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Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in

US cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral

transmission within and among households in a theoretical metropolitan area. We recreate a

range of urban epidemic trajectories and project the course of the epidemic under two

counterfactual scenarios, one in which a strict moratorium on evictions is in place and

enforced, and another in which evictions are allowed to resume at baseline or increased rates.

We find, across scenarios, that evictions lead to significant increases in infections. Applying

our model to Philadelphia using locally-specific parameters shows that the increase is

especially profound in models that consider realistically heterogenous cities in which both

evictions and contacts occur more frequently in poorer neighborhoods. Our results provide a

basis to assess eviction moratoria and show that policies to stem evictions are a warranted

and important component of COVID-19 control.
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The COVID-19 epidemic has caused unprecedented public
health and economic crisis in the United States. The
eviction crisis in the country predated the pandemic, but

the record levels of unemployment have newly put millions of
Americans at risk of losing their homes1–7. Many cities and states
enacted temporary legislation banning evictions during the initial
months of the pandemic8,9, some of which have since expired. On
September 4th, 2020, the Centers for Disease Control and Pre-
vention, enacting Section 361 of the Public Health Service Act10,
imposed a national moratorium on evictions until December 31st,
202011. This order, like most state and municipal ordinances,
argues that eviction moratoria are critical to prevent the spread of
SARS-CoV-2. It has been challenged in federal court (Brown vs.
Azar 2020), as well as at the state and local level12,13.

Evictions have many detrimental effects on households that
could accelerate the spread of SARS-CoV-2. There are few studies
on the housing status of families following eviction14,15, but the
limited data suggest that most evicted households “double-up”—
moving in with friends or family—immediately after being evic-
ted (see “Methods” section). Doubling upshifts the distribution of
household sizes in a city upward. The role of household trans-
mission of SARS-CoV-2 is not fully understood, but a growing
number of empirical stu dies16–21, as well as previous modeling
work22,23, suggest households are a major source of SARS-CoV-2
transmission. Contact tracing investigations find at least 20–50%
of infections can be traced back to a household contact24–27.
Household transmission can also limit or delay the effects of
measures like lockdowns that aim to decrease the contact rate in
the general population17,22,28.

Here we use an epidemiological model to quantify the effect of
evictions, and their expected shifts in household size, on the
transmission of SARS-CoV-2, and the prospects of its control, in
cities (Fig. 1). We modify an SEIR (susceptible, exposed, infec-
tious, and recovered) model, originally described in Nande
et al.22, to track the transmission of SARS-CoV-2 through a
metropolitan area with a population of 1 million individuals. We
use a network to represent contacts of the type that can poten-
tially lead to transmission of SARS-CoV-2, between individuals
grouped in households. We modulate the number of contacts
outside the household over the course of the simulations to
capture the varied effects of lockdown measures and their sub-
sequent relaxation. We model evictions that result in ‘doubling
up’ by merging each evicted household with one randomly-
selected household in the network. In supplemental analyses, we
examine what might happen if some proportion of evicted
households enter homeless shelters or encampments.

The model is parameterized using values from the COVID-19
literature and other demographic data (see “Methods” section).
The timing of progression between stages in our epidemiological

model is taken from many empirical studies and agrees with other
modeling work: We assume an ~4-day latent period, ~7.5-day
serial interval, and R0 ~3 in the absence of interventions, and ~1%
infection fatality risk. Household sizes are taken from the US
Census29; households are assumed to be well-mixed, meaning all
members of a household are in contact with each other. Indivi-
duals are randomly assigned contacts with individuals in other
households. The number and strength of these “external” contacts
are chosen so that the household secondary attack rate is ~0.319,
and the probability of transmission per contact is approximately
2.3-fold higher for households, compared to external contacts18.
Our model naturally admits a degree of overdispersion in
individual-level R0 values. Baseline eviction rates, which we
measure as the percent of households evicted each month, vary
dramatically between cities at baseline, as do the expected
increases due to COVID-19 (refs. 30,31, Supplementary Fig. 2). To
capture this range of eviction burdens, we simulate city-wide
eviction rates ranging from 0.1–2.0%.

Our initial models assume that mixing between households
occurs randomly throughout a city and that evictions and the
ability to adopt social distancing measures are uniformly dis-
tributed. However, data consistently show that both COVID-19
and evictions disproportionately affected the same poorer, min-
ority communities32–38. We, therefore, extend our model to
evaluate the effect of evictions in a realistically heterogeneous city.
We provide generic results and then parameterize our model to a
specific example–the city of Philadelphia, Pennsylvania.

Among large US cities, Philadelphia has one of the highest
eviction rates. In 2016 (the last year complete data is available),
3.5% of renters were evicted, and 53% were cost-burdened,
meaning they paid more than 30% of their income in rent30,39. In
July 2020 the Philadelphia city council passed the Emergency
Housing Protection Act40, in an effort to prevent evictions during
the COVID-19 pandemic. The city was promptly sued by
HAPCO, an association of residential investment and rental
property owners (HAPCO vs. City of Philadelphia 2020). Among
other claims, the plaintiff questioned whether the legislation was
of broad societal interest, rather than protecting only a narrow
class (of at-risk renters). An early motivation behind this work
was to assess this claim.

Results
Evictions lead to increases in COVID-19 cases across cities. We
simulate COVID-19 epidemic trajectories in single metro areas
over the course of 2020. To recreate realistic scenarios in the
model, we first collected data on COVID-19 cases and deaths
aggregated for each US metropolitan statistical area with at least 1
million residents (~50 cities). We then used hierarchical

Fig. 1 Modeling the effect of evictions on SARS-CoV-2 transmission. We model the spread of infection over a transmission network where contacts are
divided into those occurring within a household (solid gray lines) vs. outside the house (“external contacts”, dotted gray lines). Social distancing
interventions (such as venue and school closures, work-from-home policies, mask-wearing, lockdowns, etc) are modeled as reductions in external contacts
(red x’s), while relaxations of these interventions result in increases in external contacts towards their baseline levels. When a household experiences
eviction (red outline), we assume the residents of that house “double-up” by merging with another house (blue circle), thus increasing their household
contacts. Evictions can also directly lead to homelessness (orange outline), and residence in shelters or encampments with high numbers of contacts.
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clustering to group the time series based on similar trajectories
through Sept 2020, which resulted in four distinct groups of cities
(Supplementary Fig. 3, see “Methods” section). Groups differed in
the size of the spring wave, the degree of control in the early
summer, and the occurrence and extent of a late summer wave
(Supplementary Figs. 4–8). For example, cities like New York,
Boston, Philadelphia, and New Orleans (Trajectory 1) had large
early epidemic peaks followed by dramatic and sustained reduc-
tions in cases; cities including Chicago, Baltimore, Seattle, and
San Diego had substantial but smaller spring peaks that were
controlled and then followed by a long plateau of cases over the
summer (Trajectory 2); metros like St Louis, Raleigh, Salt Lake
City, and San Francisco had much smaller spring outbreaks that
were only partially controlled and then led to increases in the
summer (Trajectory 3); and metros similar to Miami, Houston,
Atlanta, and Phoenix experienced large mid-summer outbreaks
(Trajectory 4). We calibrated our model (in the absence of evic-
tions) to each of these four trajectory types by modulating the
degree of reduction in external contacts over time (see “Methods”
section, Supplementary Table 1, and Supplementary Fig. 9).

Many local, county, and state-level eviction moratoria that
were created early in the US epidemic were scheduled to expire in
late summer 2020, so we modeled the hypothetical effect of
evictions taking place starting Sept 1 and continuing for the
duration of the simulation. We assume that evictions happen at a
constant rate per month, but that the backlog of eviction cases
created during the moratoria results in 4 months worth of
evictions occurring in the first month. We first considered an
epidemic following Trajectory 1 (e.g., large spring epidemic peak
followed by a strong lockdown and summer plateau, Fig. 2).
During fall 2020, we simulated a resurgence of infection with a
doubling time of 2–3 weeks, as has been observed across all large
metros. By the end of 2020 in our baseline scenario of no
evictions, 16% of individuals in our simulated scenario had
caught COVID-19. With a low eviction rate of 0.25%/month
about 0.5% more of the population become infected compared to

our baseline scenario of no evictions. This increase corresponds to
~5000 excess cases per million residents. Further increasing the
eviction rate to 1%/month, the infection level was ~4%
higher than baseline (Table 1). The exact values vary across
simulations due to all the stochastic factors in viral spread
considered in the model. These results highlight how the
increased household spread that results from eviction-driven
doubling-up act synergistically with the spread between members
of different households during a growing epidemic to amplify
infection levels.

Our model predicts that even for lower eviction rates that do not
dramatically change the population-level epidemic burden, the
individual risk of infection was always substantially higher for those
who experienced eviction, or who merged households with evicted
individuals, compared to individuals whose households did not
change (relative risk of infection by the end of the year, ~1.28 [1.21,
1.37]). However, the increased risk of infection was not only felt by
those who doubled-up: even for individuals who were neither
evicted nor merged households with those who did, the risk of
infection compared to the counterfactual scenario of no evictions
was 1.04 for an eviction rate of 0.25%/month and 1.4 for 2.0%
evictions per month (Fig. 2d). This increased risk highlights the
spillover effects of evictions on the wider epidemic in a city.

We then considered the same scenario but assumed the
epidemic resurgence was countered with new control measures
imposed on Dec 1. The epidemic was eventually controlled in
simulations with or without eviction, but the decline was slower
and the intervention less effective at reducing epidemic size when
evictions were allowed to continue (Fig. 2e–h). Following the
epidemic until March 31 2021 at which point it was nearly
eliminated locally, the final size was 0.3% greater with 0.25%/
month evictions and 3% larger with 1%/month evictions. Larger
households, created through eviction and doubling up, allow the
more residual spread to occur under lockdowns. Thus, allowing
evictions to resume would compromise the efficacy of future
SARS-CoV-2 control efforts.
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Fig. 2 Impact of evictions on a SARS-CoV-2 comeback during Fall 2020. We model evictions occurring in the context of an epidemic similar to cities
following “Trajectory 1”, with a large first wave and strong control in the spring, followed by relaxation to a plateau over the summer and an eventual
comeback in the fall. Monthly evictions start Sept 1, with a 4-month backlog processed in the first month. a The projected daily incidence of new infections
(7-day running average) with and without evictions. Shaded regions represent central 90% of all simulations. The first lockdown (dotted vertical line)
reduced external contacts by 85%, under relaxation (second dotted line) they were still reduced by 70%, and during the fall comeback, they were reduced
by 60% (fourth dotted line). b Final epidemic size by Dec 31, 2020, measured as a percent of individuals who had ever been in any stage of infection.
c The predicted increase in infections due to evictions through Dec 31, 2020, measured as the excess percent of the population infected (left Y-axis) or the
number of excess infections (right Y-axis). d The relative risk of infection in the presence vs. absence of evictions, for individuals who merged households
due to evictions (“Doubled-up”) and for individuals who kept their pre-epidemic household (“Other households”). Data in b–d shown as median values with
interquartile ranges across simulations. e–h Same as above but assuming a second lockdown is instituted on Dec 1 and maintained through March 2021.
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Cities across the US experienced diverse epidemic trajectories
through August 2020, which we found could be summarized by three
additional trajectory patterns (Fig. 3, Supplementary Figs. 6–8). These
trajectory patterns, when used to calibrate our model, provide
information on the prevalence of susceptible, infected, and
previously-recovered (immune) individuals at the time evictions
resume, as well as how these cases may be distributed across
households. We found that for all trajectories, if we allowed evictions
to occur, they led to significant increases in COVID-19 cases, with
anywhere from ~1,000 to ~10,000 excess cases per million residents
attributable to evictions when eviction rates are lower (e.g., 0.25%/
month) and the fall comeback is countered by a strong lockdown in
December 2020, to ~ 50–100,000 excess cases for higher eviction
rates (e.g 2%) and unmitigated epidemics (Table 1). In most of these
scenarios, there was ~1 excess infection in the city attributable to each
eviction that took place.

We repeated the above simulations with different values of the
household secondary attack rate (SAR) to check the sensitivity of our
results to this value (Supplementary Figs. 10, 11). As expected, when
the household transmission is more common (higher SAR of 0.5,
Supplementary Fig. 10) evictions have a slightly larger effect on the
epidemic, and when it is less common (lower SAR of 0.1,
Supplementary Fig. 11), the effect of evictions is slightly smaller. If
we assumed transmission risk from external contacts was equal to
household contacts but reduced the number of external contacts to
maintain the same R0, results were similar to our baseline scenario
(Supplementary Fig. 12). We also considered a scenario where
evicted households always doubled-up with another household with
whom they already had an external contact; this actually led to a
small increase in the predicted effect of evictions as doubled-up
households now had slightly higher-than-average connectivity (e.g.,
increase in the final size of 4.2% vs. 5.4% for 1%/month eviction rate,
Supplementary Fig. 13). In a previous version of this work,
completed before the ubiquity of the fall resurgence became apparent,
we examined the impact of evictions under alternate fall scenarios,
including a plateau of cases at September levels or more gradual
increases41. We found that in general, evictions had less impact on
infection counts when the epidemic was controlled and maintained
at a constant plateau throughout the fall. However, a flat epidemic

curve could still be associated with substantial detrimental effects of
evictions if the incidence at the plateau is still relatively high.

Evictions interact with urban disparities. Our results so far
assume that every household in a city is equally likely to
experience an eviction and that the SARS-CoV-2 infection bur-
den and adoption of social distancing measures are homo-
geneously distributed throughout the population. In reality,
evictions are concentrated in poorer neighborhoods with higher
proportions of racial/ethnic minorities38. Similarly, individuals in
these neighborhood types are likely to maintain higher contact
rates during the epidemic due to high portions of essential
workers among other reasons42–45. Many studies have shown
higher burdens of infection and severe manifestations of COVID-
19 in these demographic groups32–37. To examine the impact of
city-level disparities on the interaction between evictions and
disease spread (Fig. 4), we simulated infection in cities consisting
of two neighborhood types: a higher socioeconomic status (SES)
neighborhood with no evictions and a high degree of adoption of
social distancing measures (low contact rates), and a lower SES
neighborhood with evictions, where the reduction in contact rates
was less pronounced. We assumed that evicted households
doubled-up with other households that are also in the low SES
neighborhood (see Supplementary Fig. 15 for the case when
doubling-up can happen across neighborhoods). The epidemic
time course was simulated using the same population-average
transmission rates for each phase as for Trajectory 1 (Fig. 2). In
the absence of evictions, infection prevalence differed sub-
stantially by neighborhood (Fig. 4b), and despite simulating the
same overall reduction in contacts, the epidemic burden was
higher when residual contacts were clustered in the poorer
neighborhood (Fig. 2b vs. Fig. 4d).

In this heterogeneous context, we found, for equivalent overall
eviction rates, a larger impact of evictions on COVID-19 cases
than if they had occurred in a homogeneous city. For example, by
the end of 2020, for a low eviction rate (0.25%/month) we
estimate 1.7% excess cases attributable to evictions in the
heterogeneous model, as compared to 0.5% in the homogeneous

Table 1 Predicted excess SARS-CoV-2 infections when evictions are continued.

Cumulative prevalence w/o
evictions

Eviction rate (%/month)

Trajectory 0.1% 0.25% 0.5% 1% 2%

Shown in Fig. 2
Trajectory 1 and
comeback

16.5
[15.7–18.5]

0.25
[−0.24-0.63]

0.46
[0.36–0.87]

1.3
[1.0–2.3]

4.2
[1.9–4.9]

8.5
[6.4–10.8]

Trajectory 1 and
lockdown

14.3
[12.6–15.6]

0.12
[−0.25–0.48]

0.29
[0.23–0.64]

0.90
[0.78–1.6]

2.9
[1.4–3.4]

6.2
[4.6–8.0]

Shown in Fig. 3
Trajectory 2 and
comeback

11.7
[10.3–12.5]

0.38
[0.09–0.80]

1.2
[0.67–2.2]

1.4
[0.92–2.6]

4.3
[3.1–5.3]

9.8
[7.2–10.3]

Trajectory 2 and
lockdown

9.1
[7.8–10.1]

0.18
[0.05–0.52]

0.80
[0.43–1.4]

0.93
[0.61–1.7]

2.9
[2.3–3.5]

6.9
[5.0–7.3]

Trajectory 3 and
comeback

8.9
[7.2–10.0]

0.41
[−0.39–0.80]

0.76
[0.36–1.04]

1.7
[1.0–2.0]

4.1
[3.6–4.4]

9.4
[8.7–10.8]

Trajectory 3 and
lockdown

6.6
[5.4–7.5]

0.29
[−0.36–0.60]

0.43
[0.30–0.70]

1.2
[0.63–1.4]

2.7
[2.5–2.9]

6.6
[6.2–7.6]

Trajectory 4 and
comeback

9.4
[8.1–10.4]

−0.07
[−0.16–0.34]

0.47
[0.23–0.83]

1.1
[0.94–1.6]

2.6
[2.4–3.1]

7.2
[5.9–7.5]

Trajectory 4 and
lockdown

8.4
[6.9–9.2]

0.00
[−0.09–0.24]

0.33
[0.18–0.64]

0.89
[0.76–1.2]

2.0
[1.9–2.3]

5.9
[4.6–6.1]

Excess infections are measured as the increase in the cumulative percent of the population infected by Dec 31, 2020 (or March 31 2021 if a second lockdown implemented) if evictions resume on Sept 1,
2020, compared to if evictions were halted. Values are reported as median [IQR]. All results are from simulations of a metro area of 1 million individuals where evictions all result in “doubling up”.
Corresponding epidemic trajectories are shown in Figs. 2, 3. The US metropolitan statistical areas that roughly correspond to each scenario are shown in Figs. S3, S5–S8.
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version described above. For the higher eviction rate (1%/month)
we estimate ~5.4% excess infections due to eviction, as compared
to ~4.2% in the homogenous model. Evictions also serve to
exacerbate pre-existing disparities in infection prevalence between
neighborhoods. For the hypothetical scenario we simulated,
evictions increase the relative risk of infection for the low vs. high
SES neighborhood from ~1.3 to ~1.5. However, due to spillover
effects from low to high SES neighborhoods, individuals residing
in the high SES neighborhood also experience an increased
infection risk (up to 1.5-fold in the no-evictions scenario)
attributable to the evictions occurring in the other demographic
group. These results hold even if we assume more extreme
segregation between residents of each neighborhood (Supple-
mentary Fig. 14) or if we allow evicted individuals to double up
with residents of the high SES neighborhood (Supplementary
Fig. 15), though the disparities across neighborhoods are more
extreme in the former case and less extreme in the latter. Thus,
our results in Table 1 may underestimate the impact of evictions
on COVID-19 in realistically-heterogeneous US cities. The
concentration of evictions in demographic groups with more
residual inter-household transmission serves to amplify their
effects on the epidemic across the whole city.

Case study: Impact of evictions in Philadelphia, PA. Finally, we
sought to combine these ideas into a data-driven case study

motivated by the court case in Philadelphia, PA, mentioned
above. In Philadelphia, like all major US cities, there is significant
heterogeneity in housing stability and other socioeconomic fac-
tors that are relevant both to the risk of eviction and to COVID-
19 infection46,47. An early study found clusters of the high inci-
dence of infection were mostly co-located with poverty and a
history of racial segregation, such as in West and North
Philadelphia34. A study of SARS-CoV-2 prevalence and ser-
opositivity in pregnant women presenting to the University of
Pennsylvania Hospital System found a more than 4-fold increase
in seroprevalence among Black/non-Hispanic and Hispanic/
Latino women, compared to white/non-Hispanic women,
between April and June 202036.

To include these important disparities in our modeling, we first
used principal component analysis on a suite of socioeconomic
indicators to classify zip codes in the city48. We obtained three zip
code typologies: a higher income cluster, a moderate-income
cluster, and a low-income cluster. The lower-income cluster has
both very high eviction rates and higher rates of service industry
employment and essential workers. Properties of the sub-
populations are summarized in Table 2 and detailed in
Supplementary Tables 1, 2.

We then translated these findings into our model by dividing
the simulated city into three sub-populations. The fraction of
external contacts of individuals residing in each cluster that was
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Fig. 3 Alternate epidemic trajectories of SARS-CoV-2 before and after evictions in a large city. Each panel shows the projected daily incidence of new
infections (7-day running average) with and without evictions at 1%/month with a 4-month backlog, starting on Sept 1, 2020. Shaded regions represent
central 90% of all simulations. In the left column, the spread continues unabated through Dec 31, 2020, whereas in the second column a new lockdown is
introduced on Dec 1. Each trajectory scenario is created by calibrating the model to a group of US metropolitan statistical areas with similar patterns of
spread (see “Methods” section, Supplementary Figs. 5–8). For all trajectory types, the degree of reduction in external contacts by control measures was
modulated on dates March 25, June 15, July 15, and Oct 1, with values, reported in Supplementary Table 1.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22521-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2274 | https://doi.org/10.1038/s41467-021-22521-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


a b

c d

f g

e

0 2 4 6 8 10 12
Time (months since Jan 1 2020)

0

1000

2000

3000

4000

D
ai

ly
 in

ci
de

nc
e 

pe
r m

illi
on

0.0 0.5 1.0 1.5 2.0
Eviction rate (%/month)

0

10

20

30

Fi
na

l e
pi

de
m

ic
 s

iz
e 

(%
)

0

50,000

100,000

150,000

In
cr

ea
se

d 
# 

in
fe

ct
ed

0.0 0.5 1.0 1.5 2.0
Eviction rate (%/month)

0

5

10

15

In
cr

ea
se

d 
%

 in
fe

ct
ed

 

0.0 0.5 1.0 1.5 2.0
Eviction rate (%/month)

1.0

1.5

2.0

2.5

R
el

at
iv

e 
ris

k 
of

 in
fe

ct
io

n 
 (v

s 
no

 e
vi

ct
io

ns
)

Doubled-up
Other households (low SES)
Other households (high SES)

0.0 0.5 1.0 1.5 2.0
Eviction rate (%/month)

1.0

1.2

1.4

1.6

1.8

2.0

R
el

at
iv

e 
ris

k 
of

 in
fe

ct
io

n 
 (l

ow
 v

s 
hi

gh
 S

ES
)

0 2 4 6 8 10 12
Time (months since Jan 1 2020)

0

5

10

15

20

25

C
um

ul
at

iv
e 

pr
ev

al
en

ce
 (%

)

Low SES
Neighborhood

High SES

Evictions
1%/month

No evictions

Fig. 4 Impact of evictions on COVID-19 epidemics in heterogeneous cities. a Schematic of our model for inequalities within a city. The city is divided into
a “high socioeconomic status (SES)” (purple) and a “low SES” (teal) neighborhood. Evictions only occur in the low SES area, and individuals living in this
area are assumed to be less able to adopt social distancing measures, and hence have higher contact rates under interventions (90% vs. 80% reduction in
external contacts during lockdown for 85% overall, 75% vs. 65% during a relaxation for 70% overall, and 65% vs. 55% during fall comeback for 60%
overall). Before interventions, residents are equally likely to contact someone outside the household who lives within vs. outside their neighborhood.
b Cumulative percent of the population infected over time, by neighborhood, in the absence of evictions. Error bars show interquartile ranges across
simulations. c The projected daily incidence of new infections (7-day running average) with 1%/month evictions vs. no evictions. Shaded regions represent
central 90% of all simulations. d Final epidemic size by Dec 31, 2020, measured as percent individuals who had ever been in any stage of infection, for the
heterogeneous city as compared to a homogenous city with the same effective eviction rate and intervention efficacy. e The predicted increase in infections
due to evictions through Dec 31, 2020, measured as the excess percent of the population infected (left Y-axis) or the number of excess infections (right Y-
axis). f Relative risk of infection by Dec 31, 2020, for residents of the low SES vs. high SES neighborhood. g The relative risk of infection by Dec 31 2020 in
the presence vs. absence of evictions, for individuals who merged households due to evictions (“Doubled-up”) and for individuals who kept their pre-
epidemic household (“Other households”). Data in b, (d–g) shown as median values with interquartile ranges across simulations.

Table 2 Properties of neighborhood clusters in Philadelphia used in simulations.

Population in
cluster (%)

Eviction rate at
baseline
(%/month)

Estimated essential
workers (%)

Mobility reduction
(%, June 2020)

Summary of cluster characteristics

Cluster 1 17 0.07 0.30 89 High income, high % renters, low % cost-
burdened, low % <age 18, low % female-headed
households, high mobility rate, high % white/
Asian

Cluster 2 38 0.12 0.50 72 Intermediate income, high % >65, low % renters,
high % cost burdened renters, high % foreign-
born, racially/ethnically diverse

Cluster 3 45 0.21 0.54 82 High poverty, low income, high % renters, high
vacancy, high % female-headed households, high
% service workers, high % Black/Hispanic

Total (1.58 million) 0.15 0.48 79
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with individuals in each other cluster was estimated using co-
location events measured by anonymous mobile phone data,
which only includes interactions outside of homes and work-
places (see Supplementary Table 5, see “Methods” section,
Supplementary Note). Individuals preferentially mix with others
residing in the same cluster. The degree of adoption of social
distancing measures, which differed for each sub-population and
for each contact type, was assumed to be proportional to the
reductions observed in the mobility data (Supplementary Table 6).
Cluster 1 experienced the largest reductions in mobility, followed
by Cluster 3 then Cluster 2. Evicted households were merged with
other households in the same sub-population. There are no
datasets available tracking the geographic origin and destination
of individuals experiencing evictions, but general housing
relocations observed using the same mobility data were
predominantly within the same cluster (Supplementary Fig. 17).

By tuning only the infection prevalence at the time that strong
social distancing policies were implemented in March, we found
that our model matched our best available information on the
COVID-19 epidemic trajectory in Philadelphia (Fig. 5). The

simulated epidemic grew exponentially with a doubling time of
4–5 days until late March. The daily incidence of cases peaked
shortly thereafter and deaths peaked with a delay of ~1 month.
Post-peak, new cases, and death declined with a half-life of
~3 weeks. In early June, control measures were relaxed, leading to
a plateau in cases and deaths that lasted until early October. The
seroprevalence over time predicted by the model was in general
agreement with results from large serological surveys in different
populations in Philadelphia or Pennsylvania as a whole35,36,49,50,
and our model predicted large disparities in seroprevalence
among the clusters.

Simulations suggest that allowing evictions to resume would
have substantially increased the number of people with COVID-
19 in Philadelphia by Dec 31, 2020 and that these increases would
be felt among all sub-populations, including those with lower
eviction rates (Fig. 5). We predict that with evictions occurring at
only their pre-COVID-19 rates, the epidemic would infect an
extra 0.3% of the population (~4700 individuals). However, many
analyses suggest that eviction rates could be much higher in 2020
if allowed to resume, due to the economic crisis associated with
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Fig. 5 A detailed example of how evictions might affect SARS-CoV-2 transmission in the city of Philadelphia, Pennsylvania, USA. a Map of
Philadelphia, with each zip code colored by the cluster it was assigned to. Properties of clusters are Table 2 and Supplementary Tables 1, 2. b Schematic of
our model for inequalities within the city. Each cluster is modeled as a group of households, and the eviction rate and ability to adopt social distancing
measures vary by cluster. c Simulated cumulative percent of the population infected over time, by cluster, in the absence of evictions. Data points from
seroprevalence studies in Philadelphia or Pennsylvania: x50, +35, triangle49, square36. d The projected daily incidence of new infections (7-day running
average) with evictions at 5-fold the 2019 rate vs. no evictions. Shaded regions represent central 90% of all simulations. e Final epidemic size by Dec 31,
2020, measured as percent individuals who had ever been in any stage of infection. f The predicted increase in infections due to evictions through Dec 31,
2020, measured as the excess percent of the population infected (left Y-axis) or the number of excess infections (right Y-axis). g Relative risk of infection
by Dec 31, 2020, for residents compared by neighborhood. h–i Relative risk of infection by Dec 31, 2020, in the presence vs. absence of evictions, for
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COVID-19 (Supplementary Fig. 2,31,51). If eviction rates double,
the excess infections due to evictions would increase to 0.9%; with
a 5-fold increase in evictions, predicted by some economic
analyses, this would increase to 2.6% or ~53,000 extra infections.
At this rate, we estimate a 1.5-fold [1.3,1.6] increase in the risk of
infection for individuals in households that doubled-up, and a
1.1-fold [1.1,1.2] relative risk in other households, compared to
the counterfactual situation in which a complete eviction
moratorium was in place and enforced. Despite the differences
in both baseline infection rates and eviction rates, all three sub-
populations experienced similar proportional increases in infec-
tion levels due to eviction (Fig. 5h, i). Overall our results suggest
that eviction moratoria in Philadelphia have a substantial impact
on COVID-19 cases throughout the city.

Discussion
Our analysis demonstrates that evictions can have a measurable
impact on the spread of SARS-CoV-2 in cities and that policies to
stem them are a warranted and important component of epi-
demic control. The effect of evictions on an epidemic is not
limited to those who were evicted and those who received evicted
families into their homes. Other households experienced an
increased risk of infection due to spillover from the transmission
processes amplified by evictions in the city.

The most immediate implication of our findings is their rele-
vance to the continued debate taking place in US legislatures and
courts over the fate of local and national eviction moratoria. Our
results suggest that the CDC-mandated national order prohibit-
ing evictions from Sept 4 - Dec 31 2020 likely prevented thou-
sands of excess COVID-19 infections for every million
metropolitan residents. Moreover, simulations show that allowing
evictions would increase the relative risk of infection for all
households, not just a narrow class of those experiencing eviction.
Thus, the legislation is of broad societal interest. A federal judge,
citing testimony based on an earlier version of this model,
recently issued an opinion in favor of the city of Philadelphia’s
eviction moratorium (HAPCO v. City of Philadelphia 2020).
More generally, our simulations show that in the case of COVID-
19, preventing evictions is clearly in line with the mandate of the
Public Health Service Act to invoke measures “necessary to pre-
vent the introduction, transmission, or spread of communicable
diseases”10.

Across all scenarios, evictions were predicted to aggravate the
COVID-19 epidemic in cities. The effect was greatest in scenarios
when the epidemic was growing rapidly during the time evictions
took place, but evictions could also significantly increase the
number of individuals infected under strong control measures.
Even results of models that assume a homogenous population
show significant effects of evictions on the city-wide prevalence of
SARS-CoV-2 infection. However, when we modeled a hetero-
geneous city, the effect was more pronounced–presumably
because the increase in household size is more concentrated, and
those sections of the city affected by evictions, more connected.

The fates of households that experience eviction is difficult to
track. Existing data suggest that historically the majority of
evictions have led to doubling up (e.g., Fragile Families Study52)
and we, therefore, chose to focus our modeling on this outcome.
However, the current economic crisis is so widespread it is
unlikely that other households will be able to absorb all evicted
families if moratoria are revoked, and thousands of people could
become homeless, entering the already-over-capacity shelter
system or encampments6,7,53–55. Shelters could only increase the
impact of evictions on cases of COVID-19. The risk of con-
tracting COVID-19 in homeless shelters can be high due to close
contact within close quarters, and numerous outbreaks in shelters

have been documented7,56. A recent modeling study suggests that,
in the absence of strict infection control measures in shelters,
outbreaks among the homeless may recur even if incidence in the
general population is low and that these outbreaks can then
increase exposure among the general population57. When we
assigned even a small proportion of evicted households to a
catch-all category of shelters and encampments (Supplementary
Fig. 18), with an elevated number of contacts, evictions unpre-
dictably gave rise to epidemics within the epidemic, which then,
predictably, spread throughout the city. These results are quali-
tatively in line with the effects of other high-contact subpopula-
tions, such as those created by students in dorms58,59 or among
prisoners60–62.

Other modeling studies have investigated ‘fusing households’
as a strategy to keep SARS-CoV-2 transmission low following the
relaxation of lockdowns22,63,64. The strategy has been taken up by
families as a means to alleviate the challenge of childcare among
other issues65,66. Indeed there are conditions, especially during a
declining epidemic, that fusing pairs of households does not have
much effect on infection on the population scale22. While these
findings are not in discord with our work, a voluntarily fused
household is a very different entity than an involuntarily doubled-
up household. While a fused household can separate in sub-
sequent periods of higher transmission, a doubled-up household
would likely not have such an option.

Our model simplifies the complex relationships within
households that might affect the risk of ongoing transmission
within a home, as well as the complex relationships that might
initially bring a pathogen into a home. e.g., ref. 67. Relatedly, we
choose a constant household secondary attack rate. A number of
analyses suggest that the average daily risk to a household contact
might be lower in larger households16,18,21. We hesitate to gen-
eralize this finding to households in large US cities that face
possible eviction. Empirical studies of secondary attack rate in
households of different sizes, in the relevant population, and with
adequate testing of asymptomatic individuals, are badly needed. If
they show that the infection rate does not scale with household
size, then our estimates on the expected effects of eviction would
be too large. We also have not considered the effects of household
crowding, nor the age structure of households–evicted and
otherwise–which can influence outcomes in a network model
such as ours68,69. We have not considered the effects of fore-
closures and other financial impacts of the epidemic which will
likely also lead to doubling up and potentially homelessness.
There are likely more complicated interactions between COVID-
19 and housing instability that we have not modeled, such as the
possibility that COVID-19 infection could precipitate housing
loss55, that eviction itself is associated with worsening health70,71,
or that health disparities could make clinical outcomes of
COVID-19 infection more severe among individuals facing
eviction or experiencing homelessness57,72,73. Finally, we note
that our model is not meant to be a forecast of the future course
of the epidemic, nor the political and individual measures that
might be adopted to contain it. We limit ourselves to evaluating
the effect of evictions across a set of scenarios, and we limit our
projections to the coming months. We also do not consider the
possible effects of re-infection or other details that contribute to
the uncertainty of SARS-CoV-2 epidemic trajectories.

We caution against using the precise numerical estimates from
our model to infer the effects of eviction moratoria in particular
locations. While we have attempted to use the best current esti-
mates of epidemiological parameters for COVID-19 transmission
and to calibrate our model to epidemic trajectories common
across US cities, many uncertainties remain. For example, there is
uncertainty in our estimates of the basic reproduction number,
the serial interval, the duration of immunity, the infection fatality
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risk, the fraction of transmission occurring within vs. outside of
households, the distribution of external contacts across indivi-
duals and households, and the manner in which they are reduced
during different stages of the epidemic. These quantities may vary
by setting and over time. The distribution of cases across
demographic groups (e.g., age, race/ethnicity) is not considered in
detail in our model but may impact the output. Our analyses of
different common COVID-19 epidemic trajectories and our
sensitivity analyses using different parameter assumptions suggest
our qualitative results are robust, but that the precise numbers
depend on the details. Ideally, observational studies of households
conducted in localities where evictions moratoria (temporarily)
expired or were ignored could provide more direct evidence for
the impact of evictions on COVID-19 transmission. No such
studies exist to date. A recent preprint by Leifheit et al, making a
difference in difference approach at the state level, suggests there
was some signal of increasing cases when moratoria ended74.
However, there are likely other contemporaneous policy decisions
affecting COVID-19 transmission that occurred in states allowing
local eviction moratoria to lapse, making the assignment of
causality difficult.

Cities are the environment of an ever-increasing proportion of
the world’s population75, and evictions are a force that disrupts
and disturbs them. Just as abrupt environmental change can alter
the structure of populations and lead to contact patterns that
increase the transmissibility of infectious agents76, evictions
change with whom we have the closest of contact—those inside
the home—and this change, even when it affects only a small
proportion of a population, can significantly increase the trans-
mission of SARS-CoV-2 across an interconnected city.

Methods
Modeling SARS-CoV-2 spread and clinical progression. We describe the pro-
gression of COVID-19 infection using a SEIRD model, which divides the
population into the following stages of infection: susceptible (S), exposed
(infected but not yet infectious) (E), infected (I), recovered, and assumed to be
immune (R), and deceased (D). This model is similar to many other published
models28,69,77–79 including our own22. All our code is available in a Github
repository80: https://github.com/alsnhll/COVID19EvictionSimulations. We
assume that the average duration of the latent period is 4 days (we assume the
transmission is possible on average 1 day before symptom onset), the average
duration of the infectious period is 7 days (1-day presymptomatic transmission
+6 days of symptomatic/asymptomatic transmission), the average time to death
for a deceased individual was 20 days, and the fraction of all infected individuals
who will die (infection fatality risk, IFR) was 1%. The distribution of time spent
in each state was gamma-distributed with mean and variance taken from the
literature (see Supplementary Note). Transmission of the virus occurs, prob-
abilistically, from infectious individuals to susceptible individuals who they are
connected to by an edge in the contact network at rate β.

Creating the contact network. We create a two-layer weighted network describing
the contacts in the population over which infection can spread. One layer describes
contacts within the household. We divide the population into households following
the distribution estimated from the 2019 American Community Survey of the US
Census29. In this data all households of size 7 or greater are grouped into a single “7
+” category, so we imputed sizes 7 through 10 by assuming that the ratio of houses
of size n to size n+ 1 was constant for sizes 6 and above. We assume that all
individuals in a household are in contact with one another. The second layer
constitutes contacts outside the household (e.g., work, school, social). While the
number of these external contacts is often estimated from surveys that ask indi-
viduals about the number of unique close face-to-face or physical contacts in a
single day, how these recallable interactions of varying frequency and duration
related to the true effective number of contacts for any particular infection are not
clear. Therefore, we took a different approach to estimating external contact
numbers and strength.

We assumed a separate transmission rate across household contacts (βHH) and
external contacts (βEX). To estimate the values of these transmission rates, and the
effective number of external contacts per person, we matched three values from
epidemiological studies of SARS-CoV-2. First, since the transmission probability of
household contacts is more easily measured empirically than that for community
contacts, we backed out a value of household transmission rate (βHH) that would
give the desired value of the secondary attack rate (SAR) in households. We used a

household SAR of 0.3, based on studies within the United States, as well as a pooled
meta-analysis of values from studies around the world16,17,19. Secondly, we
assumed that the secondary attack rate for household contacts was 2.3-fold higher
than for external contacts, based on findings from a contact tracing study81. We
used this to infer a value for the transmission rate over external contacts (βEX).
Finally, we chose the average number of external contacts so that the overall basic
reproductive ratio, R0, was ~3, based on a series of studies82–84. We did this
assuming that the distribution of external contacts is negative binomially
distributed with the coefficient of variation of external contacts of 0.5, and using a
formula for R0 that takes this heterogeneity into account85. We explore the effects
of different assumptions surrounding R0, the household SAR, and the ratio between
the transmission rate within and between households in sensitivity analyses, shown
in the Supplementary Information.

Modulating contact rates to recreate epidemiological timelines. We assume
that the baseline rate of transmission across external contacts represents the value
early in the epidemic, before any form of intervention against the spread (e.g.,
workplace or school closures, general social distancing, masking wearing). To
recreate the trajectories of COVID-19 in U.S. cities throughout 2020, we instituted
a series of control measures and subsequent relaxations in the simulations at typical
dates they were implemented in reality. In the model, these modulations of
transmission were encoded as reductions in the probability of transmission over
external contacts. The timing and strength of these modulations in external con-
tacts were chosen in a model calibration procedure that involved first clustering U.
S. metro areas into groups based on common epidemic time courses and then
tuning the model to recreate a trajectory typical of each group (described below, see
Supplementary Figs. 3–8, Supplementary Table 1). For the simulations involving
cities divided into multiple neighborhoods, we represented disparities by allowing
the strength of these control measures to differ depending on the origin and
destination neighborhood of each external contact. For the theoretical two-
neighborhood city (Fig. 4), individuals in the higher SES neighborhood were
assumed to be better able to adopt social distancing measures and thus were
modeled with larger reductions in external contacts. For Philadelphia, the reduc-
tions were informed by mobility data which tracked co-locations occurring
between residents of different zipcodes (see Details below).

Categorizing city-specific COVID-19 trajectories. To estimate the impact of
evictions on COVID-19 transmission, it is necessary to realistically simulate the
state of the epidemic at the time evictions are occurring. Theoretically, this would
require estimates of infection prevalence over time, the distribution of infections
across households, real-time estimates of contact rates of infectious individuals, as
well as knowing how the epidemic would unfold in the future. Since in general, we
do not have direct estimates of these quantities, our approach was to create realistic
scenarios by simulating the entire epidemic course before evictions began, repro-
ducing the trajectories seen in data. Then, for forwarding projections (which in our
case is Sept 1 2020 onwards), we considered alternate scenarios of epidemic control
and infection resurgence.

Our simulation is at the level of a single U.S. metropolitan area. To avoid the
extreme computational costs of fitting a stochastic network model to every U.S. city
of interest and including all the observational processes that affect real data (like
testing rates, reporting delays, etc), we take a simplified model calibration
approach. First, we collected county-specific daily COVID-19 case and death
reports from the New York Times database (which is based on reports from state
and local health agencies)86 and aggregated these into metropolitan statistical areas
(MSAs). Then, we chose all metropolitan areas with at least 1 million residents (53
cities) and used dynamical time warping and hierarchical clustering (using the
hclust function with method ward.D and the dtw package v1.22-3 in R v3.5.1)
on case and death time courses (normalized by population) up to Aug 31, 2020, to
group cities with similar trajectories. Four groups naturally emerged from this
analysis (Supplementary Fig. 3), representing at one extreme metros like New York
City and Boston that had large first waves followed by a long period of control over
the summer, and at the other extreme cities like Houston and Phoenix that had
their epidemic peak over the summer. For all city groups, we observed that the
epidemic could roughly be broken down into five phases with the corresponding
date ranges (1) early epidemic: pre-March 25, (2) lockdown: March 25–June 15, (3)
relaxation: June 15–July 15, (4) continued relaxation or increased control: July
15–Oct 1, (5) fall wave: Oct 1–end of 2020. We then created a trajectory with the
model to match each city-group, where during each phase we chose a degree of
reduction in external contacts using a simple binary search such that the growth
rate of cases or deaths was within the range observed for cities in that group
(Supplementary Table 1). The time between the initial epidemic seeding (with 10
individuals) and the first lockdown was chosen to reproduce the size of the first
wave. Because of issues with testing limitations and reporting mild or
asymptomatic infections, the fraction of cases reported has most likely changed
dramatically over the course of 2020, and so we prioritize recreating trajectories of
deaths (vs. cases) along with an assumed 1% IFR to infer total cases
(Supplementary Fig. 9).
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Modeling the impact of evictions. We initially assume all evictions result in
“doubling up”, which refers to when an evicted household moves into another
house along with its existing inhabitants. There are very few studies reporting
individual-level longitudinal data on households experiencing evictions14,87–89, and
none of those (to our knowledge) have published reports of the fraction of
households that experience each of the possible outcomes of eviction (e.g., new
single-family residence, doubling-up, homeless, etc). The best evidence available on
doubling-up comes from the Fragile Families and Child Wellbeing Study, one of
the only large-scale, longitudinal studies that follow families after eviction14,15. The
study sampled 4700 randomly selected births from a stratified random sample of
US cities >200,000 population52, and has followed mothers, fathers, and children
from 1998 to the present. Among other topics, interviewers asked respondents
whether they had been evicted, doubled up, or made homeless in the previous year.
In four waves of available interviews among 4700 respondents in 1999–2001,
2001–2003, 2003–2006, and 2007–2010, 402 mothers reported being evicted in the
previous year. Of these, an average of ~65% reported having doubled up.

Based on the eviction rate, a random sample of houses is chosen for eviction on the
first day of each month, and these houses are then each “merged” with another
randomly-chosen household that did not experience eviction. In a merged household,
all members of the combined household are connected with edges of equal strength as
they were to their original household members. A household can only be merged once.

Homelessness is another possible outcome of eviction. However, a number of
studies of the homeless population show that doubling-up often precedes
homelessness, with the vast majority of the homeless reporting being doubled-up
prior to living in a shelter90–92. In the Fragile Families Study data described above,
only ~17.4% reported having lived in a shelter, car, or abandoned building. We
subsequently model the minority of evictions that result directly in homelessness.
These evicted households instead enter a common pool with other homeless
households, and, in addition to their existing household and external connections,
are randomly connected to a subset of others in this pool, mimicking the high
contact rates expected in shelters or encampments. We consider 10% of evicted
households directly becoming homeless, and the other 90% doubling up.
Individuals are assigned to ‘shelters’ of size drawn from a Poisson distribution with
a mean of 20 and are connected to all other individuals in that shelter only. This
number is estimated from considering both sheltered and unsheltered people,
which each represent about half of the individuals experiencing homelessness53.
Data suggesting the average size of shelters is ~25 people, based on assuming ~half
of the ~570 K homeless on any given night are distributed over 12 K US shelters,
which is similar to a Lewer et al estimate for the UK (mean 34, median 21)57.
Unsheltered individuals are expected to have less close, indoor contacts, bringing
down the average, and the portion of unsheltered homeless may grow as shelters
reach capacity53. In the model, these connections get rewired each month, since the
average duration of time spent in a single shelter is ~1 month93. Contacts among
homeless individuals are not reduced by social distancing policies. As a result,
during the time evictions take place, the individual-level R0 for the homeless is
~1.5-fold the pre-lockdown R0 for the general population, similar to Lewer et al57.

Evictions begin in our simulations on September 1, 2020, and continue at the
first of each month at a rate which we vary within ranges informed by historical
rates of monthly evictions in metropolitan areas and projected increases (0%, .25%,
.5%, 1%, or 2%) (see the justification of this range in Supplementary Note). Note
that the denominator in our eviction rate is the total number of households, not the
number of rental units. We assume a backlog of 4 months of households are evicted
immediately when evictions resume, corresponding to the months during which
most local or state eviction moratoria were in place (May through August 2020).

Extension of the model to incorporate heterogeneity in eviction and contact
rates. To capture heterogeneities in cities we divide the simulated city (population
size 1 million) into two equal-sized interconnected subpopulations—one consisting
of high socioeconomic status (SES) households, and the other with low SES
households. Connections between households (external contacts) could occur both
within the same neighborhood and between the different neighborhoods. We
considered two types of mixing for external connections—homogeneous mixing
where 50% of external connections are within one’s neighborhood and hetero-
geneous mixing where 75% of external connections are within one’s neighborhood
creating a more clustered population. Households in the low SES subpopulation
experience all of the evictions in the city, and these evicted households are doubled-
up with households from the same subpopulation. To capture the higher burden of
infection with COVID-19 consistently observed in poorer sections of cities32–38,
during intervention we down-weighted external contacts among the low SES
subpopulation less than in the high SES subpopulation (Supplementary Table 1).

Application to the city of Philadelphia, Pennsylvania, USA. To estimate the
impact of evictions in the specific context of Philadelphia, PA, we first developed a
method to divide the city up into a minimal but data-driven set of subpopulations,
and then encode this into the model (as described above), taking into account the
different rate of evictions and of adoption of social distancing measures across
these subpopulations.

To create the subpopulations and capture key aspects of heterogeneity in the
city, we first extracted 20 socio-economic and demographic indicators for each zip

code of the city from the 2019 US Census and ran an unsupervised principal
component analysis48 to cluster the zip codes based on similarities. The analysis
resulted in three typologies: Cluster 1, a higher income rental neighborhood,
Cluster 2, a moderate-income and working-class owner neighborhood, and Cluster
3, a low-income rental neighborhood (Supplementary Tables 1, 2). Using zip code-
level eviction rates for 2016 sourced from Eviction Lab30, we estimated 0.7% of
households in Cluster 1, 0.12% of those in Cluster 2, and 0.21% of those in Cluster
3 faced eviction each month at baseline. We consider scenarios where these rates
are increased 2, 5, and 10-fold during the pandemic.

We used mobility data provided by Cuebiq to estimate the degree of contact
between residents of the different clusters and how it varied throughout the
epidemic. Cuebiq uses data from mobile phone users who have opted-in to share
location information with certain applications, and we defined contacts using co-
location events where two individuals were in the same 8-character geohash for 15-
mins or more. All data were anonymous and corrected for the degree of population
sampling (see Supplementary Note for details). The percent of all within-
Philadelphia contacts that occur with residents of a particular cluster is
shown in Supplementary Table 5. Between ~50–75% of contacts were with
individuals living in the same cluster, whereas ~15–35% occurred in any other
specific cluster.

We then calibrated our model to match the best available information regarding
the epidemic trajectory for Philadelphia. The goal was to create a trajectory that
captured the size of the epidemic peak (measured by daily death counts), the
growth rate of decline of cases during each major phase of the epidemic (early
phase, post-lockdown, post-relaxation, fall comeback), and the observed
seroprevalence at different timepoints35,36,49,50. The reduction in mobility over
time, measured as the percent reduction in contacts between residents of a pair of
clusters averaged over 1 month, was used to determine the reduction in external
contacts during each epidemic phase. To do this, in simulations we imposed a
strong lockdown (overall 90% reduction in contacts) on March 23, 2020, when the
cumulative prevalence of infected individuals was approximately 3% of the total
population. This intervention was relaxed on June 15, allowing cases and deaths to
plateau over the summer (overall 77% reduction in contacts). We further relaxed
measures (overall 66% reduction in contacts) on Oct 1 2020 to create a fall
comeback. Since no changes in mobility were observed during this time despite
large increases in cases observed during this time period, we hypothesized that
other biological or behavioral factors not represented in mobility data must be
responsible for this comeback, and implemented it in the model as a 15% increase
in βEX. During each phase, each of the three clusters obtained via the typology
analysis had different strengths of social distancing measures in their interactions
with each other cluster (Supplementary Table 6).

Data on the fate of evicted households is extremely rare, and we do not know
how likely evicted individuals would be to double-up with a household within their
cluster or in another cluster. To estimate this, we created a cohort of individuals
from the Cuebiq data whose inferred home location had changed between Feb 2020
and Oct 2020. Supplementary Fig. 17 reports the frequency of moves to and from
each cluster. This data suggests that the vast majority of relocations were to other
houses within the same cluster. Assuming that movement patterns following
eviction would be similar, in the model we assumed that evicted individuals always
double-up with another household in the same cluster.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All COVID-19 case and death data used in this study were downloaded from the
publically-available New York Times repository in Github: https://github.com/nytimes/
covid-19-data. Data on the distribution of US household sizes and on socio-demographic
indicators of zipcodes in Philadelphia was obtained from the 2019 United States Census:
https://www.census.gov/data/tables/2019/demo/families/cps-2019.html. Mobility data
used in this study are available from Cuebiq through their Data for Good program
(https://www.cuebiq.com/about/data-for-good/). Restrictions apply to the availability of
this data, which was used under license for this study, and so are not publically available.
All data aggregated at the level of zip-code clusters that were used in the models are
presented in the Supplementary Tables. More detailed data is available from the authors
upon reasonable request and permission from Cuebiq, and any researchers interested in
working with the data can apply for an independent license from Cuebiq. Aggregated
mobility metrics at the national, state and CBSA level are publically available at
https://covid19.gleamproject.org/mobility.

Code availability
All our simulation code is available in a Github repository80: https://github.com/alsnhll/
COVID19EvictionSimulations. The repository also contains code for downloading and
processing COVID-19 case and death data from the New York Times repository.
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