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Population-based mechanistic modeling allows for quantitative
predictions of drug responses across cell types
Jingqi Q. X. Gong1 and Eric A. Sobie1

Quantitative mismatches between human physiology and experimental models can be problematic for the development of
effective therapeutics. When the effects of drugs on human adult cardiac electrophysiology are of interest, phenotypic differences
with animal cells, and more recently stem cell-derived models, can present serious limitations. We addressed this issue through a
combination of mechanistic mathematical modeling and statistical analyses. Physiological metrics were simulated in
heterogeneous populations of models describing cardiac myocytes from adult ventricles and those derived from induced
pluripotent stem cells (iPSC-CMs). These simulated measures were used to construct a cross-cell type regression model that predicts
adult myocyte drug responses from iPSC-CM behaviors. We found that (1) quantitatively accurate predictions of responses to
selective or non-selective ion channel blocking drugs could be generated based on iPSC-CM responses under multiple
experimental conditions; (2) altering extracellular ion concentrations is an effective experimental perturbation for improving the
model’s predictive strength; (3) the method can be extended to predict and contrast drug responses in diseased as well as healthy
cells, indicating a broader application of the concept. This cross-cell type model can be of great value in drug development, and the
approach, which can be applied to other fields, represents an important strategy for overcoming experimental model limitations.

npj Systems Biology and Applications (2018)4:11; doi:10.1038/s41540-018-0047-2

INTRODUCTION
While the goal of much biomedical research is to understand
human physiology and pathophysiology, direct human experi-
ments are often infeasible and/or unethical. Because of this,
experimental models of human physiology are often required.
These can include cell culture models and animal models of
human disease. To the extent that they provide a reasonable
representation of the human system of interest, the experimental
models are useful. However, when a behavior or physiological
response in the experimental model does not match the behavior
or response seen in the target system, the limitations of the
experimental model become a concern. These differences may be
qualitative; for instance, a drug that is efficacious in a mouse
model of disease may fail completely at treating people because
mice and humans express different isoforms of a protein. Often,
however, these differences are quantitative. For example, a
diabetes drug may lower blood glucose in both a mouse model
and in diabetic patients, but to different extents.
A strategy for addressing this issue is to build mathematical

frameworks that correct for the limitations of the experimental
model. In some cases, for instance calculating the appropriate
dose of a drug by considering a patient’s weight, this is trivial. In
other cases empirical correction factors can be derived through
painstaking trial and error. However, such correction factors
generally only apply under specific conditions, and no general
method exists to quantitatively correct for the inaccuracies of how
an experimental model will respond to a variety of relevant
perturbations.
An example of considerable immediate importance concerns

electrical activity in cardiac myocytes derived from induced

pluripotent stem cells (iPSC-CMs). Because these cells are a readily
obtainable and renewable source of human cardiac myocytes,
they are gaining popularity as a potential platform to screen drugs
for toxicity.1,2 The cells, however, exhibit immature physiology
compared with ventricular myocytes from adult hearts,3,4 and it
remains unclear how well drug tests performed in iPSC-CMs will
recapitulate the effects observed in human hearts.
We hypothesized that population-based mechanistic simula-

tions5–9 could be used to quantitatively map physiological
responses between cell types. Recent years have seen the
development of methods that allow for the simulation of realistic
variability between individuals using heterogeneous populations
of mechanistic models.5–7 These approaches do not only allow for
variability to be reproduced—when appropriate statistical meth-
ods are applied to the simulation results, these approaches can
provide insight into differences between individuals in drug
responses7,10 and allow for the development of sample-specific
models.11,12 To extend these ideas, we attempted to translate
drug responses from iPSC-CMs to human adult ventricular
myocytes. Beginning with mathematical models of two cell
types,13,14 we combined simulations of heterogeneous popula-
tions with multivariable regression approaches. The resulting
model could be used to predict, with quantitative accuracy, drug
effects in human adult myocytes based on recordings in iPSC-CMs.
Moreover, we found that the approach could be generalized to
quantitatively predict effects in diseased myocytes and across
multiple species. This strategy is practically useful to address
contemporary problems in drug development, and it provides a
framework for addressing the vexing question of experimental
model limitations.

Received: 18 September 2017 Revised: 18 January 2018 Accepted: 24 January 2018
Published online: 24 February 2018

1Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Correspondence: Eric A. Sobie (eric.sobie@mssm.edu)

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-018-0047-2
mailto:eric.sobie@mssm.edu
www.nature.com/npjsba


RESULTS
Human iPSC-CMs and adult myocytes exhibit quantitative
differences in their responses to ionic current perturbations
We performed simulations to understand differences between
iPSC-CMs and human adult myocytes in the electrophysiological
responses to drugs. Figure 1a and b, respectively, shows how the
two cell types respond to block of rapid delayed rectifier (IKr) and
L-type Ca2+ (ICaL) currents by 25 and 50%. The two cell types
exhibit differences in baseline action potential (AP) and calcium
transient (CaT) morphology, but qualitatively similar responses to
ionic current blockade. We quantified the effects of ionic current
perturbation by calculating the AP duration at 90% repolarization
(APD90) and CaT amplitude (CaTA). Figure 1c and d, which plot
these outputs over a range of IKr and ICaL scaling factors, makes
clear the quantitative divergence between human iPSC-CMs and
adult myocytes.
To examine how the two cell types respond to a range of ionic

current perturbations, we performed parameter sensitivity ana-
lyses15–17 of the two models. Across 13 ion channels, pumps, and
transporters that are common to both models, we observed
marked differences in how perturbations to these ion transport
pathways affected APD90 and CaTA (Fig. 1e, f). These differences
highlight that the response to a drug observed in iPSC-CMs will
not necessarily match the response seen in adult myocytes, and a
comprehensive method is therefore required to quantitatively
translate physiological responses across cell types.

A multivariable regression model can translate drug
responses across cell types
We developed a statistical model, based on principles of multi-
variable regression (Fig. 2a), to predict metrics derived from AP
and CaT waveforms in adult myocytes from physiological
recordings in iPSC-CMs. Similar to the approaches taken in recent
studies,5–9 maximal conductance values for 13 ion transport
pathways were randomized to generate heterogeneous in silico
populations (600 cells of each type) that reflected physiological
variability. A series of features were extracted from simulated time
courses, including APD at several levels, diastolic and peak
voltages, CaT duration at several levels, diastolic and systolic
[Ca2+]i, CaTA, and spontaneous beating rate in iPSC-CMs. Partial
least squares regression (PLSR)18,19 was then applied to the
simulated population results to derive a predictive model (see
Methods for details). Figure 2b shows scatter plots of APD90 and
CaTA obtained with five-fold cross-validation. The strong correla-
tion seen between adult model simulation results (abscissa) and
regression model predictions (ordinate) indicates that the cross-
cell type model is highly accurate (R2= 0.906 for APD90; R

2= 0.964
for CaTA). Cross-validation results of the regression model across
nine additional physiological outputs from AP and CaT are shown
in Fig. S1 (Supporting Information). To confirm the model’s
practical utility, we simulated 50% blockade of IKr and ICaL in the
baseline iPSC-CM mathematical model, then used the regression
matrix Bcross to predict the responses to these perturbations in

Fig. 1 Human adult myocyte and human iPSC-CM responses to perturbations in ion transport pathways. a Action potential (AP) waveforms
simulated in human adult myocyte and iPSC-CM mathematical models before (dashed lines) and after (solid lines) 25 and 50% block of IKr. b
Calcium transient (CaT) time courses of the two cell types at baseline (dashed lines), and after 25 and 50% block of ICaL (solid lines). c, d
Quantification of AP duration at 90% repolarization (APD90, c) and CaT amplitude (CaTA, d) as a function of maximal conductances controlling
IKr (GKr, left) and ICaL (GCaL, right) in adult myocyte (blue) and iPSC-CM (red) models. All variables are expressed as a percentage of the control
value obtained in the absence of perturbation. e, f Sensitivity coefficients indicating the extent to which perturbations in each ion transport
pathway causes changes in APD90 (e) and CaTA (f). Coefficients are shown for both adult myocyte (blue) and iPSC-CM (red) models
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adult myocytes (as illustrated in Fig. 2a, bottom). The close match
in Fig. 2c and d between the symbols (regression prediction) and
the solid lines (adult model simulation) indicates the accuracy of
the model predictions (quantified in Table S3, Supporting
Information).

Experimental protocols that alter ionic concentrations provide
critical information for the regression model
Figure 2 shows results from a regression model in which
simulations performed in iPSC-CMs, under eight experimental
conditions (described in Methods), are used to predict responses
in adult myocytes. However, some of the eight protocols may
provide partially redundant information, and it is generally
unrealistic to record from an individual cell under eight separate
conditions. Therefore, to prioritize efforts and direct experimental
design, we evaluated the contribution of each simulated condition
to the predictive strength of the cross-cell type model. First, we
examined iPSC-CM population distributions of APD90 (Fig. 3a) and

CaTA (Fig. 3b) under different experimental conditions. We
observed that, compared with the baseline distributions of
spontaneously beating cells (black lines and shaded histograms),
some conditions caused minimal changes (e.g., 0.5 Hz pacing,
orange histograms), whereas others caused more dramatic shifts
in the population distributions (e.g., 2 Hz pacing, blue, and
increased extracellular [Na+], purple). Based on these results, we
hypothesized that conditions that shift these distributions are
more informative and contribute more predictive power than
those that cause minimal changes.
To test this hypothesis and identify the most informative

simulation protocols, we constructed regression models based on
sequential inclusion (Fig. 3c) or exclusion (Fig. 3d) of additional
simulation conditions. With these two complementary
approaches, we either included the protocol that led to the
greatest improvement in R2, or excluded the protocol that caused
the smallest decrease in R2 (see Methods for details). The two
evaluation approaches led to similar results, and from these we
concluded that the three most informative simulation conditions

Fig. 2 Regression model to predict adult myocyte responses from iPSC-CM physiology. a Upper panel, regression strategy for development of
a cross-cell type model that maps physiological responses from one cell type (iPSC-CM, left) to another cell type (adult myocyte, right). Bottom
panel, the use of cross-cell type model to predict drug responses with measurements from simulations or experiments. The resulting
regression matrix Bcross serves to generate predictions on adult myocyte responses when measurements are made in iPSC-CM following the
same perturbations. Insets: physiological features quantified from iPSC-CM (left) and adult myocyte (right) simulations. AP features (top): (1)
AP duration (APD) at −60mV; (2) APD at 90% repolarization (APD90); (3) APD at 50% repolarization (APD50); (4) peak membrane voltage (Vpeak);
(5) resting membrane voltage (Vrest). CaT features (bottom): (6) CaT amplitude (CaTA); (7) resting [Ca2+]i (Carest); (8) peak [Ca

2+]i (Capeak); (9) CaT
duration (CaD) at 50% return to baseline (CaD50); (10) CaT decay time; (11) CaT duration (CaD) at 90% return to baseline (CaD90). For
simulations of iPSC-CM spontaneous (rather than electrically paced) activity, the beating frequency was also quantified and included in the
regression model. b Scatter plots of predictions for adult myocyte APD90 (top) and CaTA (bottom), with the actual values from adult myocyte
simulations (abscissa) vs. the cross-cell type predictions (ordinate). For clarity, only 100 samples are shown on each of the plots, but the
regression was constructed with 600 cell populations, and five-fold cross-validation was performed to calculate R2 values. c, d Adult myocyte
AP and CaT responses to 50% block of IKr (c) and ICaL (d). Purple circles represent regression model predictions of particular waveform features,
whereas solid lines indicate numerical simulations
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(3-MOST protocols) were: (1) an increase in extracellular [Ca2+]
([Ca2+]o high); (2) a decrease in extracellular [Na+] ([Na+]o low);
and (3) an increase in extracellular [Na+] ([Na+]o high). Conversely,
the three least informative protocols (3-LEAST) were: (1) 0.5 Hz
pacing, (2) 1 Hz pacing, and (3) a decrease in extracellular [Ca2+]
([Ca2+]o low). To further validate that the 3-MOST protocols
provide complementary information and improve prediction
accuracy, we generated all 56 possible regression models that
include 3 simulation protocols chosen from the 8, and evaluated
each model based on the adjusted R2 values for APD90 (Fig. 3e)
and CaTA (Fig. 3f). Confirming the results of the inclusion and
exclusion approaches, we found that combinations with two or
more protocols from the 3-MOST category (purple bars) achieved
higher R2 values, compared with models that included two or
more protocols from 3-LEAST (orange bars), or mixed combina-
tions (blue bars).

Based on these results, our optimized model used in
subsequent simulations was built from the three most informative
experimental protocols, in addition to spontaneous beating and 2
Hz pacing. The optimized cross-cell type model achieved R2=
0.903 for APD90 and R2= 0.967 for CaTA following five-fold cross-
validation.

Cross-cell type predictions of ionic current blockade are
accurate for both selective and non-selective drugs
We next set out to test the ability of the optimized cross-cell type
regression model to predict how adult myocytes respond to
additional ionic perturbations. These simulations were performed
in heterogeneous populations of iPSC-CMs and adult myocytes
(100 cells in each group), which allowed us to account for
variability between myocytes and estimate the precision of the
predictions. Figure 4a and b shows the simulated effects of IKr and
ICaL-blocking drugs over a range of concentrations corresponding
to 5–55% channel block. Whether examining the change in APD90

(Fig. 4a, b, left) or the change in CaTA (Fig. 4a, b, right), the
regression model prediction (purple) provides a much better
estimate of the adult myocyte response (gray) than does the
change in APD90 or CaTA observed directly from iPSC-CMs (cyan).
Figure 4c and d shows predicted effects of drugs that selectively
inhibit 10 ion transport pathways (all simulated at 50% block).
With all drugs that cause substantial effects in adult myocytes, the
cross-cell type predictions (purple) represent a much better
estimation of adult myocyte effects (gray) than the straightforward
iPSC-CM recordings (cyan).
Simulations were also performed to predict the effects of non-

selective drugs that inhibit multiple ion transport pathways. First,
for 10 important ion transport pathways (i.e., those in Fig. 4c, d),
we posited 90 hypothetical drugs that blocked 2 of these
pathways with different affinities. We assumed that the IC50
values for the primary and secondary targets differed by a factor
of e (2.718), and we simulated drug effects at the lower IC50 such
that the primary target was inhibited by 50% and the secondary
target was inhibited by 27%. Figure 4e plots, on the abscissa, the
percent changes of APD90 (Fig. 4e, left) and CaTA (Fig. 4e, right)
simulated in adult myocytes. The ordinate represents the
estimates of these values, taken either directly from sponta-
neously beating iPSC-CMs (cyan symbols) or calculated using the
cross-cell type regression model (purple symbols). Simulations
were performed in heterogeneous populations of 100 myocytes
each, and mean values and population standard deviations are
shown. Since, with a perfect predictor, all points would lie on the
line of identity, the cross-cell type model clearly produces more
accurate predictions of APD90 and CaTA than the iPSC-CM
recordings. We also simulated 30 real drugs for which ion channel
blocking effects were recently assessed in a comprehensive
study.20 Figure 4f shows, using the same layout as Fig. 4e, that
cross-cell type predictions (purple symbols) outperformed iPSC-
CM spontaneous responses (cyan symbols) in predicting how
these real drugs affect APs and CaTs in adult ventricular myocytes,
when each drug is simulated at a concentration equal to the
lowest IC50 value.

Cross-cell type regression approaches are generalizable for
multiple cell types
To determine if the cross-cell type approach was generalizable, we
tested whether cross-cell type regression could be applied to
additional species. Specifically, using mechanistic models of
rabbit21 and guinea pig22 ventricular myocytes, we developed
regression models that predict: (1) human adult myocyte drug
responses from guinea pig or rabbit ventricular physiology; and (2)
guinea pig myocyte drug responses from rabbit myocyte
physiology, and vice versa. The overall predictive strength of
these models is shown in Supplemental Fig. S3. Validations

Fig. 3 Selection of the most informative iPSC-CM simulation
protocols for regression model optimization. a, b Histograms
indicating how APD90 (a) and CaTA (b) vary across a heterogeneous
population of iPSC-CMs under different simulated experimental
conditions. The black, shaded histogram, representing population
behavior with baseline spontaneous contraction is compared with
alternative experimental conditions such as 0.5 Hz electrical
stimulation (0.5 Hz, orange), 2 Hz electrical stimulation (2.0 Hz,
green), and increased (300mM) extracellular [Na+] ([Na+]o high,
purple). c, d Averaged R2 values across all predicted features with
five-fold cross-validation, with different numbers of experimental
conditions for sequential inclusion (c) and sequential exclusion (d)
methods. These procedures identified the three most informative
protocols (3-MOST, purple dash square, left) and the three least
informative protocols (3-LEAST, orange dash square, right). e, f
Distributions of adjusted R2 values for APD90 (e) and CaTA (f) of the
56 regression models that can be built by randomly choosing three
protocols from the initial set of eight. Regression models that select
two or more protocols from the 3-MOST list (purple) exhibit better
predictive power than models that select two or more protocols
from the 3-LEAST list (orange)
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performed using 50% block of individual ion transport pathways
are shown in Fig. 5. Figure 5a and b shows how responses to
perturbations in human adult myocytes can be calculated from
iPSC-CMs (purple symbols), guinea pig myocytes (blue symbols),
or rabbit myocytes (orange symbols). The three ionic current
perturbations shown are those that caused the largest changes to
either APD90 (Fig. 5a) or CaTA (Fig. 5b) in adult myocytes. In all
cases, the prediction of the cross-cell type regression model (open
symbols) better approximates the adult response (black bar)
compared with direct measurements performed in the alternative
cell type (filled symbols). Examples in Fig. 5c–f illustrate that, when

clearly different responses to a perturbation are observed in two
cells, cross-cell type regression models can correct for the
mismatch. For example, 50% block of NCX causes little change
to APs in guinea pig myocytes (Fig. 5c, left) but shortens APs in
rabbit myocytes (Fig. 5c, right). A cross-cell type regression model
built from guinea pig simulations can predict the effects in rabbit,
and vice versa, as quantified in Fig. 5e. As another example, 50%
block of SERCA activity reduced CaTA in guinea pig myocytes (Fig.
5d, left), while causing minimal effects in rabbit myocytes (Fig. 5d,
right), effects that are accurately captured by the cross-cell type
models (Fig. 5f).

Fig. 4 Regression model predictions of adult myocyte responses to selective and non-selective ion channel blockers. Simulations were
performed in adult myocyte and iPSC-CM models to assess effects of selective (a–d) and non-selective ion channel blockers (e, f). In all cases,
simulations were performed with heterogeneous populations of 100 cells; symbols and error bars represent mean and standard deviation,
respectively. a, b Simulated selective block of IKr (a) and ICaL (b) varying from 5–55% channel blockade. Responses of APD90 (left) and CaTA
(right) are shown. In each panel, the simulated iPSC-CM response with baseline spontaneous contraction is shown in cyan, the simulated adult
myocyte response is shown in dark gray, and the regression model prediction is shown in purple. c, d Simulated selective block (50%) of 10
ion transport pathways, with colors as described for a and b. Simulated drug-induced changes are presented as percent changes in APD90 (c)
and CaTA (d). e, f Simulations were performed to assess effects of 90 hypothetical drugs that block two ion transport pathways with different
potencies (e) and 30 real drugs that target up to five cardiac ion channels (f). For drug effects on APD90 (left) and CaTA (right), simulated adult
myocyte responses (abscissa) are plotted vs. estimated responses (ordinate), either directly from iPSC-CM responses under spontaneous
contraction (cyan-filled symbols) or from cross-cell type regression model predictions (purple empty symbols). Coefficient of determination
(R2) was calculated to demonstrate the predictive accuracy. Taking together the 120 drugs simulated, for cross-cell type predictions, R2=
0.9748 and 0.9858 for APD90 and CaTA, respectively. For iPSC-CM spontaneous responses, R2= 0.0156 and 0.2763 for APD90 and CaTA,
respectively
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Differential drug responses in diseased vs. healthy cells can be
predicted
In a final step, we determined whether cross-cell type regression
could predict differences in drug responses between healthy
and diseased cells. Based on published results,23 a variant of the
O’Hara model was constructed to reproduce molecular and
physiological alterations observed in heart failure (HF). Altered
parameters (see Table S5) reflected well-described changes in
HF such as reduced SERCA pump activity, upregulation of NCX,
and downregulation of IKs. Figure 6a shows that the HF variant
produced slightly longer APs and reduced CaTs, recapitulating
the hallmark phenotype of HF myocytes. After generation of a
heterogeneous population of HF myocytes (see Methods), PLSR
produced a regression model to predict drug responses in HF
myocytes. With this approach, as illustrated in Fig. 6b,
recordings obtained in iPSC-CMs can be used to predict
responses in either healthy myocytes (top) or HF myocytes
(bottom), using the respective regression matrices for predic-
tion. As an example, these models can successfully predict the
differential effects on CaTs seen in healthy and HF cells when
NCX is blocked by 40%. This perturbation causes a dramatic
increase in CaTA in healthy myocytes (Fig. 6c), but only a small
increase in HF myocytes (Fig. 6d), effects that are well predicted
by the two regression models (compare symbols with solid
lines). Quantification of these effects in Fig. 6e verifies the
accuracy of the predictions. Thus, the results shown in Figs. 5
and 6 demonstrate that regression models can accurately
translate perturbation effects across cell types, even when the
direct effects of a perturbation are dramatically different
between the two cell types.

DISCUSSION
In this study we have described a methodology combining
mechanistic modeling with statistical analyses to quantitatively
translate drug effects across cell types. To develop a predictive

model, we first ran simulations with populations of mechanistic
cardiac myocyte models. We then performed multivariable
regression on the population simulation results—this regression
model allowed us to translate drug responses from iPSC-CMs to
human adult myocytes. The model was highly predictive, with
cross-validation R2 values of 0.906 and 0.964 for APD90 and CaTA,
respectively (Fig. 2b). Moreover, when selective and non-selective
blockers of several important ion transport pathways were
simulated in iPSC-CMs under multiple conditions, the cross-cell
type model predicted adult myocyte responses with quantitative
precision. These predictions greatly outperformed a naive
approach in which adult myocyte drug responses were assumed
to be identical to those seen in iPSC-CMs (Fig. 4). Importantly,
accurate predictions were also obtained when the strategy was
applied to ventricular myocyte models from additional species
and to a model of diseased human myocytes (Figs. 5, 6),
demonstrating the general utility of the concept.
This novel cross-cell type regression model can address, in a

quantitatively rigorous way, differences between an experimental
model and the system that is ultimately of interest. The prediction
model developed in this study possesses tremendous potential as
a practical tool for toxicity testing in drug development, and the
overall strategy, which can readily be applied to other fields of
research, offers a roadmap for overcoming the limitations that are
inherent to experimental models.

The potential impact of cross-cell type modeling in drug
development
Human iPSC-CMs hold considerable promise as a screening
platform for assessing how drugs cause either beneficial or
deleterious cardiac effects. The application that is most well
developed at present is the use of iPSC-CMs for assessment of
drug-induced arrhythmia risk. Specifically, studies with iPSC-CMs
are a major pillar of the Comprehensive in vitro Proarrhythmia
Assay, or CiPA, a public/private partnership involving the Food and
Drug Administration, several pharmaceutical companies, and

Fig. 5 Extension of the cross-cell type regression model concept to additional cell types. a, b Adult myocyte responses to 50% current/flux
block (dark gray bars) were predicted from three alternative cell types: iPSC-CM (purple symbols), guinea pig ventricular myocyte (blue
symbols), rabbit ventricular myocyte (orange symbols). In each case, filled symbols represent the direct estimate from alternative cell type
responses, whereas open symbols represent the cross-cell type regression model predictions. Three ion transport pathways that had large
effects in adult myocytes on either APD90 (a) or CaTA (b) are shown. c Effects of 50% INCX block on guinea pig and rabbit ventricular action
potentials. d Effects of 50% JSERCA block on guinea pig and rabbit ventricular Ca2+ transients. In each case, baseline traces are dashed,
perturbed traces are solid, and open circles represent the cross-cell type predictions of waveform features. e, f Quantification of the results
shown in c and d
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academic research groups.24–26 The goal of CiPA is to replace
current pro-arrhythmia tests, which can be non-specific, with a
fully in vitro assay involving ionic current measurements,
mathematical modeling, and iPSC-CM experiments. A worrisome
and unresolved issue within CiPA, however, is the fact that iPSC-
CM physiology differs from that of adult myocytes. In general,
iPSC-CMs are considered to possess an immature phenotype that
more closely resembles fetal than adult heart cells.3,4 This is seen
both structurally, in the fact that iPSC-CMs lack transverse tubules
and a regular organization of sarcomeres,27 and functionally, in
features such as the contribution of sarcoplasmic reticulum Ca2+

release3 and the densities of particular K+ channels.28

Because of these physiological differences, drug responses
observed in iPSC-CMs and adult myocytes are also expected to
diverge.29–31 The sensitivity analysis shown in Fig. 1e, f illustrates
these differences by quantifying how changes in any of the shared
ion transport pathways influence APD and CaTA in the two model
cells. For some effects, such as changes in APD resulting from
altered IKr, the two models are largely convergent. For others,
however, such as alterations in ICaL, dramatic differences are
observed. Given that the L-type Ca2+ channel is a major ion
channel in the CiPA initiative, these discrepancies present a
potentially serious problem for the use of iPSC-CMs in drug
development. The cross-cell type regression approach described
in this study illustrates how these limitations may be overcome.

Instead of approximating drug effects directly—i.e., assuming that
drug-induced physiological changes are identical in adult
myocytes and iPSC-CMs—a combination of mechanistic modeling
and statistical analysis can be used to develop cross-cell type
prediction models, and these in turn can correct for mismatches
and provide more accurate predictions.
Of course, another approach to addressing differences between

iPSC-CMs and adult myocytes is to improve the iPSC-CM
experimental model such that the cell types become more similar.
Indeed, recent years have seen many advances to optimize
differentiation and produce more mature iPSC-CMs.32–34 We note,
however, that our strategy is not in competition with these
important efforts, instead it is a complementary approach that is
likely to become even more urgently needed as maturation
methods develop. For one thing, even if a truly optimal iPSC-CM
maturation protocol can eventually be identified, cells will almost
certainly continue to exhibit some differences with adult cells, and
methods to understand these differences quantitatively will still
be required. Additionally, the next several years are likely to see a
proliferation of alternative methods rather than rapid agreement
on a protocol of choice. In this scenario, the field will require ways
to translate effects between different iPSC-CM production
methods. Finally, a close approximation of the healthy adult
ventricular myocyte is not the only cell type that is needed in drug
development. Because diseased hearts and healthy hearts may

Fig. 6 Cross-cell type modeling to predict drug responses in diseased adult myocytes. a Action potential (AP, left) and Ca2+ transient (CaT,
right) simulated in the adult myocyte model, with parameters varied to reproduce a heart failure (HF) phenotype, as previously done.23 b
Recordings made in iPSC-CMs can be used to predict drug responses in either healthy adult (top) or failing adult (bottom) myocytes, using
alternative regression models. c Regression model accurately predicts that block of INCX by 40% causes minimal AP shortening and a large
increase in CaT amplitude in healthy adult myocytes. d Regression model accurately predicts that block of INCX by 40% causes minimal AP
shortening and a mild increase in CaT amplitude in failing adult myocytes. e Quantification of the effects observed in c and d, indicating that
cross-cell type model variants can accurately predict drug responses in healthy and diseases populations of adult myocytes. Filled bars
represent direct simulations, gray for healthy and pale red for failing. Empty bars are regression model predictions
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respond differently to the same drugs, we also require methods to
understand how therapeutics may affect particular patient
populations. Figure 6 illustrates that, once appropriate regression
models have been developed, recordings obtained in a single
iPSC-CM preparation can simultaneously predict drug effects in
both healthy and failing adult myocytes. Thus, efforts to improve
the iPSC-CM experimental model will become more powerful
when they are coupled to modeling approaches that can
quantitatively synthesize results across different preparations.

Practical considerations in employing cross-cell type
predictions
In addition to developing a model that would be useful for drug
development, we also addressed practical considerations required
to implement such a cross-cell type approach. One of the
principles underlying our model is that studying multiple
experimental conditions provides additional information. In other
words, simulating only a population of spontaneously contracting
iPSC-CMs might not be sufficient to accurately predict drug
responses in adult myocytes, but if the same iPSC-CMs are
simulated under different pacing protocols, different ionic
conditions, etc., then an accurate regression model can be
generated. Because it is not always feasible to examine individual
cells under a wide range of experimental conditions, however, we
identified the most informative simulation conditions in iPSC-CMs
for accurate predictions of adult myocyte responses (Fig. 3). An
interesting result to arise from this analysis, which ranked
experimental protocols from the most to the least informative,
was that altering extracellular ion concentrations appears to be
more useful than electrical pacing, a prediction that remains to be
tested.
With these considerations in mind, we can contemplate how a

predictive cross-cell type model can be applied in practice using
experimental data. First, population simulations performed in two
cell types of interest, such as those we have presented here, are
used to identify the informative experimental conditions and
calculate the regression matrix Bcross. Second, experimental
recordings are performed in the source cell type (e.g., iPSC-CMs),
under multiple conditions, in the presence and the absence of a
drug. Third, metrics are extracted from these recordings to
populate a vector of features that quantify drug-induced changes
in physiology. Importantly, a variety of measures must be
calculated from voltage and Ca2+ time courses; it will not be
sufficient to only use simple metrics such as APD90. Finally, the
vector of features is multiplied by Bcross to predict how the drug
will affect the target cell type (e.g., human adult myocytes).
In implementing an approach such as we have outlined here, an

additional practical consideration that must be addressed is the
mathematical model of the iPSC-CM. Although many alternative
mathematical models of animal myocytes35,36 and human adult
ventricular myocytes37,38 have been published, the Paci et al.
model14 remains, at the present time, the only model of the iPSC-
CM. The preferred approach to modeling iPSC-CM physiology will
certainly be modified as additional data become available, and as
iPSC-CMs developed under particular conditions become more
completely characterized. To facilitate the future development of
model improvements, an efficient and valuable approach is to
choose parameters that match physiological responses (e.g., APs
and CaTs) not only under baseline conditions, but in response to
perturbations such as augmenting or inhibiting particular ionic
currents.11,12 Compared with the alternative strategy of character-
izing each important ion transport mechanism in every cell type of
interest (i.e., fitting models to voltage clamp data), this approach
offers the possibility of more rapidly tuning a model to
recapitulate experimental data, once the general model structure
(i.e., which ion transport mechanisms should be included) is
understood.39 Importantly, these recent studies provide a guide

for how to continually improve the cross-cell type approach as
additional data are obtained and models of the relevant cell types
become more advanced.

Extension of the cross-cell type concept to additional contexts
Results such as those shown in Figs. 5 and 6 can initially seem
quite surprising: if blocking a particular pathway causes minimal
effects in one cell type, how can the model successfully reproduce
more dramatic effects in another cell type? The answer to this
question arises from two important aspects of the cross-cell type
regression approach: (1) variability is universally imposed on all
the major ion transport pathways when generating the hetero-
geneous cell populations; and (2) a wide range of simulation
results, obtained under multiple experimental conditions, are
recorded. These ensure that the underlying statistical associations
are robust enough to make accurate predictions, even in cases
where obvious differences exist between the source and target
cells. Put another way, APD in the adult human myocyte is not
simply a function of APD in the iPSC-CM; instead this output
depends on an appropriately weighted average of many
physiological metrics that can be measured in iPSC-CMs. Our
approach therefore advocates for considering all relevant
information systematically, and synthesizing based on rigorous
statistical analysis, rather than focusing on particular measure-
ments that are deemed to be most important.
Beyond being a practically useful platform, the cross-cell type

regression model can also help to guide future mechanistic
studies. Although the extension to rabbit and guinea pig
ventricular myocyte models demonstrated that the concept is
generalizable (Fig. 5), it should be noted that the prediction
accuracy was not identical for all models generated. For instance,
the worst-performing model, the translation from rabbit to guinea
pig myocytes (Fig. S3), probably reflects important differences
between the two cell types, a question that should be investigated
mechanistically. The difficulty in predicting guinea pig drug
responses from rabbit physiology could result from the lack of
transient outward K+ current (Ito) in the former species compared
with its prominent role in the latter, and this idea could be
addressed in simulations and experiments by either blocking Ito in
rabbit or adding Ito in guinea pig cells to determine if their drug
responses become more similar. Mechanistic insight could also be
gained by examining individual simulated cells that are poorly
predicted by the regression model. It is likely that specific
parameter alterations in these cells cause non-linear physiological
changes that prevent the linear regression model from accurately
predicting these particular cells.
More broadly, the extension to additional cardiac myocyte

models suggests ways that the concept can be further generalized
and expanded. The number of cell types seen in the nervous
system, for instance, dwarfs what is observed in the heart.
However, because different types of neurons employ many of the
same channels and receptors to shape their behaviors, an
approach such as ours should be feasible for predicting
differences. Similarly, the pathways that control processes such
as cell division and apoptosis are largely shared between different
cell types, although the ways that cells respond to physiological or
pharmacological stimuli can be extremely different. For issues
such as these, where robust mathematical models already exist,40–
45 a cross-cell type approach such as we have outlined can be
used to predict how behaviors observed in one cell type may or
may not be reproduced in a related cell type.

Study limitations
Although the results presented in this study are encouraging and
provide confidence that the concept can be of practical use,
several limitations should be noted. First, in generating the
heterogeneous populations, we only varied model parameters
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controlling ionic current magnitudes, leaving the channel kinetics
unaltered. As a result, we could only simulate drug effects through
a simple pore block model. Many drugs, however, bind to ion
channels in a state-dependent manner, producing effects that our
approach could potentially fail to predict. These complexities
could be included through the use of more complex Markov
models, which have been developed for many critical channels.46–
48 For these predictions to be accurate, however, the same kinetic
scheme and drug binding characteristics would have to be used in
both the source and target cell models, which is not generally the
case at present. Second, although the regression model
performed extremely well with simulated data, the experimental
validity of these predictions remains to be tested. Although the
ultimate goal of many cardiac experimental models is to predict
behaviors in adult human hearts and myocytes, the difficulty of
obtaining such tissue for experiments precluded the use of such
tests in this study. However, alternative methods for testing the
robustness of the concept do exist, for instance by testing the
physiological responses to drug treatments across different iPSC-
CM preparations. Studies have shown, for instance, that physio-
logical differences exist between iPSC-CMs purchased from
alternative vendors.49,50 These alternative iPSC-CM variants may
prove a useful platform for experimentally testing this approach,
and the results obtained in such a comparison may help to drive
convergence toward a more optimal iPSC-CM experimental
model.

CONCLUSIONS
We developed a novel methodology that serves to translate drug
effects across cell types with quantitative accuracy, an approach
that is likely to be widely useful for addressing differences
between experimental models and target systems of interest. Not
only is the initial test case we presented, the translation from iPSC-
CMs to human adult myocytes, potentially of practical use during
toxicity testing to identify pro-arrhythmic drugs, the approach we
have outlined can be used to streamline and optimize experi-
mental design. Most important, the methodology we have
outlined can easily be applied to other fields in which mechanistic
models are well developed, potentially greatly increasing the
impact of the concept and approach.

METHODS
Mathematical models
We developed regression models to predict effects across cell types by
using simulations performed with four cardiac myocyte models: (1) O’Hara
et al. human adult ventricular myocyte model,13 (2) Paci et al. human iPSC-
CM model,14 (3) Livshitz et al. guinea pig ventricular myocyte model,22 and
(4) Shannon et al. rabbit ventricular myocyte model.21 O’Hara et al.
simulations were performed with the model’s endocardial variant, and Paci
et al. simulations were performed with the ventricular-like variant.
Simulations with the O’Hara et al. model were also performed using a
model variant in which parameters were altered, based on prior work,23 to
reproduce molecular and physiological changes observed in HF. Parameter
modifications made to produce the O’Hara HF variant are shown in
Supplementary Table S5.
Each model, consisting of a system of ordinary differential equations,

was implemented in MATLAB version R2016b (The MathWorks, Natick,
MA). Differential equations were numerically integrated using MATLAB’s
ode15s function, a solver for stiff systems, and computations were
performed in a Windows 10 environment.

Simulations of heterogeneous model populations
To generate heterogeneous populations of models, parameters controlling
maximal rates of ion transport were multiplied by scale factors randomly
selected from log-normal distributions. Randomly varied model para-
meters included: fast Na+ current (GNa), inward rectifier K+ current (GK1),
rapid and slow delayed rectifier K+ currents (GKr and GKs), transient

outward K+ current (Gto), L-type Ca2+ current (GCaL), Na
+–Ca2+ exchanger

(KNCX), Na
+–K+ pump (KNaK), sarcolemmal Ca2+ pump (GpCa), background

Na+ and Ca2+ currents (GbNa and GbCa), sarcoplasmic reticulum Ca2+

release flux through ryanodine receptors (KRyR), and sarcoplasmic reticulum
Ca2+ uptake via SERCA pumps (KSERCA). Baseline values for these model
parameters can be found in Supplementary Tables S1–S2. As a result of this
scaling, each individual cell in the population has a distinct profile of ion
channel/pump/transporter expression levels.
Scale factors were log-normally distributed such that log-transformed

values had a mean of zero and a standard deviation of 0.2624. As a result,
95% of the cells in the populations had expression levels ranging between
60 and 167% of control values. The same set of scale factors was applied to
the two cell types used to construct cross-cell type regression models.
Simulations were performed for every cell in the population, and
physiological features extracted from the AP and CaT waveforms are as
follows (also indicated in Fig. 2, inset). AP features computed were: (1) AP
duration (APD) at −60mV; (2) APD at 90% repolarization (APD90); (3) APD
at 50% repolarization (APD50); (4) peak membrane voltage (Vpeak); (5)
resting membrane voltage (Vrest). CaT features computed were: (6) CaT
amplitude (CaTA); (7) resting [Ca2+]i (Carest); (8) peak [Ca

2+]i (Capeak); (9) CaT
duration (CaD) at 50% return to baseline (CaD50); (10) CaT decay time; (11)
CaT duration (CaD) at 90% return to baseline (CaD90). Decay time was
calculated as the duration from the peak of the Ca2+ transient to the time
when the [Ca2+] level had been reduced by a factor of e. For simulations of
iPSC-CM spontaneous (rather than electrically stimulated) activity, the
beating frequency was also quantified.

Simulation protocols
Cells that do not contract spontaneously (adult human, rabbit, and guinea
pig myocytes) were electrically stimulated at 1 Hz for 120 s, which was
sufficient to reach steady state in over 95% of the cells in the population.
The last AP and CaT in the sequence were recorded. For spontaneously
contracting iPSC-CMs, the last AP and CaT in a 120 s simulation period
were recorded. Additional experimental protocols were simulated in iPSC-
CMs, rabbit myocytes, and guinea pig myocytes. These included: (1)
electrical pacing at 0.5 and 2 Hz for 120 s; (2) increasing and decreasing
extracellular [Ca2+] (baseline= 1.8 mM, high= 3.0 mM, low= 0.9 mM); (3)
increasing and decreasing extracellular [Na+] (baseline= 151mM, high=
300mM, low= 70mM); and (4) increasing and decreasing extracellular
[K+] (baseline= 5.4 mM, high= 10mM, low= 3mM). For the protocols
that varied extracellular ion concentrations, guinea pig and rabbit
myocytes were electrically stimulated, whereas spontaneously contracting
iPSC-CMs were simulated. We chose these protocols because of the ease
with which they can be implemented experimentally.

Construction and validation of cross-cell type models
PLSR18,19 was used to quantitatively relate physiological features in one cell
type (the source cell) to those in another cell type (the target cell). To
develop these regression models, features quantified from AP and CaT
waveforms (see Fig. 2, inset) were placed into matrices. The “input” matrix
consisted of features simulated under multiple conditions from the cells in
the source population (e.g., iPSC-CMs), whereas the “output” matrix
consisted of features in the target cells (e.g., adult human myocytes). Each
row in these matrices corresponded to a different cell in the population;
each column corresponded to a different simulated feature. PLSR was then
applied to derive a matrix, Bcross, that translates from one cell type to
another and can subsequently be used for predictions. For instance, if
recordings are made experimentally in iPSC-CMs before and after
application of a drug, then the drug-induced changes to the physiological
features can be placed in a vector ymeasured (Fig. 2a, bottom). This vector
can then be multiplied by Bcross to predict the effects of the same drug in
adult myocytes.
During model construction, we performed cross-validation to evaluate

the prediction accuracy. For example, to perform five-fold cross-validation,
populations of 600 cells were divided into five subgroups of 120 cells each.
Each regression matrix Bcross derived from four subgroups (480 cells) was
then used to predict behavior in the remaining subgroup. The
performance of the cross-cell type model was evaluated using Predicted
Residual Sum of Squares, or PRESS (see Supplementary Methods for
details).
PLSR is an iterative approach that requires using weighted combinations

of input variables (similar to principal components). PLSR is well suited for
data sets in which the columns in the input matrix are correlated; however,

Quantitative predictions across cell types...
JQX Gong and EA Sobie

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2018) 11



it is important to terminate the iterative PLSR algorithm at the appropriate
time to avoid overfitting.51,52 As described in more detail in Supplementary
Methods, we chose the number of components of the PLSR model by
iteratively determining the smallest number of components that
minimized PRESS while simultaneously achieving a high R2 value.

Identification of the most informative and least informative
experimental conditions
To determine whether cross-cell type modeling was feasible, we initially
constructed a model using simulated results obtained under many
experimental conditions. To make this model more suitable for experi-
mental testing, we determined the most informative experimental
conditions using sequential inclusion and exclusion methods. First,
although we initially simulated 10 experimental conditions (see above,
simulation protocols), we found that under some conditions, more than
25% of the cells in the population exhibited abnormal dynamics (e.g.,
afterdepolarizations, failure to repolarize). These were excluded from the
determination of the most informative conditions. Specifically, in the
current study for adult myocyte and iPSC-CM simulations, both increasing
or decreasing extracellular [K+] were excluded, resulting in eight
conditions for subsequent analysis.
For the sequential inclusion method, we generated PLSR models using

each of the eight experimental conditions individually, and selected the
one with the highest average R2 with five-fold cross-validation. We then
added each of the seven remaining conditions in turn, and selected the
one that caused the largest increase in R2. This process continued until all
eight experimental conditions had been ranked. Similar criteria were used
for the sequential exclusion method, during which we started with all eight
conditions, excluded one condition at a time, then rejected the one that
whose exclusion caused the smallest decrease in R2 value.

Simulations of selective and non-selective drugs in
heterogeneous populations
We simulated selective and non-selective blockers of ion transport
pathways by scaling the model parameters controlling the magnitudes
of ionic current or flux. For example, when simulating selective blockade of
IKr by 50%, we scaled the conductance GKr to 50% of its control value. For
details of all tested ion transport pathways, see Supplementary Tables
S3–S4.
The 90 non-selective hypothetical drugs were designed such that, of the

10 important ion transport pathways (as tested with selective blockers in
Fig. 4), each hypothetical drug targets 2 of the 10 pathways with different
affinities, and the IC50 values for primary and secondary targets differ by a
factor of e.
To simulate the effects of non-selective drugs at a drug concentration

[C], we scaled the model parameters controlling the maximal magnitude of
ion current/flux for primary and secondary targets according to the
equation:

Gdrug

Gno drug
¼ IC50

IC50 þ ½C�
For the 90 hypothetical non-selective blockers, we simulated drug

effects at the lower IC50, a concentration at which the primary target was
inhibited by 50% and the secondary target was inhibited by 27%. For the
30 drugs recently characterized20 that target up to 5 ion channels with
different affinities, we simulated drug effects at the lowest IC50 value such
that the primary target was inhibited by 50%, whereas other channels were
inhibited to lesser extents.

Code and data availability
An implementation of the cross-cell type modeling approach is available at
https://github.com/JQXGong/cross-cell-type-regression.git. The repository
contains implementations of the mathematical models used in the study, a
sample simulated data set, and customized scripts to generate a cross-cell
type regression model. Code is written in MATLAB.
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