated using the two-tailed 
Pearson’s correlation analysis by comparing the reference values to the values predicted by the ANN models. The 
Kruskal-Wallis test (n = 530) was employed to investigate the statistical significance of difference between the 
reference parameter values in the ICRS-scoring based groups. All statistical analyses were conducted in IBM SPSS 
statistics software (Version 23, SPSS Inc., Chicago, USA).

Data of the current study is available from the corresponding author on reasonable request.

Results
Distinct differences in the histology, OCT, and microscopy images (Fig. 2) were observed between samples from 
different ICRS groups as well as average NIR spectra (Fig. 3c), thus highlighting the sensitivity of these optical 
techniques. Data from the 700–1100 nm spectral region correlated (p < 0.0002) with collagen orientation, col-
lagen content, and PG content (Table 1, Fig. 3). The average NRMSEs indicated that combination of only spec-
tral smoothing with 1–8 neurons was the most reliable approach (11.7%), when compared to SNV (11.8%) and 
MSC (11.9%) normalization, and 1st derivative (12.2%) and 2nd derivative (12.5%) preprocessing. Furthermore, 
both the adaptation of IVS (10.4%) and the condition-specific models combined with IVS (9.2%) systematically 
decreased the average NRMSE. The average thickness values of the superficial and deep zones were 77 ± 42 µm 
and 698 ± 215 µm, respectively.

The average superficial collagen and PG contents decreased with increasing ICRS grade, whereas the collagen 
orientation angle in respect to cartilage surface increased (Fig. 4). These alterations in tissue composition and 
structure decrease the capability of the tissue to bear loads, therefore potentially leading to excessive strains and, 
thus, progressive damage. The severity of cartilage lesions observed in the samples was ICRS0 (n = 318), ICRS1 
(n = 159) and ICRS2 (n = 53).

Discussion
In this study, we combine for the first time imaging and non-imaging optical modalities, i.e. OCT and NIRS, 
respectively, for evaluation of cartilage condition. The OCT-based scoring of cartilage lesions enhanced the pre-
diction of compositional and structural properties from NIR spectral data, thus demonstrating the potential of 
combination of these modalities for arthroscopic evaluation of articular cartilage. The relationship between car-
tilage composition and spectral data in the NIR and MIR regions11, 12 has been established; however, no study has 
investigated the relationship between NIR spectral data and collagen orientation. Furthermore, no previous spec-
troscopic studies of articular cartilage have utilized ANNs for spectral analyses. We successfully employed ANN 
to investigate the relationship between articular cartilage NIR spectral data and its composition and structure.

The employed spectral region (700–1100 nm), coupled with the adaptation of ANN modelling, resulted in 
significant (p < 0.002) correlations between the NIR spectral data and collagen content and orientation, and 
PG content. These relations arise from the chemical bonds of cartilage constituents (collagen and PG)27, mainly 
the second and third overtone vibrations of CH, NH and OH. The second and third overtones of NH stretch-
ing vibration appear in the regions of 950–1100 nm and 775–850 nm, respectively, whereas second overtone OH 
stretching vibration appears at 950–1100 nm and third overtone CH stretching vibration at 850–950 nm20. Due to 
high water content (65–80%) of articular cartilage, OH absorption is the most pronounced in the spectrum with 
evident peak at 970 nm. The utilized spectral region has been previously shown to correlate with PG content28. 
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However, the relation of collagen orientation with spectroscopic data has not been previously investigated. This 
relation is expected to arise from the birefringence property of cartilage. Furthermore, the average absorbance 
spectrum of visually healthy cartilage (ICRS0) was lower compared to damaged cartilage (Fig. 3c), which may 
indicate that more light is reflected back from the intact superficial collagen network due to the heterogeneous 
structure of cartilage. Thus, the reflected light was expected to include compositional information on superficial 
cartilage. The reflection effect was also expected to be wavelength-specific along with the slightly varying penetra-
tion depth29. Unfortunately, no physical model has been developed for cartilage to investigate wavelength-specific 
penetration into the tissue or the role of cartilage structure29 on light penetration. Due to this limitation, we opted 
for an IVS technique to determine the most informative wavelengths for each parameter. Moreover, the relative 
absorbance has also been associated with cartilage thickness due to the differences in optical pathlength19; there-
fore, relative absorbance is most probably affected by both parameters: cartilage thickness and superficial collagen 
network.

Multivariate regression techniques, such as PCR and PLSR, have been widely utilized for analyses of articular 
cartilage spectral data, whereas deep learning algorithms, such as ANN, have never been applied, despite encour-
aging results achieved in other spectroscopic applications16, 30, 31. The necessity of a large number of samples for 
accurate training of ANN models has arguably limited its application in the analyses of cartilage spectra. As a 
result of the high number of spectral measurements in this study and the positive outcomes of several spectro-
scopic studies15, 30, we opted for ANN over the conventional multivariate regression techniques. ANN has con-
sistently outperformed linear operators, i.e. PCR and PLSR, arguably due to its ability to model non-linearity32, 
which in the case of linear operators cannot be completely accounted for with mathematical preprocessing tech-
niques33. This is supported by our findings that spectral smoothing operation alone yielded models with the 
lowest predictions errors, compared to models combining smoothing and normalization techniques or derivative 
preprocessing. Similar finding has been presented by Ni et al.31. Although the variation in NRMSE values is min-
imal, the elimination of redundant preprocessing enables more rapid data processing during in vivo applications.

The filter-based IVS iteratively identified the most relevant wavelengths, and thereby systematically decreased 
the prediction errors of the test group and computational time in the model development. The number of the 
most relevant variables was limited to 200 as no substantial improvement was observed by increasing the variable 
number in pretesting of the IVS. Additionally, the spectral region employed in this study was limited to short NIR 
spectral range (700–1100 nm); therefore, the application of the whole NIR range (700–2500 nm) could enhance 
the reliability of the prediction. However, this range includes relatively higher absorbance overtones, and suffers 
from the dominating absorbance of water.

The relationships between ICRS grades and cartilage properties obtained in this study are in agreement with 
previously observed variations34, 35, therefore supporting the reliability of the scoring. The quantification of PG 
amount varied slightly between the two methods, i.e. DD and FTIR, as Safranin-O staining quantifies only the 

Figure 2. Representative examples of ICRS0, ICRS1 and ICRS2 grades visualized using light microscopy  
(a, Safranin-O stained) and OCT (b), along with the cartilage surface and cartilage-subchondral bone interface 
(c) automatically segmented from the OCT image. Followed by PLM (d,e) images with depth-wise collagen 
orientation angle (solid line) and birefringence (Bir., dashed line) profiles, DD (f,g) images with depth-wise 
OD profile, and FTIR-based (h,i) depth-wise profiles of collagen and PG contents. The interface between the 
superficial and deep zones is presented with the black triangle.
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Figure 3. Prediction of collagen orientation angle in the superficial zone with a generalized model (a) and with 
the three condition-specific models (b). The average smoothed spectra of ICRS0, ICRS1 and ICRS2 (c) with the 
selected wavelengths (black regions) of IVS for each condition-specific model of superficial collagen orientation 
angle. Furthermore, differences in the spectra of the ICRS groups are highlighted in the 2nd derivative average 
spectra (y-axes not in scale) within the mutual wavelength regions (I-IV).

Mean ± SD 
(Range)

All samples ICRS-based division

r RMSE p r RMSE p

Collagen 
orientation 
angle (π)

Superficial 23.2 ± 12.9 
(5.6–74.4) 0.74 7.37 <0.0001 0.86 5.91 <0.0001

Deep 77.1 ± 7.6 
(39.2–87.5) 0.52 5.72 <0.0001 0.50 5.85 0.0001

Collagen 
content (AU)

Superficial 21.6 ± 9.2 
(1.4–48.3) 0.62 5.84 <0.0001 0.72 5.18 <0.0001

Deep 34.7 ± 9.2 
(12.7–68.0) 0.65 5.59 <0.0001 0.78 4.81 <0.0001

PG content 
(AU)

Superficial 5.34 ± 2.41 
(0.15–18.99) 0.42 1.24 0.0018 0.69 0.97 <0.0001

Deep 6.47 ± 1.99 
(0.50–15.58) 0.70 0.99 <0.0001 0.77 0.89 <0.0001

PG content 
(OD)

Superficial 1.02 ± 0.49 
(0.09–1.82) 0.76 0.30 <0.0001 0.78 0.28 <0.0001

Deep 1.79 ± 0.23 
(0.28–2.00) 0.63 0.10 <0.0001 0.82 0.08 <0.0001

Table 1. Average, standard deviation (SD) and range for the measured reference parameters along with 
correlation and RMSE values for the test group.



www.nature.com/scientificreports/

7SCIENTIFIC RepoRTS | 7: 10586  | DOI:10.1038/s41598-017-10973-z

sulfated PGs, whereas the carbohydrate region of FTIR also includes the non-sulfated PGs and glycoproteins36. 
With FTIR, the measurements were limited to one section compared to three of PLM and DD; thus, possible 
variations in the section thickness could not be similarly eliminated with averaging. Determination of the PG 
and collagen contents was based on the integrated area of well-established spectral peaks25. Although derivative 
preprocessing has been shown to improve the outcome of FTIR analysis, this preprocessing technique increases 
spectral noise and requires high spectral resolution, thus increasing the acquisition times. Nevertheless, in the 
NIRS analysis of this study, the OCT-based ICRS scoring enabled division of the cartilage samples into subgroups, 
which enhanced the prediction accuracy and, thus, the reliability of the ANN models. The combination of OCT 
and NIRS could result in less-subjective evaluation of severe chondral defects by visualization, i.e. using OCT, and 
also the detection of compromised cartilage surrounding the lesion, e.g. at the initial stages of PTOA, prior to any 
visible signs of tissue alterations. Furthermore, the non-overlapping wavelength regions of OCT and NIRS enable 
simultaneous data acquisition and diagnosis.

The contribution of subchondral bone to the NIR data could not be accounted for in this study as the 
depth-wise optical properties of articular cartilage have not yet been fully investigated. However, the NIR 
region has a superior penetration depth compared to MIR region29, therefore not restricting the analysis to the 
superficial layer of cartilage. Furthermore, applying even shorter wavelengths, i.e. visible region, could enable 
the evaluation of subchondral bone after quantifying the optical properties of cartilage. In few cases of severe 
cartilage defects, the thin superficial zone included a part of the traditional intermediate zone. However, no 
effect was observed on the prediction performance of the ANN models in these cases, thus suggesting that 
NIRS is reliable for assessing the orientation of collagen fibrils. No biochemical assays were conducted in 
this study due to the necessity for depth-wise determination of cartilage composition; however, Afara et al.12 
reported strong correlations between cartilage biochemical composition and NIR spectra by utilizing a similar 
spectral range.

In conclusion, ANN can reliably model the relationship between NIR spectral data and cartilage composi-
tion or structure with minimal preprocessing. Furthermore, condition-specific classification of cartilage samples 
based on OCT further enhanced the prediction capability of NIRS, therefore highlighting the importance of the 
combination of NIRS and OCT for arthroscopic applications.
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