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Petermann ice shelf may not recover after
a future breakup
Henning Åkesson 1,2,3✉, Mathieu Morlighem 4,5, Johan Nilsson2,6, Christian Stranne 1,2 &

Martin Jakobsson 1,2

Floating ice shelves buttress inland ice and curtail grounded-ice discharge. Climate warming

causes melting and ultimately breakup of ice shelves, which could escalate ocean-bound ice

discharge and thereby sea-level rise. Should ice shelves collapse, it is unclear whether they

could recover, even if we meet the goals of the Paris Agreement. Here, we use a numerical

ice-sheet model to determine if Petermann Ice Shelf in northwest Greenland can recover from

a future breakup. Our experiments suggest that post-breakup recovery of confined ice

shelves like Petermann’s is unlikely, unless iceberg calving is greatly reduced. Ice discharge

from Petermann Glacier also remains up to 40% higher than today, even if the ocean cools

below present-day temperatures. If this behaviour is not unique for Petermann, continued

near-future ocean warming may push the ice shelves protecting Earth’s polar ice sheets into a

new retreated high-discharge state which may be exceedingly difficult to recover from.
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S ince the late 1990s, ice shelves in Antarctica and Greenland
have experienced thinning1–4 and breakup5–7, and the
marine outlet glaciers feeding them have often retreated and

accelerated (e.g. refs. 8,9). Atmospheric and ocean warming is
known to have played a key role in this pattern10–13. Glacier
retreat is projected to continue over the coming decades to cen-
turies due to sustained climate warming (e.g. refs. 14,15). None-
theless, the Paris Agreement aims to reduce emissions enough to
limit future warming to 2 °C higher than in Earth’s pre-industrial
climate. This could eventually permit a return to a colder climate,
reminiscent of that of the pre-industrial period. How marine
outlet glaciers and their ice shelves would respond to a cooling
climate has, however, been difficult to study due to a pervasive
lack of data from historical analogues of such climate transitions
over the recent past. We have few modern observations of outlet-
glacier growth, grounding-line advance and floating ice shelves
that thicken and expand. Thus, the role this behaviour plays in a
cooling climate lacks an observational underpinning and remains
uncertain. Documented ice advances exist in paleo-records (e.g.
refs. 16,17), but advancing glaciers generally leave fewer traces
behind than those retreating because the geomorphological
imprints are overridden by subsequent ice recession. Therefore, it
remains unknown whether a return to the climate that prevailed
in the pre-industrial period will permit ice sheets and glaciers to
recover after decades to centuries of mass loss and retreat, and to
what extent global sea-level rise from ice-sheet mass loss can be
curtailed or even reversed. Specifically, it is unclear if a climatic

reversal in a post-Paris world allows glaciers to re-advance, ice
shelves to regrow and sea-level rise to be kept moderate.

To tackle this global question, we investigate Petermann
Glacier in northwest Greenland as an example (Fig. 1a), using
the Ice-sheet and Sea-level System Model (ISSM;18). We
examine the climate conditions required for Petermann to
recover to its present-day (2008) state after an ice-shelf
breakup and grounding-line retreat19. Petermann is the lar-
gest glacier by area in northern Greenland, drains about 4% of
the entire Greenland Ice Sheet by area20,21 and has one of the
northern hemisphere’s few remaining ice shelves. Note that
Petermann’s ice shelf is confined in a fjord (sometimes referred
to as an ice tongue), in contrast to many topographically
unconfined ice shelves in Antarctica. Over the last decade,
Petermann has lost ~40% of its ice shelf22,23 and concerns have
been raised that further breakup would lead to grounded-ice
speedup, retreat and accelerated mass loss19,24–26. Similar
scenarios have been put forward for ice-shelf-glacier systems in
West Antarctica in response to ongoing and future ocean
warming (e.g. refs. 27,28).

Here we show that once a confined ice shelf has been lost, the
glacier feeding it may get locked into a new stable regime of
sustained mass loss even if the climate cools again. The numerical
experiments we present for Petermann Glacier demonstrate that a
cooling well below present-day conditions, in conjunction with
sea-ice growth, is required in order to escape this high-discharge
state and thus avoid considerable sea-level rise.
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Fig. 1 An ocean cooling and reduced calving permit Petermann’s ice shelf to recover once it has disappeared. a Present-day Petermann Glacier,
b contemporary profile view, c geometry by 2300 AD after a 2 °C ocean warming. Glacier evolution in response to an attempted recovery is shown for d an
ocean cooling, e an ocean cooling and an increased surface mass balance (SMB) and f an ocean cooling and reduced calving rates. The present-day
grounding zone and calving front is shown in a. The satellite image is from Landsat-8, taken July 24, 2020, courtesy of the U.S. Geological Survey.
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Results
Ice-shelf breakup may cement pervasive sea-level rise. We start
all our Petermann recovery simulations from a future retreated
model state (year 2300 AD; Fig 1c), which is attained as a
response to a 2 °C ocean-only warming relative to present-day19.
This corresponds to a ~3 °C ocean warming relative to pre-
industrial times (before c. 1850). In a more complete future
scenario, atmospheric warming would cause some additional
mass loss, but this is ignored here for simplicity. Moreover, the
ocean-induced melt is responsible for ~80% of Petermann’s
current mass loss29. The applied ocean forcing is based on
observations and results from the ocean model MITgcm (see
Section “Ocean forcing”29,30).

The instantaneously increased future ocean temperature ramps
up the basal melt, which causes the calving front to retreat
rapidly, reaching a retreated new equilibrium position after about
200 years (approximately year 2200; Fig. 2a). As the ice shelf
shortens, its buttressing of grounded ice weakens due to
decreased fjord-wall drag. This allows increased mass loss across
the grounding line (Fig. 2c). The new future equilibrium state is
thus characterised by reduced buttressing, and the ice shelf loses
mass primarily through calving (Fig. S10b), rather than through
basal melting as for the present-day state.

In the first suite of ice-shelf recovery experiments, we reverse
the future 2∘C ocean warming that caused the retreat displayed in
Fig. 2a (see ref. 19 for details), thus lowering ice-shelf basal melt
rates back to those associated with present-day ocean conditions
(Section “Ocean forcing”; Fig. S2). If the Paris Agreement is
fulfilled and the current global warming trend is reversed, such
ocean cooling could occur in the decades to centuries that follow.
Our experiments suggest, however, that this substantial ocean

cooling alone would not cause Petermann’s ice shelf to recover
(Figs. 1d and 3b). Despite the ocean temperature being returned
to its present-day value, the grounding line and ice-shelf front of
Petermann advance only ~3 and ~15 km, respectively (Fig. 2a, b).
For context, the contemporary pre-2010 ice shelf was around
70 km long, while the modelled pre-recovery shelf is ~20 km
(Fig. 1a, b). This reversal of future ocean warming will also keep
ice discharge 40% higher than today and thus maintain a long-
term positive contribution to sea-level rise (Fig. 2c).

These key results are insensitive to the time scales of ocean
cooling; recovery fails regardless of whether the ocean cools from
one year to the next, or over several centuries (Fig. S9b-d). Even
completely turning off ocean-induced melt, a highly unrealistic
scenario, does not allow Petermann to recover and does not
prevent a lasting high sea-level contribution (Table S1). This
firmly illustrates that future ice-shelf breakup and grounding-line
retreat may push marine outlet glaciers into a new dynamic state
with reduced ice-shelf buttressing, and higher grounding-line flux
and iceberg calving rates31. Notably, Petermann Glacier remains
in this retreated state even when the ocean temperature is
returned to present-day values, which suggests that the glacier has
multiple equilibrium states32.

Recovery in a post-Paris climate. The dynamics of ice shelves
depends on local processes, such as basal melt, but also on non-
local processes such as the mass balance of the inland grounded
ice33. We therefore examine whether reversed ocean temperature
in combination with increased net surface mass balance can allow
regrowth of Petermann Glacier Ice Shelf. In these experiments, we
impose a positive perturbation to the model’s contemporary
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Fig. 2 Response of Petermann Glacier Ice Shelf to future climate warming and subsequent cooling pathways. Evolution of Petermann’s a ice-shelf
calving front, b grounding line and c grounding-line flux, for the forcings compared in Fig. 1 during the 2 °C ocean warming19 and recovery experiments. An
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surface mass balance, where the latter is based on a regional
climate model (see Section “Atmospheric forcing”34).

Despite these more favourable conditions applied for glacier
growth, Petermann Glacier Ice Shelf does not regrow to its
original extent (Figs. 1e and 3c). Whereas Petermann undergoes
upstream thickening of several hundreds of meters due to the
more positive surface mass balance, this thickening does not
translate into grounding-line and calving-front advance (Figs. 1e
and 2a, b). Instead, the increased upstream accumulation steepens
the ice-stream surface and allows ice to flow twice as fast (~2000
m/a) compared to present-day. This in turn causes a steadily
rising grounding-line flux and thus an accelerating contribution
to sea-level rise (Fig. 2c).

Reduced calving as an escape route from pervasive mass loss.
Thus far we have seen that a future reversal of ocean warming is
not sufficient to recover Petermann’s ice shelf after a future
breakup (Section “Ice-shelf breakup may cement pervasive sea-
level rise”), neither is a more positive surface mass balance over
the glacier (Section “Recovery in a post-Paris climate”). Cooling
in a post-Paris world may, however, also have other impacts on
the coupled ice-sheet-ocean-climate system, for example through
changes to iceberg calving (Section “Sea-ice induced advance of
ice shelves”). In a suite of simulations, we consider whether
reduced calving rates can aid the recovery of Petermann Glacier
Ice Shelf.

In the numerical model, we impose changes to the calving
regime by increasing the stress threshold in the calving law (see
Section “Calving parameterisation”35). We hypothesise that
suppressed calving is linked to sea-ice growth and increased ice
mélange in Petermann Fjord. The theoretical and empirical
support for this link is discussed in detail in Section “Sea-ice
induced advance of ice shelves” below.

We find that reduced calving rates alone do not yield ice-shelf
recovery (Figs. S10e and S11). Instead, our experiments suggest
that a combined reversal of ocean warming and less vigorous
calving is the only escape route from future pervasive mass loss

(Figs. 2c and S11). When the ocean cools and calving is reduced
in the model, Petermann Glacier Ice Shelf can be re-established
(Fig. 1f), the grounding line re-advances beyond its present-day
location (Fig. 2b), and the grounding-line flux declines to its
contemporary values (Fig. 2c; ~9.8 Gt/a;36).

Clearly ocean cooling (Section “Ice-shelf breakup may cement
pervasive sea-level rise”) and reduced calving are mutually
dependent to trigger regrowth. Additional experiments confirm
that this holds regardless of whether ocean cooling is rapid or
sluggish, and whether the calving regime changes like a flip-
switch or over several centuries (Fig. S9). In addition, the
requirements for recovery hold both for an annual calving
forcing, as presented here (Section “Calving parameterisation”),
as well as when introducing calving seasonality (Section S1.1).

Note that ocean cooling and sea-ice growth do not necessarily
vary in tandem in the real world. An ocean cooling in our
experiments means that sub-ice shelf melt is reduced (cf.
Section “Ocean forcing”). In reality, sub-shelf melt is mainly
driven by available subsurface ocean heat which, in this case, is
controlled by remote oceanographic conditions rather than local
forcing. In contrast, local atmospheric conditions govern surface
waters and sea-ice conditions. Indeed, the ocean—sea ice-—
atmosphere is a coupled system, but changes are likely to be
asynchronous and occur on different time scales.

Discussion
A double-headed ice-shelf regime. Our model study of Peter-
mann Glacier indicates that for present-day climatic conditions,
its ice shelf has two different equilibrium configurations: (1) a
contemporary long ice-shelf state (Fig. 1a, b) with moderate ice
discharge (Figs. 2c and S3), and (2) a short ice-shelf state, with
higher grounding-line flux (Figs. 1c and 2c). Further, the
numerical simulations show that both a decrease in basal melting
and iceberg calving are needed to recover the ice shelf from the
short to the long state (Figs. 1f, 2a and 3d). This transition has a
non-linear and step-like dependence on the calving stress
threshold σmax (cf. Eq. (2)): for σmax above 440 kPa (47% higher

RETREAT RECOVERY

ocean cooling ocean + increased
sfc. mass balance

ocean cooling
+ reduced calvingocean warming

a b c d

gr
ou

nd
in

g
lin

es
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than the present-day value of 300 kPa), the ice shelf grows and
attains the long equilibrium state; for smaller values of σmax, the
ice shelf remains in the short state, regardless of the amount of
ocean cooling. Provided sufficient ocean cooling, even stress
changes of less than 1% near the critical σmax stress of around
440 kPa can trigger a feedback loop of thickening and advance,
causing Petermann’s ice-shelf front to advance by 70 km and its
grounding line by 20 km (Fig. 2a, b and S8). In contrast, without
any ocean cooling, the long- and short-shelf states are both
essentially insensitive to the calving stress threshold σmax. For
example, once the ice shelf has reached the short regime, recovery
does not occur even if σmax is increased to several times the
present-day value (Calving-only experiments in Table S1).

To summarise, a transition from a short-shelf to a long-shelf
regime can only occur if the shelf is preconditioned by sufficient
ocean cooling. In this case, a relatively small increase in the
calving stress threshold is required to trigger complete advance.

Overall, we suggest that the major control of recovery is the
ice-shelf dynamics and calving regime, but with local impacts of
the topography. The fjord is fairly straight so we do not expect
width variations37,38 to be influential. Upstream of the present-
day grounding line there are local bedrock highs that pin the
grounding line in the short-shelf regime (see Figs. 1c and S3c).
The bathymetry under the present-day ice shelf is seaward-
sloping yet poorly known. An outer bathymetric sill with a
landward overdeepening is common seafloor morphology in
fjords and not unique for Petermann. Grounding-line advance
along a seaward-sloping bed requires a combination of increased
upstream ice supply (dynamic and/or climatic) and ice-shelf
thickening (dynamic and/or oceanic). These requirements may
partly explain why advance is so difficult to attain.

The outer parts of Petermann’s ice shelf24, as well as the 79N
ice shelf in northeast Greenland39, have been interpreted as
dynamically passive, providing little buttressing for upstream ice.
These model studies did, however, not include transient effects
and involved feedbacks, and thus excluded explicit treatment of
calving or sub-shelf melt. In the more comprehensive study
presented here, we show that if Petermann’s ice shelf is lost
beyond the passive ice limit19, recovery is unlikely unless calving
rates are reduced.

Geological support for past Petermann regime transitions. Our
recovery experiments (Sections “Ice-shelf breakup may cement
pervasive sea-level rise”, “Recovery in a post-Paris climate”,
“Reduced calving as an escape route from pervasive mass loss”)
provide a mechanistic framework for the requirements to recover
an ice shelf in the future. This framework may also help us to
understand (re)growth of ice shelves in the past. This is relevant
for the response to any climatic cooling throughout the geological
history, not only in a future post-Paris climate scenario.

Geological evidence suggests that Petermann’s grounding line
retreated rapidly across a bathymetric sill and into Petermann
Fjord during the early Holocene (c. 8700–7600 yrs BP;40). This
was followed by ice-shelf breakup c. 6900 yrs BP, according to
sediment records taken below the present-day ice shelf16. The ice
shelf was absent for the following several thousand years and
started to grow again c. 2100 yrs BP, to reach its contemporary
configuration ~600 years ago (1400 AD;16).

Our simulations imply that a plausible explanation for the
historic re-establishment of Petermann Glacier Ice Shelf was an
ocean cooling combined with reduced calving. In light of
empirical reconstructions16,41 and our modelling results, the
following scenario seems plausible: (1a) Before 2100 yrs BP, a
relatively warm ocean and vigorous calving regime prevented ice-
shelf growth in Petermann Fjord; (1b) after 2100 yrs BP, an ocean

cooling occurs, which in theory allows for an extensive ice shelf.
Due to the difficulty to trigger recovery with an ocean cooling
alone (Figs. 1c and 2a, b), regrowth of the ice shelf is, however,
marginal; (2) at 1400 years BP a regime shift towards modern
conditions occurs, with landfast sea ice in Nares Strait (see
Section “Sea-ice induced advance of ice shelves”41); (3) a
sustained weakened oceanic heat flux42 favours sea-ice growth,
dampens calving and allows for regrowth of the ice shelf to
present-day conditions at c. 600 years BP (cf. Fig. 1; ref. 16). In
Section “Sea-ice induced advance of ice shelves” below we discuss
the physical mechanisms involved between a cooling ocean, sea-
ice expansion and reduced iceberg calving in more detail.

Sea-ice induced advance of ice shelves. Changes to the calving
regime are clearly necessary, yet on their own not sufficient, for
the ice shelf to regrow in our simulations (Fig. 1f) and thus avoid
persistent mass loss (Figs. 2c and S11). We postulate that the
‘ocean cooling + reduced calving’ recovery (Figs. 1f, 2 and 3d)
can be induced by sea-ice growth and changes to the ice mélange
strength in Petermann Fjord.

Ice mélange is a dense mix of calved icebergs and sea ice that
covers the inner part of many Greenland fjords (e.g. ref. 43,
preventing the export of further calved ice out of the fjord.
Mélange tends to be more prevalent and extensive in front of
glaciers with vigorous calving, which usually occurs in warmer
fjords. Conversely, in fjords with cooler ocean and atmospheric
temperatures, calving rates are expected to be lower, but calved
icebergs take longer to melt, favouring a longer-lasting mélange.
In winter, landfast sea ice acts as an effective glue that strengthens
the mélange44. A strong ice mélange has been found to suppress
calving at other Greenland glaciers such as Jakobshavn
Isbræ43,45–47, by mechanically restricting iceberg calving both
with and without a binding sea ice44,48. The critical stress
threshold in our calving model (σmax in Eq. (2)) can be viewed as
a proxy for mélange-strength.

When calving rates increase in a warmer climate, more icebergs
are available that can be fused into an ice mélange that is strong
enough to suppress calving. This has been proposed as potential
dampening feedback for glacier retreat49. In the cooling climates
considered here, such as the late-Holocene and potentially a post-
Paris world, the end effect is the same, but the mechanism is
different. Landfast sea-ice growth would prolong the quiet calving
season in winter as well as a favour a stronger mélange. This
would reduce net annual mass loss from calving and thus allow
for ice-shelf advance as seen in our Petermann experiments
(Figs. 1f and 2a).

For Petermann, our findings suggest that in a cooling climate,
ice-mélange-induced suppression of calving can facilitate ice-shelf
recovery, an effect which in our simulations is promoted by a
higher calving stress threshold (Sections “Reduced calving as an
escape route from pervasive mass loss” and “Calving parameter-
isation”). We postulate that shorter calving seasons and a stronger
ice mélange, both promoted by sea-ice growth, are key physical
mechanisms for ice-shelf recovery that has occurred in the past
and may occur in the future. This hypothesis is supported by
reconstructions of sea-ice and ocean conditions over the
Holocene. Based on marine sediment cores and multiple sea-ice
proxies, Detlef et al.41 suggest that changes in sea-ice conditions
in the Nares Strait offshore of Petermann Fjord coincide with the
reconstructed regrowth of Petermann Glacier Ice Shelf during the
late Holocene (see Section “Geological support for past
Petermann regime transitions” above; ref. 16). In particular, they
find that the sea-ice regime in Petermann Fjord was discontin-
uous during the warm mid-Holocene, with prolonged summers
with open water, consistent with a weak ice mélange and the
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absence of an ice shelf. This was followed by a shift towards more
extensive, near-perennial sea ice from 3,900 yrs BP onwards, and
a shift from a northern to a southern ice arch in the Nares Strait.
This precedes the reconstructed ice-shelf recovery at 2100 yrs
BP16. These changes may have been accompanied by an ocean
cooling similar to what we impose in our experiments. This
connection between ocean and sea ice is seen also under modern
conditions, as sea ice modifies the ocean circulation in Nares
Strait41,42. Specifically, landfast sea ice weakens the inflow of
warm Atlantic Water into Petermann Fjord42, while more mobile
sea ice is associated with increased warm-water inflow. Detlef
et al.41 also suggest that an earlier-than-usual breakup of landfast
sea ice in spring preceded the major calving events at Petermann
in 2010 and 2012.

Increased sea ice offshore of Petermann Fjord may also have
prevented flushing of the ice mélange, otherwise done efficiently
by prevailing katabatic winds. This sea-ice damming effect is
currently visible in Sherard Osborn Fjord, located north of
Petermann Fjord, where Ryder Glacier drains. The thick sea ice in
Lincoln Sea offshore of Ryder is pushed towards the fjord
entrance and thereby efficiently prevents iceberg export from
Ryder Glacier50.

Study limitations and future work. The difficulty in recovering
Petermann Glacier after the breakup of its ice shelf is robust over
multiple time scales and forcings, as discussed above. There are
nonetheless several aspects of our study that must be considered
when evaluating the results. We have parameterised some key
physical processes, including iceberg calving (Section “Calving
parameterisation”) and basal friction (Section “Ice-flow model”;
Equation (1)). The type of calving law used can impact
grounding-line dynamics and ice-shelf stability (e.g. ref. 51). Still,
the calving law we employ has been compared against several
others for a range of Greenland glaciers52, and was found to give
the most realistic behaviour. Similarly, the choice of friction law
influences glacier flow, grounding-line behaviour and the
response to external forcing19,53–56. Nevertheless, we find that
post-breakup recovery of Petermann is similarly difficult using a
Schoof friction law (Section S1.2; Figs. S5 and S6; refs. 57,58).

Future studies could consider more elaborate parameterisations
of the ocean (e.g. refs. 59,60) and atmospheric forcing than what
we use (Sections “Ocean forcing” and “atmospheric forcing”).
The atmospheric forcing is relatively simple; to impose a climate
cooling (Section “Recovery in a post-Paris climate”), we shifted
the present-day surface mass balance field in a positive direction
(Section “Atmospheric forcing”). An alternative would be to
exploit surface mass balance products from model intercompar-
isons such as ISMIP614, combined with a regional surface mass
balance model. Nevertheless, recovery triggered from the atmo-
spheric side appears very difficult; even with stronger positive
shifts to the surface mass balance than what is presented in
Figs. 1e and 3c, recovery still fails (Table S1).

In a warmer climate, surface ablation will strengthen and
runoff will thus increase. This supraglacial water can accumulate
as surface lakes at an ice-shelf surface. These lakes can drain
rapidly to the ice-shelf base through large-scale hydrofracture,
which has been suggested as the trigger of the disintegration of
some Antarctic ice shelves (e.g. refs. 6,61). Supraglacial lakes cover
~2.8% of the surface of Petermann’s contemporary ice shelf62, but
most of these lakes drain or are evacuated through supraglacial
rivers every summer (cf. ref. 63). In the present climate,
Petermann Glacier Ice Shelf is therefore not thought to be
susceptible to collapse due to large-scale hydrofracture. In theory
this could change with the increasing availability of supraglacial
water in a warmer climate62. In the case of the cooling climate

considered here, the reduced availability of surface water may
reduce fracture development. This would mean a higher effective
viscosity of the ice shelf and thus increased buttressing (cf. ref. 64),
in turn potentially reducing calving rates, providing another link
between the atmosphere and ice-shelf advance.

We postulate that sea-ice growth and a stronger ice mélange is
a viable escape route from sustained post-breakup sea-level rise.
Empirical glacier reconstructions support this idea (Section “Geo-
logical support for past Petermann regime transitions”), and our
calving parameterisation implicitly accounts for the effect of ice
mélange through the calving stress threshold (Section “Calving
parameterisation”). Still, this hypothesis is yet to be tested in a
model framework with an explicit parameterisation of ice
mélange49,65.

Finally, we have illustrated that a major climatic cooling would
be needed to regrow Petermann Glacier Ice Shelf after its
breakup. These findings may be transferable to topographically
less confined Antarctic ice shelves, with implications for the
future Antarctic contribution to sea-level rise. The general notion
is that the laterally extensive, unconfined ice shelves typical for
present-day Antarctica provide little buttressing to upstream
ice64,66. However, the presence of sea ice may increase the
effective viscosity of an ice shelf, allowing the shelf to buttress
~10% of the extensional driving stress64. Similarly, reduced sea ice
offshore of Antarctic ice shelves, as well as loss of protective
landfast ice, has been shown to coincide with shelf
disintegration67. Conversely, heavy pack ice (ice mélange) has
been suggested to protect ice-shelf fronts from flexure by ocean
swells, reducing calving rates and preventing collapse67, and even
limiting the effects of a potential marine ice-cliff instability65.
While intriguing and physically sound, a direct causal connection
between sea-ice loss and shelf breakup is yet to be established, or
similarly, between the sea-ice expansion and shelf advance
postulated here. Deciphering these aspects remain a priority for
future work.

Summary and outlook
We have used a numerical ice-sheet model to study the recovery
of Petermann Glacier in northwest Greenland, after potential
future ice-shelf breakup. Our model simulations show that post-
breakup recovery of the ice shelf is difficult and requires major
climatic cooling to occur. For Petermann, a mere reversal of
future ocean warming back to contemporary conditions is
insufficient for recovery, and dynamic ice discharge remains 40%
higher than the present. Instead, we highlight sea-ice and ice
mélange-induced suppression of calving, potentially accom-
panying colder ocean temperatures, as a viable escape route from
sustained mass loss and associated sea-level rise. While the sup-
pressive effect of sea ice on calving is supported by empirical
evidence, it is not explicitly modelled and only implicitly
accounted for in our calving parameterisation. Given the diffi-
culty to regrow ice shelves once they have collapsed, the rationale
to avoid ice-shelf breakup in the first place should be clearer than
ever. Future research needs to pin down the exact mechanisms
and thresholds of ice-shelf breakup, and to what extent ice shelves
in Antarctica exhibit the same behaviour as Petermann Glacier
Ice Shelf in Greenland.

Methods
Ice-flow model. Ice dynamics is modelled using the two-dimensional Shelfy-
Stream Approximation68,69 on a finite-element mesh comprising 42,000 elements.
The mesh resolution varies from 0.5 to 10 km based on the steepness of the bed
topography. In addition, the mesh is refined to 0.5 km where observed velocities
exceed 500 m/a.

The model domain (Fig. S1) includes Petermann’s drainage basin as delineated
based on observed ice-surface velocities70,71. The domain extends ~70 km offshore
of the present-day calving front, to facilitate glacier advance during the recovery
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experiments outlined in Sections “Ice-shelf breakup may cement pervasive sea-level
rise”, “Recovery in a post-Paris climate”, “Reduced calving as an escape route from
pervasive mass loss”. Bedrock topography is taken from BedMachine v372 and we
use ice-sheet geometry from the Greenland Ice Sheet Mapping Project73–75.

Grounding-line migration is modelled with subelement resolution and is based
on a flotation criterion76. The model time step is 0.05 years (18.25 days).

Basal friction is modelled using a linear viscous Budd law77, which calculates
basal drag τb as

τb ¼ �α2Nub; ð1Þ
where α is a friction parameter, ub is basal velocity and N the effective pressure. We
assume a perfect hydrological connection between the subglacial drainage system
and the ocean, defining N as the difference between ice overburden and hydrostatic
pressure: N= ρigH+ ρwgzb, where ρi, g, H, ρw, and zb are ice density, gravitational
acceleration, ice thickness, seawater density and bed elevation, respectively. While
this parameterisation of the effective pressure is not realistic far from the coast, it
allows for a smooth transition of basal stress in the grounding zone, which has been
shown to significantly improve the fit with remote sensing data56. The basal friction
parameter α is inverted for using an adjoint method and remotely sensed ice
velocities70,71.

Similarly, ice-shelf viscosity is estimated using an adjoint method minimising
the absolute misfit between modelled and observed velocities (see ref. 19 for details).
Ice viscosity for grounded ice is assumed to be uniform and corresponds to an ice
temperature of −12 °C based on Greenland-wide ISMIP6 experiments14.

Calving parameterisation. A von Mises law35 is used to simulate calving-front
evolution, where the calving rate c depends on the tensile stress:

c ¼ juj ~σ

σmax
; ð2Þ

where ~σ is the von Mises tensile stress, which depends only on the tensile strain rate
(see ref. 35 for details), and σmax is a stress threshold. We use σmax= 1 MPa for
grounded ice, and calibrate σmax to 300 kPa for floating ice by reproducing the
present-day ice-shelf margin after a 50-year transient relaxation, where the
grounding line and calving front can evolve freely (see ref. 19 for details). Floating-
ice thickness smaller than 100 m is not allowed, to avoid unrealistic calving model
behaviour along the fjord walls.

Climate forcing
Atmospheric forcing. Present-day atmospheric forcing is imposed using a climatic
surface mass balance (1979–2014) from the regional climate model MAR 3.5.234.
This surface mass balance is derived from monthly means for each year.

In a colder climate, decreased ablation is not expected to be compensated by an
equivalent increase in accumulation78. This means that coastal areas would thicken
more than would the interior ice sheet, which results in a flatter ice-surface profile.
For example, model studies and empirical evidence suggest that a divide higher
than ~3500 m a.s.l. is unlikely to have occurred during past cold periods, such as
the Last Glacial Maximum and the Younger Dryas79–81. In comparison, the
elevation of the present-day divide is only a few hundred meters lower74. In
simulations where positive shifts of the surface mass balance are imposed (ocean
cooling + increased SMB), see Section “Recovery in a post-Paris climate” and
Table S1), we thus apply elevation-dependent anomalies to the climatic surface
mass balance. These anomalies decrease linearly from sea level to the maximum
ice-surface elevation.

The elevation-dependency factor Γ for these surface mass balance anomalies is
calculated as

Γ ¼
_B0 � _Bdivide

z0 � zdivide
; ð3Þ

where zdivide is the elevation at the ice divide (upper boundary of domain) and
z0= 0 is the elevation at sea level. The anomalies at sea level ( _B0 = +1 m w.e.) and
at the divide ( _Bdivide = +0.2 m w.e.) are not meant to mimic a specific climatic
period. However, the resulting surface mass balance field resembles that of the pre-
industrial climate, as simulated by Plach et al.82. We also did sensitivity tests with
even stronger shifts of the surface mass balance (Section “Study limitations and
future work”; Table S1).

The surface mass balance rate _B is then calculated as

_B ¼ _BMAR þ Γzs þ _B0; ð4Þ
where _BMAR is the present-day climatic surface mass balance from MAR, zs the ice-
surface elevation and _B0 is the surface mass balance anomaly at sea level.

Ocean forcing. Ocean forcing is parameterised based on observations of Peter-
mann’s ice shelf and modelling using the ocean model MITgcm29,30. Water
properties in these simulations are consistent with measurements from moorings23,
as well as CTD (Conductivity, Temperature, Depth) casts from the Petermann
2015 Expedition83. In the model, we apply annual oceanic melt rates of the ice-shelf
base. Melt rates vary linearly from zero at depths shallower than 200 m to 30 m/a at

depths deeper than 600 m (Fig. S2). Negligible seasonal variability of the deep-
water properties occurs at Petermann23, and our ocean boundary conditions are
therefore robust as an annual forcing. Ocean undercutting (horizontal melt) at the
calving front is only applied if the calving front is grounded. However, Petermann’s
ice shelf never disappears completely in our simulations, so grounded-front melt is
never applied in practice.

In experiments where the oceanic melt is altered, oceanic melt rates are based
on modelling experiments by30. Associated depth—melt rate profiles for a given
temperature are given in Fig. S2. For recovery experiments, these profiles are
shifted back to the present-day profile (Fig. S2).

Data availability
Our work is based on numerical modelling and we provide the scripts necessary to
reproduce our simulations (see Code Availability below). The underlying data used are
publicly available and listed in Section S1.5 and Table S1.5 in the Supplementary
Information.

Code availability
The ISSM code is freely available from the ISSM website (https://issm.jpl.nasa.gov/
download). Model scripts used to prepare and launch simulations are available at https://
git.bolin.su.se/bolin/akesson-2022.
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