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The generation and use of recombinant
extracellular vesicles as biological reference
material
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Hannelore Denys2,4, Sven Eyckerman2,6,7, Olivier De Wever1,2 & An Hendrix 1,2

Recent years have seen an increase of extracellular vesicle (EV) research geared towards

biological understanding, diagnostics and therapy. However, EV data interpretation remains

challenging owing to complexity of biofluids and technical variation introduced during sample

preparation and analysis. To understand and mitigate these limitations, we generated

trackable recombinant EV (rEV) as a biological reference material. Employing complementary

characterization methods, we demonstrate that rEV are stable and bear physical and bio-

chemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluor-

escence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV

in biofluids allows recovery efficiencies of commonly implemented EV separation methods to

be identified, intra-method and inter-user variability induced by sample handling to be

defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV

will aid EV-based sample preparation and analysis, data normalization, method development

and instrument calibration in various research and biomedical applications.
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B iofluids contain extracellular vesicles (EV) that differ in
their biogenesis, molecular patterns and cellular origin1. EV
are involved in the pathogenesis of multiple diseases

including cancer, neurodegenerative- and autoimmune- diseases,
which has made EV an intensive field of research, especially for
disease diagnosis, monitoring and treatment2,3. However, EV
research and its biomedical applications are hampered by the
myriad of separation methods and measurement instruments and
the lack of appropriate reference materials for accurate calibra-
tion, normalization and method development4–6. A reference
material suitable for all those purposes should (1) have EV-like
physical and biochemical characteristics, hence should be from
biological origin; (2) be trackable and thus be distinguishable
from sample EV and (3) behave similarly as sample EV under
various experimental conditions7. Current reference materials for
calibration are polystyrene beads, silica beads or liposomes, which
lack EV-like properties such as surface markers and a mean
refractive index (RI) of ~1.39, resulting in inaccurate measure-
ments7–9. Biological reference materials derived from biofluids or
cell cultures are commercially available but they lack specificity,
rendering them less suitable for quality control applications.
Reference materials for normalization and method assessment are
not available. Recent approaches have tried to improve the EV-
like properties of existing reference materials making them more
suitable for restricted flow cytometry-based use10–12.

To meet the need for appropriate reference materials, we have
generated recombinant EV (rEV) as a trackable biological refer-
ence material resembling the physical and biochemical char-
acteristics of sample EV. rEV find their origin in the major
structural component of HIV-1 virus particles, the gag poly-
protein. HIV-1 gag hijacks the ESCRT (endosomal sorting
complex required for transport) pathway, responsible for the
release of EV, and inserts itself in membrane areas with similar
lipid/protein characteristics as EV budding areas13,14. Expression
of the polyprotein gag alone suffices for the production of
nanometer-sized immature virus like particles (VLP) surrounded
by a lipid bilayer and enriched for gag molecules and EV-
associated proteins14,15. The suitability of HIV-1 VLP as a
reference material for EV research has not been previously con-
sidered or tested. Here we define the physical and biochemical
characteristics, trackability, stability and commutability of rEV,
identify and test suitable read-out methods, provide tools to
segregate rEV from sample EV for further downstream approa-
ches and demonstrate the usability of rEV in various applications.

Results
rEV bear EV-like physical and biochemical traits. rEV were
produced in a well-characterized HEK293T cell culture model16 by
transient transfection with retroviral gag polyprotein C-terminally
fused to EGFP (enhanced green fluorescent protein)17. rEV were
separated from the conditioned medium (CM) 72 h after trans-
fection of approximately 3 × 109 HEK293T cells by OptiPrep
density gradient (ODG) centrifugation and consecutive pelleting
resulting in ~5 × 1011 rEV (Fig. 1a–c). Western blot and flow
cytometry analysis for gag-EGFP protein expression and viability
assays of HEK293T cells revealed that the transfections were
reproducible and non-toxic (supplementary fig. 1a-e). Transfection
with gag-EGFP resulted in a 4.5-fold increase in EV secreted per
cell compared to mock transfection (supplementary fig. 1f).

We evaluated at least three biological replicates of rEV
(indicated by n in the figure legends) for their physical and
biochemical characteristics that are principal to EV analysis and
compared them to sample EV derived from various sources. The
implementation of ODG centrifugation to separate rEV from
medium conditioned by gag-EGFP transfected HEK293T cells

and to separate sample EV from urine, plasma and medium
conditioned by breast cancer cells (MCF7 and 4T1) and cancer-
associated fibroblasts (CAF) revealed that the buoyant density of
rEV was equivalent to the buoyant density of sample EV, namely
1.086–1.119 g/mL (supplementary fig. 2). rEV and sample EV
from urine, plasma or medium conditioned by MCF7, 4T1, CAF
and mock transfected HEK293T cells did not significantly differ
on the 0.01 significance level in size distribution (108.6 ± 9.5 nm)
(p > 0.0361, Mann–Whitney test) and zeta potential (−32.3 ± 1.6
mV) (p > 0.0357, Mann–Whitney test) (Fig. 2a, b). The RI of rEV,
calculated by Mie theory, was ~1.37, corresponding to the RI of
sample EV from various sources (Fig. 2c) (supplementary fig. 3a).
Transmission electron microscopy (TEM) revealed that rEV have
a cup-like morphology characteristic of sample EV (Fig. 2d).

As sample EV, rEV contain luminal and membrane-associated
proteins including ALIX, tumour susceptibility gene 101
(TSG101), flotillin-1, syntenin-1, CD81 and CD9 as assessed by
western blot analysis and mass spectrometry-based proteomics;
tetraspanin CD63 was identified by immune-electron microscopy
(Fig. 2e, f) (supplementary fig. 4). Volcano plot analysis and
differential protein analysis of mass spectrometry-based proteome
data further indicated that 792 out of a total of 890 proteins (89%)
were equally abundant in rEV and mock EV separated by ODG
centrifugation from medium conditioned by mock transfected
HEK293T cells (Spearman r= 0.7712, p < 0.0001), including
ESCRT and other EV-associated proteins (supplementary
fig. 4a-d). In addition, unsupervised hierarchical clustering
confirmed the technical and biological reproducibility of rEV
production (supplementary fig. 4c). Mass spectrometry-based
lipidomics identified common EV-associated lipid classes
(including phospholipids, sphingomyelins and lysophospholi-
pids) with a positive correlation between rEV and mock EV
(Spearman r= 0.921, p < 0.0001) (supplementary fig. 5a). The
cholesterol concentration per rEV particle did not significantly
differ on the 0.01 significance level compared to cholesterol
concentrations of sample EV from various sources (p > 0.0256,
Mann–Whitney test) (supplementary fig. 5b).

Fluorescence-, RNA- and protein-based detection of rEV. We
evaluated fluorescence-, RNA- and protein-based technologies
available in routine laboratories for their suitability to quantify
rEV and distinguish rEV from sample EV by exploiting features
unique to rEV: fluorescence intensity, gag-EGFP protein and
EGFP mRNA. We analysed at least three biological replicates of
rEV (as indicated by n in the figure legends).

Fluorescence intensity was sufficient to quantify and distin-
guish rEV from non-fluorescent particles by fluorescent nano-
particle tracking analysis (fNTA) and fluorescence triggered high-
resolution flow cytometry (HR-FC) (Fig. 3a–e). fNTA and HR-FC
measured equivalent relative rEV concentrations (Fig. 3e). To
establish linear or semi-logarithmic regression curves for
fluorescent microplate reader, western blot, ELISA and
RT-qPCR analysis, rEV were quantified by fNTA. Based on
fluorescence, a microplate reader allowed to linearly deduce rEV
numbers in a defined concentration range of 5 × 108–1 × 1010

rEV (Fig. 3f). At the protein level, an ELISA assay for p24, a
subunit of the gag polyprotein, showed a linear correlation in a
defined concentration range of 1 × 106–1 × 107 rEV. Western blot
analysis for gag-EGFP protein allowed to visualize rEV with a
lower detection limit of 7 × 107 rEV, while densitometry analysis
of the gag-EGFP protein bands revealed a linear correlation in a
defined concentration range of 4 × 108–1 × 109 rEV (Fig. 3g–i). At
the RNA level, rEV and EGFP mRNA concentrations behaved in
a semi-logarithmic manner as measured with RT-qPCR and this
in a range from 1 × 107 to 1 × 109 rEV (Fig. 3j).
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Of note, the implementation of ODG centrifugation, a density
equilibrium based gradient, to separate rEV from medium
conditioned by gag-EGFP transfected HEK293T cells resulted
on average in 79.7% (±9.5%) fluorescent particles (Fig. 3b),
indicating that gag-EGFP negative EV co-sediment with rEV.
OptiPrep velocity gradient (OVG) centrifugation18 physically
segregated rEV from gag-EGFP negative EV and resulted in near
100% fluorescent particles (supplementary fig. 6a–d). Western
blot analysis for gag-EGFP protein and EV-associated proteins
ALIX, flotillin-1, TSG101, syntenin-1, CD81 and CD9 revealed
that gag-EFGP negative EV segregate in low density fractions
(1.046–1.068 g/mL, corresponding to OVG fractions 4–7) whereas
rEV segregate in high density fractions (1.076–1.088 g/mL,
corresponding to OVG fractions 10–13) (supplementary fig. 6a,
b). rEV obtained by OVG centrifugation contained EV-associated
proteins, EV-like size distribution and had a typical EV
morphology as analyzed by, respectively, western blot, (f)NTA
and TEM (supplementary fig. 6b–e). Mass spectrometry-based
proteome data indicated that gag-EGFP negative EV segregated
from rEV share 81% of the total number of detected proteins,
further indicating the high similarity in protein composition of

rEV and sample EV (supplementary fig. 6j). In agreement, rEV
separated by OVG centrifugation were detectable with fluores-
cence-, protein- and RNA-based assays (Supplementary
figure 6f–h). Spiking of rEV obtained by OVG centrifugation in
PBS followed by equilibrium based ODG centrifugation,
identified rEV at equivalent density (1.086–1.119 g/mL) as sample
EV (supplementary fig. 6i).

rEV are structurally and biologically stable during storage. We
assessed the structural and biological stability of rEV under dif-
ferent storage temperatures for extended periods of time in at
least three biological replicates (indicated by n in the figure
legend). Freezing at −80 °C (for 6 months and 12 months) and
thawing of rEV (supplementary fig. 7a, b), as well as storage of
rEV at 4 °C up to 7 days (supplementary fig. 7c, d) did not affect
their density, fluorescence intensity, number and size distribution,
as evaluated by ODG centrifugation and fNTA (supplementary
fig. 7e). Immunoprecipitation with an antibody recognizing the
extravesicular loop of the tetraspanin CD81 was unaffected fol-
lowing a freeze-thaw cycle demonstrating the correct orientation

EV-associated proteins:
ALIX, TSG101, flotillin-1,
syntenin-1
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EGFP mRNA

CD81
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Fig. 1 rEV are separated from conditioned medium using density gradient centrifugation. a Schematic representation of rEV showing representative
molecular components shared with sample EV, PA phosphatidic acid, PC phosphatidylcholine, PE phosphatidylethanolamine, PI phosphatidylinositol, PS
phosphatidylserine, SM sphingomyelin. b Schematic overview of the production of rEV at the cellular level: (1) The gag-EGFP fusion protein inserts in
regions of the plasma membrane enriched for tetraspanins CD9, CD63 and CD81 via its N-terminal MA domain containing a myristoyl group. (2) The gag-
EGFP fusion protein oligomerizes and recruits ESCRT-1 proteins (TSG101) via the PTAP motive on its p6 domain. (3) Recruitment of ESCRT-2/3 proteins
initiates the outward budding of the gag-EGFP containing plasma membrane. (4) ESCRT-3 mediated scission of the membranes finally causes release of
rEV into the conditioned medium (CM)13. c Schematic overview of the workflow to separate rEV from CM of gag-EGFP transfected HEK293T cells.
Seventy-two hour post transfection CM is collected from ~3 x 109 cells and concentrated to 1 mL. Concentrated CM is loaded on top of an OptiPrep density
gradient (ODG) and centrifuged for 18 h at 100,000 × g. Density fractions of 1.086–1.119 g/mL are collected and pelleted for 3 h at 100,000 × g resulting in
~5 x 1011 rEV per harvest
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of the rEV membrane (supplementary fig. 7f). Also, lyophilization
of rEV in PBS supplemented with 5% trehalose did not affect
their morphology, fluorescence intensity, number, size distribu-
tion and density as assessed by TEM, HR-FC, fNTA and ODG
centrifugation (supplementary fig. 8). Trehalose (5%) was needed
and sufficient since absence of this sugar resulted in reduced rEV
numbers, increased size and membrane disruption as assessed by
fNTA and TEM (supplementary fig. 9).

rEV define recovery efficiencies of EV separation methods. To
assess whether rEV are fit to test the performance of separation
methods, 5 × 1010 rEV were spiked in PBS, non-cell exposed
culture medium (DMEM), plasma and urine followed by size-,
immune affinity- and density-based separation of rEV from
corresponding biofluids.

Western blot analysis for gag-EGFP protein and EV-associated
proteins flotillin-1 and TSG101 revealed that rEV elute in
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(supplementary fig. 3a), d morphology as imaged by transmission electron microscopy (TEM) and the presence of EV-associated proteins ALIX, TSG101,
flotillin-1, syntenin-1, CD81, CD9 and CD63 analysed by e western blot analysis (30 μg protein loaded on gel) and f immune-electron microscopy with a
secondary gold labelled antibody against a primary antibody targeting the extracellular loop of the tetraspanin CD63. Images are representative of three
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identical 1 mL elution volume fractions (4, 5 and 6) as sample EV
upon size exclusion chromatography (SEC) (Fig. 4a). Similar to
sample EV from urine and plasma, western blot analysis for gag-
EGFP protein and EV-associated proteins syntenin-1 and ALIX
revealed that rEV co-precipitate with antibodies directed against
the large extravesicular loop of CD81 or CD63 (Fig. 4b). rEV
spiked in urine or culture medium floated at equivalent density
(1.086–1.119 g/mL) as sample EV when separated by ODG
centrifugation (Fig. 4c) (supplementary fig. 2). Thus, for all these
separation methods, rEV are commutable, i.e. behave similar as
sample EV when spiked in these biofluids.

Of note, rEV spiked in plasma shifted to higher densities
compared to sample EV (1.141–1.215 g/mL vs 1.086–1.119 g/mL)

as shown by fNTA and western blot analysis for gag-EGFP
protein (supplementary fig. 10a, b). This shift was reversible,
as proteinase K (PK) treatment of the concentrated SEC elution
volume fractions (4, 5 and 6) prior to ODG centrifugation
reversed the density shift (Fig. 4c) (supplementary fig. 10b, c).
Similar results were obtained with rEV separated by OVG
centrifugation from medium conditioned by gag-EGFP trans-
fected HEK293T cells (supplementary fig. 6i). PK treatment had
no effect on fluorescence intensity and integrity of rEV nor on the
number and quality of sample EV as evidenced by the presence of
luminal-membrane-associated proteins syntenin-1 and flotillin-1
in PK treated plasma samples, and (f)NTA measurements
(supplementary fig. 10b–e). This shift was inducible, as addition
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of physiological amounts of IgM (100 µg) or IgG (5 mg) induced
the density shift of rEV spiked in PBS and urine (supplementary
fig. 10f).

Although this density shift is a unique feature to segregate rEV
from sample EV, it is only applicable using density-based
separation methods in plasma or IgG/IgM supplemented
biofluids. To enable rEV segregation from sample EV in any
biofluid using any separation method, we modified rEV by post-
insertion PEGylation to avoid protein corona formation (Fig. 4d).
Surface masking of rEV by DMPE-PEG (1,2-dimyristoyl-sn-
glycero-3-phosphoethanolamine conjugated to polyethylenegly-
col) increased the mean size distribution by 10 nm (p= 0.0061,
Mann–Whitney test) but did not alter fluorescence intensity,
prevented the interaction with corona proteins and provided the
unique opportunity for proteinase-independent segregation of
spiked rEV from sample EV. More than 85% of rEV-PEG spiked

in plasma floated at similar densities as sample EV (1.086–1.119
g/mL) (Fig. 4e, f). Additionally, immune precipitation using anti-
PEG-coated magnetic beads specifically captured rEV-PEG and
not rEV (Fig. 4g).

rEV mitigate for intra-method and inter-user variability. The
efficiency of EV recovery, defined as the number of rEV detected
after separation divided by the number of rEV spiked (5 × 1010)
(expressed as a percentage), of frequently used separation methods
was calculated by rEV quantification with fNTA and anti-p24
ELISA. Efficiencies of SEC19, ODG centrifugation20 and differential
ultracentrifugation (dUC)21 to separate rEV from plasma were,
respectively, nearly 100, 30 and 10%. Recovery efficiency of rEV
from ODG density fractions 1.086–1.119 g/mL by a 100,000 × g
pelleting step instead of SEC was reduced from 30% to only 5%
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(Fig. 5a, b). The number of rEV spiked (1 × 108–1 × 1011) did not
impact recovery calculations (supplementary fig. 11). In addition,
recovery calculations were independent of the use of rEV or rEV-
PEG (Fig. 5c). After separation of rEV-PEG and sample EV from
plasma by SEC and ODG centrifugation, the use of anti-PEG
antibody-coated magnetic beads allowed for a complete segregation
of rEV-PEG from sample EV (Fig. 5d).

The coefficient of variation (CV), a measure for method
repeatability defined by the SD divided by the mean (expressed as
a percentage), is a pertinent statistic for accurate data interpreta-
tion of EV separation and quantification methods. In general,
intra-method CV should be less than 10%. Using rEV, the intra-
method CV for the EV separation methods SEC, ODG
centrifugation and dUC could be calculated and were, respec-
tively, 5.7%, 9.2% and 18.0% as measured by fNTA (n= 3)
(Fig. 5a). The intra-method CV for rEV quantification methods
fNTA, RT-qPCR and anti-p24 ELISA were, respectively, 5.8%,
0.8% and 5.7% (Fig. 3c, g, j). To demonstrate the applicability of
rEV to define and mitigate for inter-user variations, 1 × 1010 rEV
were spiked in plasma and separated by ODG centrifugation (n
= 6). Inter-user variation was induced by replacing defined
sample volumes with PBS (see material and methods). The total

number of sample EV and rEV were quantified by NTA and
fNTA, respectively. The inter-user variation, expressed as CV,
showed a 66% reduction (from 17.5% to 5.9%) due to normal-
ization for rEV recovery efficiencies (Fig. 5e) (supplementary
table 1).

rEV accurately enumerate EV in patient samples. Sample EV
and spiked rEV (2 × 1010) were separated by ODG centrifugation
from 2mL of plasma of breast cancer patients (n= 26) and sex-
matched healthy volunteers (n= 11), and were measured by NTA
and fNTA, respectively. The average, normalized sample EV
concentration per mL plasma was increased by 2.5 fold (1.46 ×
1011 vs 5.83 × 1010) (p= 0.0002, Mann–Whitney test) in breast
cancer patients compared to healthy individuals. In contrast,
absolute counts did not reveal a significant difference (3.91 × 1010

vs 2.47 × 1010) (p= 0.1410, Mann–Whitney test). Normalization
was independent from the rEV quantification method used since
implementation of a p24 ELISA to quantify rEV provided
equivalent results in breast cancer patients compared to healthy
individuals (1.59 × 1011 vs 7.55 × 1010) (p= 0.0009, Mann–
Whitney test) (Fig. 5f) (supplementary table 2).
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Discussion
The need for a biological reference material for EV research and
biomedical applications is increasingly recognized5,9,22. To meet
this need, we have developed rEV, a gag polyprotein-induced
mimic of EV. rEV were generated by reproducible transfection of
HEK293T cells with gag-EGFP DNA followed by high-purity rEV
separation from CM using density gradient centrifugation23. rEV
are safe, since the viral genome, proteases and other viral pro-
teins, which render viruses infectious are not present24. rEV show
biochemical and physical traits characteristic of sample
EV14,15,25–27: (1) equivalent lipid and protein profiles including
the presence of intraluminal and membrane EV-associated pro-
teins; and (2) equivalent cup-shaped morphology, size (50–180
nm), buoyant density (1.086–1.119 g/mL), RI (1.37) and zeta
potential (−32 mV). rEV are stable during lyophilization and
long-term storage, ensuring convenient distribution and use.
They contain exogenous mRNA and protein allowing quantifi-
cation with multiple measurement instruments while ensuring
adequate differentiation from sample EV. rEV are the first bio-
logical reference material for EV compatible with a plethora of
applications including quality control, instrument calibration and
data normalization (Fig. 5g).

Mass spectrometry-based proteomics revealed that rEV contain
intraluminal and membrane proteins characteristic of sample EV
including ALIX, TSG101, flotillin-1, syntenin-1, CD9, CD81 and
CD63. In depth analysis for molecular function and biological
processes revealed that rEV are enriched in proteins regulating
RNA binding and nucleic acid metabolism (supplementary
fig. 4e). Gag polyprotein contains zinc-finger RNA binding
domains and to form VLP, gag polyprotein must bind RNA28,29.
In the absence of viral RNA, gag encapsulates host RNA and any
single-stranded nucleic acid longer than ∼20–30 nt can support
VLP assembly, indicating a general propensity to bind abundant
RNA30,31. Indeed, exogenous EGFP mRNA is encapsulated in
rEV and allows for a reproducible quantification of rEV using
EGFP or gag RT-qPCR assays. Fusion of EGFP to gag polyprotein
results in the delivery of exogenous gag-EGFP protein to rEV
allowing for a reproducible quantification of rEV using
fluorescence-based fNTA, HR-FC and plate reader or protein-
based p24 ELISA assays. Inherently, the number of spiked rEV
appropriate for data normalization depends on the recovery
efficiency of the separation method and the sensitivity of the rEV
detection method. One or more of these detection methods are
available in any routine laboratory allowing for a broad imple-
mentation of rEV. Thus, rEV can be differentiated from sample
EV, including sample EV derived from body fluids of HIV
patients, due to the presence of exogenous EGFP mRNA and gag-
EGFP protein. rEV are highly adaptable and can be used to
deliver RNA and proteins as part of gag or not, alike EGFP
mRNA and protein, opening perspectives for custom-made rEV
for multiple diagnostic and therapeutic applications32.

The separation of rEV by ODG centrifugation from medium
conditioned by gag-EGFP transfected HEK293T cells resulted in
~80% fluorescent particles, implying that not all particles contain
gag-EGFP protein. Indeed, separation of rEV by OVG cen-
trifugation resulted in ~100% fluorescent particles, indicating that
EV generated by endogenous biogenesis of HEK293T cells are
segregated from rEV. In comparison, other proposed fluorescent
reference EV such as EV containing a membrane-associated form
of GFP (palm-GFP)33 or lipophilic fluorophore stained EV
(Hansabiomed Life Sciences) delivered less than 13% fluorescent
particles as measured by fNTA (supplementary fig. 12). Also, only
16% of EV containing tetraspanin-EGFP fusion proteins, recently
proposed and validated as biological reference material for
restricted use in flow cytometry platforms, were detectable by
fNTA analysis12.

rEV have a RI, a physical property determining the amount of
light that is scattered by a certain material, equivalent to sample
EV, indicating that rEV can be used as a calibrator for measure-
ment instruments. To compare or reproduce EV research, exact
enumeration of EV particles rather than indirect quantification via
protein concentration measurements is recommended5. Flow
cytometry and NTA are frequently used to quantify individual
particles. Synthetic silica or polystyrene beads with a RI of
respectively 1.45 and 1.61 are commonly used to calibrate these
instruments. Since the RI determines the minimal size of particles
detected with NTA and determines the relationship between scatter
and size in flow cytometry, the average size and concentration of
sample EV detected by these methods is underestimated7,8. Recent
advances in the field of metrology have possibly bypassed this
problem with the standardized production of hollow organosilica
beads (HOB)10. Although HOB have an equivalent RI to sample
EV, in contrast to rEV they do not contain EV-enriched surface
markers, limiting their applicability to light scattering.

To be fit for their intended use, rEV must be commutable,
meaning that they must perform equally to sample EV under-
going the actual procedure34,35. We have demonstrated that rEV,
modified or not by post-insertion PEGylation, act as sample EV
when spiked in multiple biofluids. This allowed us to estimate the
recovery efficiency of sample EV from plasma using commonly
implemented separation methods including dUC, SEC and ODG
centrifugation4. The recovery efficiency of dUC varied between 5
and 10%. This finding, together with previous reports showing
that dUC co-pellets contaminants and disrupts sample EV23,36

further advices against the use of dUC to retrieve EV from
plasma. SEC recovered rEV with 100% efficiency but, as pre-
viously reported, is unable to appropriately resolve sample EV
from low density lipoproteins, chylomicrons and protein
aggregates20,37,38. The use of ODG centrifugation to separate rEV
from plasma resulted in 30% recovery efficiency. Nevertheless, the
orthogonal implementation of size and density-based separation
of sample EV has been reported to separate EV with very high
specificity20,37. These examples illustrate that rEV can assist in
identifying the performance of EV separation methods. In addi-
tion, in a clinical set-up rEV mitigated for intra-assay (manually
prepared SEC columns, products from different batches) and
inter-user (different time points, different sample handling)
variability while separating EV from plasma samples of healthy
donors and cancer patients resulting in increased sensitivity in EV
enumerations. Indeed, recovery efficiencies of rEV varied between
time points and donors (supplementary table 2).

After separation and recovery efficiency calculation, post-
insertion PEGylation of rEV allows for segregation of rEV-PEG
from sample EV using anti-PEG antibodies. As such, rEV-PEG
allows for normalization during separation but after segregation,
they will not interfere with downstream analysis of sample EV
composition (proteomics, lipidomics, transcriptomics and meta-
bolomics) and function. rEV-PEG are compatible with EV
separation methods that do not require immune capture by tar-
geting EV surface proteins since antibody binding is sterically
hindered by PEG.

Interlaboratory evaluation and benchmarking of rEV to assess
the applicability for data normalization, instrument calibration
and quality control will be of great importance to stimulate their
wide-spread use. Whether rEV, with a size distribution between
50 and 180 nm, are appropriate as biological reference material
for large EV (>200 nm) remains to be investigated and is likely
dependent upon the separation and measurement method of
choice (use of size and large EV-specific protein versus other
isolation or characterization methods).

In conclusion, we propose rEV as a biological reference
material to be implemented in EV separation methods and
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measurement instruments. rEV have equivalent buoyant density,
size distribution, morphology, RI, zeta potential and molecular
patterns (proteins and lipids) to sample EV. The gag-EGFP fusion
protein enables sensitive and differential trackability of rEV. As
such rEV are tailor-made for quality control, data normalization,
method development and accurate calibration of optical and non-
optical EV measurement methods (Fig. 5g). The use of rEV will
ensure rigorous sample EV analysis and is essential to advance
the field and develop future EV-based biomedical applications.

Methods
Antibodies. The following primary and secondary antibodies were used for
immunostaining: mouse monoclonal anti-ALIX (1:1000, #2171)and rabbit mono-
clonal anti-CD9 clone D3H4P (1:1000, #13403S) (Cell Signaling Technology,
Danvers, MA, USA), mouse monoclonal anti-CD63 clone MEM-259 (1:200,
#ab8219) and rabbit monoclonal anti-syntenin-1 (1:1000, #ab133267) Abcam,
Cambridge, UK), mouse monoclonal anti-CD81 (1:1000, #SC-166029) and mouse
monoclonal anti-TSG101 (1:100, #SC-7964) (Santa Cruz Biotechnology, Dallas,
TX, USA), mouse monoclonal anti-flotillin-1 (1:1000, #610820) and rat anti-mouse
CD9 (1:1000, #553758) (BD Biosciences, Franklin Lakes, NJ, USA), mouse
monoclonal anti-green fluorescent protein (GFP) (1:1000, #MAB3580) (Merck
Millipore, Billerica, MA, USA), mouse monoclonal anti-α-tubulin (1:4000) (T5168,
Sigma, Diegem, Belgium), sheep anti-mouse horseradish peroxidase-linked anti-
body (1:3000, #NA931V) and donkey anti-rabbit horseradish peroxidase-linked
antibody (1:4000, #NA934V) (GE Healthcare Life Sciences, Uppsala, Sweden).
Immune-electron microscopy was performed with a primary mouse monoclonal
anti-CD63 antibody (1:50) (clone H5C6) (557305, BD Biosciences, Franklin Lakes,
NJ, USA) and a rabbit anti-mouse IgG (1:2000) (Zymed Laboratories, San Fran-
cisco, CA, USA) to which 10 nm Gold-conjugated Protein A was added (1:70) (Cell
Microscopy Core, University Medical Center Utrecht, The Netherlands). Anti-
bodies used for immunoprecipitation were mouse monoclonal anti-CD81 antibody
(MA5-13548, Thermo Fischer scientific, Erembodegem, Belgium), mouse mono-
clonal anti-CD63 (556019, BD Biosciences, Franklin Lakes, NJ, USA) and rabbit
polyclonal anti-PEG (ab190652, Abcam, Cambridge, UK).

Cell culture and transfection. Human HEK293T16 and MCF7 cells, mouse
4T1 cells (ATCC, Manassas, VA, USA) and human cancer-associated fibroblasts39

were cultured in a humidified atmosphere at 10% (4T1 at 5%) CO2 using high
glucose DMEM (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (Greiner Bio One, Kremsmünster, Austria), 100 U/mL penicillin and
100 µg/mL streptomycin (Life Technologies, Carlsbad, CA, USA). Cells were pas-
saged at 70–80% confluency in T175 flasks (Greiner Bio One, Kremsmünster,
Austria) and were discarded after 10 passages. Cell cultures were regularly tested
and confirmed negative for mycoplasma contamination using the MycoAlert
Mycoplasma Detection Kit (Lonza, Verviers, Belgium).

pMET7-gag-EGFP and empty pMET7mcs (mock) plasmids, were purified from
DH10B E. coli using the PC2000 nucleobond kit (Macherey-Nagel, Düren,
Germany) following the manufacturer’s procedures17. The same gag-EGFP plasmid
can be purchased at addgene (# 80605). The pMET7mcs plasmid was obtained by
insertion of a multicloning site (GAATTCTAATACGACTCACTATAGGGAGTC
GACTCAGATCTTCGATATCTCGGTAACCTCACCGGTTCCTCGAGTCTCTA
GA) in the EcoRI-XbaI site of the pME18S-FL3-3 vector (Genbank:AB009864.2).
To produce rEV, HEK293T cells were seeded in Falcon cell culture Multi-Flasks
(Corning, New York, USA) and transiently transfected at 70–80% confluency using
25 kDa linear polyethyleneimine (PEI) (Polysciences, Warrington, PA, USA) in a
PEI:DNA ratio of 5:1 with a final concentration of 1 µg DNA/mL culture medium
in a total volume of 120 mL per Multi-Flask.

rEV separation from cell culture medium. 48 hours following transfection, cells
were washed three times using Opti-MEM (31985070, Thermo Fischer Scientific,
Erembodegem, Belgium) followed by 24 h incubation with 75 mL Opti-MEM
supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin (Life Tech-
nologies, Carlsbad, CA, USA) at 37 °C and 10% CO2. Conditioned medium (CM)
was harvested and centrifuged for 10 min at 200 × g and 4 °C to remove detached
cells, followed by a 0.45 µm cellulose acetate filtration (Corning, New York, USA)
to remove larger particles. Next, CM was concentrated ~300 times using a Cen-
tricon Plus-70 centrifugal filter device with a 10 kDa nominal molecular weight
limit (Millipore, Burlington, MA, USA). The resulting concentrated CM (CCM)
was filtered through a 0.2 µm cellulose acetate filter (GE Healthcare Life Sciences,
Uppsala, Sweden) and 1 mL was used for OptiPrep density gradient (ODG)
ultracentrifugation. Following collection of the medium, cell cultures were trypsi-
nized and cell viability was measured on a Countess Automatic Cell Counter
(Thermo Fischer Scientific, Erembodegem, Belgium) using a 0.1% trypan blue
exclusion test included in the kit.

A discontinuous ODG was made by layering 4mL of 40%, 4 mL of 20%, 4 mL of
10% and 3.5mL of 5% iodixanol solutions (Axis-Shield, Oslo, Norway) on top of
each other in a 16.8 mL open top polyallomer tube (337986, Beckman Coulter, Brea,

CA, USA)23. One millilitre CCM sample was overlaid on top of the gradient that was
then centrifuged for 18 h at 100,000 × g and 4 °C (SW 32.1 Ti rotor, Beckman
Coulter, Brea, CA, USA). All gradients were made using a biomek 4000 automated
workstation (Beckman Coulter, Brea, CA, USA). Solutions of 5, 10, 20 and 40%
iodixanol were made by mixing appropriate amounts of a homogenization buffer
(0.25M sucrose, 1 mM EDTA, 10mM Tris-HCL, [pH 7.4]) and a 50% iodixanol
working solution. This working solution was prepared by combining a working
solution buffer (0.25M sucrose, 6 mM EDTA, 60mM Tris-HCl, [pH 7.4]) and a
stock solution of OptiPrep (60% (w/v) aqueous iodixanol solution) (Axis-Shield,
Oslo, Norway). After centrifugation, gradient fractions of 1 mL were collected from
top to bottom using the biomek 4000 automated workstation, fractions 8, 9 and 10,
corresponding to a buoyant density of 1.086–1.119 g/mL, were collected, pooled and
diluted to 16mL in PBS and centrifuged for 3 h at 100,000 × g and 4 °C (SW 32.1 Ti
rotor, Beckman Coulter, Brea, CA, USA). The resulting pellet was resuspended in
100 µL PBS and stored as 10 µL aliquots at −80 °C after which they could be thawed
by holding the tube by hand and monitoring thawing. For proteomics and
lipidomics the last 100,000 × g pelleting step was replaced by size exclusion
chromatography (SEC) (see further)40. To estimate the density of each fraction a
standard curve was made of the absorbance values at 340 nm of 1:1 aqueous
dilutions of 5, 10, 20 and 40% iodixanol solutions. This standard curve was used to
determine the density of fractions collected from a control gradient overlaid with
1 mL of PBS.

EV separation from cell culture medium. For the isolation of EV from MCF7,
4T1 and cancer-associated fibroblast cells, the same procedure as for the isolation
of rEV was used except for the washing of the cells. These cell lines were washed
and incubated for 24 h with DMEM supplemented with 0.5% EV-depleted fetal
bovine serum (EVDS). EVDS was obtained through 18 h centrifugation of fetal
bovine serum at 100,000 × g and subsequent filtering through a 0.2 µm filter (GE
Healthcare Life Sciences, Uppsala, Sweden).

Sample collection. Collection of patient samples was according to ethical com-
mittee of Ghent University Hospital approval and in accordance to relevant
guidelines. Venous blood from sex-matched healthy volunteers and early breast
cancer patients was collected using Venosafe-citrate tubes (VF-054SBCS07, Ter-
umo Europe, Leuven, Belgium). Directly after collection, whole blood was cen-
trifuged two times for 15 min at 2500 × g at room temperature resulting in platelet-
depleted plasma (PDP), as was verified by a negative platelet count (0 × 104 plt/µL)
measured with an hemato analyzer. PDP was stored at −80 °C until further use.

Urine from healthy volunteers was collected and centrifuged for 10 min at
1000 × g and 4 °C followed by direct EV isolation.

Only if stated otherwise, all samples were obtained from healthy volunteers.

EV separation methods for plasma. Differential ultracentrifugation (dUC) was
performed according to Thery et al.21. In short, 6 mL plasma was diluted 1:1 in PBS
and centrifuged at 2000 × g for 30 min at 4 °C, the supernatant was then cen-
trifuged once at 12,000 × g for 45 min and 2 h at 110,000 × g at 4 °C in a SW32.1 Ti
rotor (Beckman Coulter, Brea, CA, USA). The resulting pellet was then diluted to
5 mL PBS, 0.22 µm filtered and centrifuged again at 110,000 × g for 70 min in a
SW55 Ti rotor (Beckman Coulter, Brea, CA, USA). The final pellet was resus-
pended in 100 µL PBS and analysed directly with fNTA (see further) or stored at
−80 °C for ELISA measurement.

Size exclusion chromatography (SEC) was performed in a 10 mL syringe (BD
Biosciences, Franklin Lakes, NJ, USA) with a nylon net with 20 µm pore size
(NY2002500, Merck Millipore, Billerica MA, USA) at the bottom. The syringe was
packed with 10 mL pre-washed Sepharose CL-2B (GE Healthcare, Uppsala,
Sweden) and 2 mL plasma was loaded on top, after which 1 mL fractions of eluate
were collected under constant gravitational flow by continuously adding PBS
containing 0.32% trisodiumcitrate dihydrate (ChemCruz, Dallas, Texas, USA). The
collected fractions were analysed directly with NTA or frozen at −80 °C for protein
analysis.

To further purify EV and/or rEV from plasma, following SEC, eluted fractions
4–5–6 were pooled and concentrated to 1 mL with Amicon Ultra-2mL centrifugal
filters with a 10 kDa cut-off value (UFC201024, Merck Milipore, Billerica MA,
USA) and placed on top of a discontinuous ODG and centrifuged as previously
described in the rEV isolation section. If indicated, an additional proteinase K (PK)
(P6556-100MG, Sigma, Diegem, Belgium) treatment was performed after
concentration and before density gradient centrifugation. This was done at a
PK concentration of 1 mg/mL for 60 min at 37 °C and was ended at 4 °C. The
concentration of 1 mg/mL was found optimal and reproducible after testing
multiple PK concentrations on rEV spiked plasma (supplementary figure 13a, b).
To isolate EV and rEV from the ODG fractions, a second SEC was included
following previously mentioned protocol, unless stated otherwise. From this second
SEC, eluted fractions 4-5-6-7 were pooled and analyzed with (f)NTA or ELISA.

EV isolation from urine. 50 mL of urine is centrifuged for 10 min at 1000 × g and
4 °C after which the supernatant is concentrated ×100 with a Centricon plus-70
centrifugal filter with a nominal cut-off weight of 10 kDa (Millipore, Burlington,
MA, USA) to obtain an 800 µL sample. This concentrated urine is then mixed with
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3.2 mL OptiPrep to obtain a 40% iodixanol solution (4 mL). 20% (4 mL), 10%
(4 mL) and 5% (3.5 mL) iodixanol solutions are added and finally 1 mL of PBS is
layered on top of the gradient. This gradient is centrifuged for 18 h at 100,000 × g
and 4 °C and density fractions are collected and processed according to the rEV
isolation section.

Induced variability. After isolation of EV from 2mL of rEV-spiked plasma from
the same pool (6×) via ODG centrifugation, resulting in a 4 mL sample containing
rEV and EV, specific volumes of sample were replaced by PBS (2 × 1000 µL and 2 ×
500 µL) to simulate respectively 25% and 12.5% inter-user variability. Two samples
were left unchanged. After this induced inter-user variability, total sample EV were
quantified with NTA and the total rEV with fNTA.

(Immune-) electron microscopy. Isolated EV were deposited on glow-discharged
formvar carbon-coated grids and stained with neutral uranylacetate and embedded
in methylcellulose/uranyl acetate. For immune-electron microscopy, the grids
containing the vesicles were incubated with 1% BSA in PBS blocking solution.
Antibodies and gold conjugates were diluted in 1% BSA in PBS. The grids were
exposed to the primary anti-CD63 antibody for 20 min, followed by secondary
antibody rabbit anti-mouse IgG (Zymed, San Francisco, CA, USA) for 20 min and
protein A-gold complex for 20 min. The grids were examined in a Tecnai Spirit
transmission electron microscope (FEI, Eindhoven, The Netherlands). Images were
captured by Quemesa charge-coupled device camera (Olympus Soft Imaging
Solutions, Munster, Germany).

Nanoparticle tracking analysis. Nanoparticle tracking analysis (NTA) was per-
formed using a NanoSight LM10-HS microscope (NanoSight, Amesbury, UK)
equipped with a 45 mW 488 nm laser and an automatic syringe pump system. For
conventional NTA three 30 s videos were recorded of each sample with a camera
level of 13, a detection threshold of 3 and a syringe pump infusion speed of 20. For
fluorescent NTA measurements (fNTA) an additional 500 nm longpass filter was
used, and the camera level was increased to 16. Temperatures were monitored
throughout the measurements, we assumed a medium viscosity of 0.929 cP and the
videos were analyzed with NTA software 3.3. For optimal measurements, samples
were diluted with PBS until particle concentration was within optimal con-
centration range of the NTA Software (3E8–1E9). For recovery calculations the
number of fluorescent particles was measured before spiking. All size distributions
determined with NTA correspond to the hydrodynamic diameters of the particles
in suspension.

High-resolution flow cytometry. High-resolution flow cytometric analysis of rEV
was performed on a jet-in-air-based BD Influx flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA) using an optimized configuration41. In brief, a 200 mW
488 nm laser (Sapphire; Coherent, Santa Clara, CA, USA) and a large-bore nozzle
(140 μm) were used, sheath pressure was permanently monitored and kept within
4.89 to 5.02 psi, and the sample pressure was set at 4.29 psi, to assure an identical
diameter of the core in the jet stream. The BD Influx was triggered on the fluor-
escence signal derived from rEV, and thresholding was applied on this channel. All
scatter and fluorescence parameters were set to a logarithmic scale. One hundred
and 200 nm yellow green (505/515) and 100 nm red (580/605) Fluosphere beads
were used to align the flow cytometer (Invitrogen, Carlsbad, CA, USA). To ensure
that each measurement was comparable we loaded predefined gates and PMT
settings. The threshold level was adjusted to allow an event rate ≤10/s when
running clean PBS (supplementary fig. 14). Forward scattered light was measured
with a collection angle of 15–25° (reduced wide-angle forward scatter [rw-FSC]).
rEV stocks were diluted in PBS and vortexed just before measurement. EV counts
were determined by measuring each sample within an experiment for a fixed
amount of time (30–120 s). The event rate was below 10,000/s to avoid coincident
particle detection and occurrence of swarm.

Zeta potential measurements. Zeta potential measurements were performed with
a Zetasizer Nano ZS, which makes use of laser doppler electrophoresis, (Malvern
Instruments Ltd, Malvern, UK) in disposable folded capillary cells at 22 °C in
distilled water. EV and rEV were suspended in distilled water and five measure-
ments of 10–100 runs were performed using the “automode” option. Zeta potential
values given are the means of the five respective measurements.

Refractive index determination. NTA can be used to determine the RI of
nanoparticles. To calibrate the scatter signals (supplementary figure 3b), 100 nm,
200 nm and 400 nm polystyrene beads (Malvern Instruments Ltd, Malvern, UK)
were diluted in PBS. EV samples were thawed and diluted in PBS. We visualized
scattered light from particles illuminated by a 65 mW 405 nm laser by a LM10
dark-field microscope (NanoSight, Amesbury, UK). For all samples, three videos of
30 s were captured with NTA software 3.3. Temperature was monitored during
each measurement and we assumed a medium viscosity of 0.929 cP. Because the
scattering power of the samples differs more than three orders of magnitude, each
sample required different camera settings (supplementary table 3) to prevent pixel
saturation. RI determination by NTA was accomplished by independently

measuring the diameter and light scattering power of individual particles with NTA
and solving the inverse scattering problem with Mie theory. The data analysis in
this manuscript was exactly done as described by Van der Pol et al.8. The scaling
factor, which relates the theoretical scattering cross section to the measured scat-
tering intensity, is 1.774 for this instrument.

rEV quantification via fluorescence intensity measurement. Fluorescence
measurements were performed with a SpectraMax paradigm multi-mode micro-
plate reader (Molecular Devices, Sunnyvale CA, USA) equipped with a 488 nm
laser and a 500 nm filter. As a positive control an Alexafluor488 antibody (Life
Technologies, Carlsbad, CA, USA) was used, and the relative fluorescence units
(RFU) were calculated by subtracting the FU of a negative control (PBS) from the
FU of the samples. All measurements were performed in triplicate.

rEV quantification via anti-p24 ELISA. Gag-EGFP protein concentrations were
determined with the commercially available anti-p24 ELISA kit Innotest HIV
antigen mAB (Fujirebio, Ghent, Belgium). The assay was performed according to
the manufacturer’s instructions. For recovery calculations a rEV standard curve,
from the same batch as used for spiking, was included ranging from 1E7 to 1E6
fluorescent particles as previously measured with fNTA.

Protein analysis. Protein concentrations of EV were measured, after lysis with
0.2% sodium dodecylsulphate (SDS) (L3771-500G, Sigma, Diegem, Belgium), with
the Qubit Protein assay kit (ThermoFisher, Waltham MA, USA) and Qubit fluo-
rometer 3.0 following manufacturer’s instructions. Protein concentrations of cell
lysates, obtained in Laemmli lysis buffer (0.125M Tris–HCl [pH 6.8], 10% glycerol,
2.3% SDS), were determined using the Bio-Rad DC Protein Assay (Bio-Rad,
Hercules, CA, USA). For protein analysis, samples were dissolved in reducing
sample buffer (0.5 M Tris-HCl [pH 6.8], 40% glycerol, 9.2% SDS, 3% 2-mercap-
toethanol, 0.005% bromophenol blue) and boiled at 95 °C for 5 min. Proteins were
separated by SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad,
Hercules, CA, USA). Membranes were blocked for 30 min in blocking buffer (5%
non-fat milk in PBS with 0.5% Tween-20) and incubated overnight at 4 °C with
primary antibodies. Secondary antibodies were added for 60 min at room tem-
perature after extensive washing with blocking buffer. After final washing, che-
miluminescence substrate (WesternBright Sirius, Advansta, Menlo Park, CA, USA)
was added and imaging was performed using Proxima 2850 Imager (IsoGen Life
Sciences, De Meern, The Netherlands). Quantification of signal intensity was
performed using ImageJ software.

LC-MS/MS analysis. Volumes of rEV and mock EV samples in three biological
replicates, each containing 5 x 1010 particles in PBS as measured with NTA, were
first reduced by vacuum drying to 1.5 mL. Amphipol A8-35 at 1 mg/mL was added
to the samples, vortexed and incubated for 10 min at room temperature (pH 7).
Next, the samples were reduced and alkylated with respectively 15 mM TCEP and
30 mM iodoacetamide for 15 min in the dark at 37 °C. The samples were acidified
with 5% formic acid to pH 3 and centrifuged for 10 min at 16,000 × g. The resulting
protein containing pellets were re-dissolved in 0.5 mL 50mM ammonium bicar-
bonate pH 8.0 followed by overnight digestion with 2.5 µg trypsin at 37 °C. Fol-
lowing trypsin digestion, the samples were acidified to pH 3 resulting in Amphipol
A8-35 precipitation. The samples were centrifuged for 10 min at 16,000 × g at room
temperature to pellet precipitated Amphipol A8-35, while peptides remain in
solution. The supernatant containing the peptide material was concentrated by
vacuum drying to 20 µl of which 8 µl was injected for LC-MS/MS analysis on an
Ultimate 3000 RSLCnano system (Thermo Fischer scientific, Erembodegem, Bel-
gium) in-line connected to a Q Exactive mass spectrometer (Thermo Fischer sci-
entific, Erembodegem, Belgium). Trapping was performed at 10 μl/min for 4 min in
trapping solvent (0.1% TFA in water/acetonitrile (98:2, v/v)) on a 100 μm internal
diameter (I.D.) × 20 mm trapping column (5 μm beads, C18 Reprosil-HD, Dr.
Maisch, Germany) and the sample was loaded on a reverse-phase column (made
in-house, 75 µm I.D. x 150 mm, 3 µm beads C18 Reprosil-HD, Dr. Maisch). Pep-
tides were eluted by a linear increase from 2 to 55% solvent B (0.1% formic acid in
water/acetonitrile (2:8, v/v)) over 120 min at a constant flow rate of 300 nl/min.
The mass spectrometer was operated in data-dependent mode, automatically
switching between MS and MS/MS acquisition for the 10 most abundant ion peaks
per MS spectrum. Full-scan MS spectra (400–2000m/z) were acquired at a reso-
lution of 70,000 in the orbitrap analyzer after accumulation to a target value of
3,000,000. The 10 most intense ions above a threshold value of 17,000 were isolated
(window of 2.0 Th) for fragmentation at a normalized collision energy of 25% after
filling the trap at a target value of 50,000 for maximum 60 ms. MS/MS spectra
(200–2000m/z) were acquired at a resolution of 17,500 in the orbitrap analyzer.
The S-lens RF level was set at 50 and we excluded precursor ions with single,
unassigned and charge states above 5 from fragmentation selection.

Data analysis was performed with MaxQuant (version 1.5.4.1) using the
Andromeda search engine with default search settings including a false discovery
rate set at 1% on both the peptide and protein level. Spectra were searched
against the human protein entries in the Swiss-Prot database (downloaded from
http://www.uniprot.org/, version from May 2016 containing 20,195 human protein
sequences) supplemented with the sequence of the gag-EGFP fusion protein. The
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mass tolerance for precursor and fragment ions were set to 4.5 and 20 ppm,
respectively, during the main search. Enzyme specificity was set as C-terminal to
arginine and lysine, also allowing cleavage at proline bonds with a maximum of two
missed cleavages. Carbamidomethylation of cysteine residues was set as fixed
modification. Variable modifications were set to oxidation of methionine residues
and acetylation of protein N-termini. Only proteins with at least one unique or
razor peptide were retained leading to the identification of 2324 proteins. Proteins
were quantified by the MaxLFQ algorithm integrated in the MaxQuant software. A
minimum ratio count of two unique or razor peptides was required for
quantification. Further data analysis was performed with the Perseus software
(version 1.5.4.1) after loading the protein groups file from MaxQuant. Reverse
database hits and contaminant proteins were removed and LFQ protein intensities
were log2 transformed. Replicate samples of both conditions were grouped and
proteins with less than three valid values in at least one group were removed and
missing values were imputed from a normal distribution around the detection
limit. Then, a t-test was performed for pairwise comparison of both conditions.
The results of this t-test is shown by the volcano plot in Supplementary Fig. 4a. For
each protein, the log2 (rEV/mock EV) fold change value is indicated on the X-axis,
while the statistical significance (−log p-value) is indicated on the Y-axis. All raw
data were submitted to the PRIDE database (PXD010269).

Immune precipitation. MagnaBind goat anti-mouse IgG or goat anti-rabbit IgG
magnetic beads (Thermo Fischer scientific, Erembodegem, Belgium) were incu-
bated with 10 µg anti-CD81, anti-CD63, anti-PEG antibody or PBS (negative
control) per 200 µL beads for 2 h at 4 °C while rotating. Beads were washed three
times with 500 µL PBS supplemented with 0.001% Tween20 (Sigma, Diegem,
Belgium) and incubated with the sample containing rEV or rEV-PEG for 2 h at
4 °C while rotating. Beads were washed three times and the supernatant was pooled
and pelleted using an SW55 rotor (Beckman Coulter, Brea, CA, USA) at 100,000 ×
g for 70 min. Pellets were lysed with reducing sample buffer.

RT-qPCR gene expression analysis. Total RNA was isolated from vesicles using
the miRNeasy Micro kit according to manufacturer’s instructions (Qiagen,
Valencia, CA, USA), and eluted in 14 µL DNase/RNase-free water. Ten microlitre
of RNA was reverse transcribed in a 20 µL reaction using iScript cDNA Synthesis
Kit (Biorad, Hercules, CA, USA) according to the manufacturer. EGFP mRNA
expression analysis in rEV was performed via reverse transcription quantitative
polymerase chain reaction (RT-qPCR) using the LightCycler 480 SYBR Green I
Master kit (Roche Applied Science, Penzberg, Germany). The 5 µL PCR reaction
mix contained reverse and forward primers (0.5 µL of a 5 mM stock solution),
LightCycler 480 SYBR Green I Master (2×) (2.5 µL) and cDNA (2 µL of a ¼
dilution corresponding to the cDNA reverse transcribed from 10 µL RNA). The
384-well plate was then run on the LC480 (Roche Applied Science, Penzberg,
Germany) at 95 °C for 5 s, then 60 °C for 30 s and 72 °C for 1 s (for 44 cycles).
Following primers were used: EGFP primer pair 1 with forward sequence GAC-
GACGGCAACTACAAGAC and reverse sequence TCCTTGAAGTC-
GATGCCCTT and EGFP primer pair 2 with forward sequence
TAAACGGCCACAAGTTCAGC and reverse sequence
GAACTTCAGGGTCAGCTTGC.

Lipid analysis. Lipids were extracted from 5 x 1010 rEV and mock EV in three
biological replicates, as measured with fNTA, using a modified Bligh-Dyer protocol
and phospholipids were analyzed by electrospray ionization tandem mass spec-
trometry (ESI-MS/MS) on a hybrid triple quadrupole linear ion trap mass spec-
trometer (4000 QTRAP, AB SCIEX, Framingham, MA, USA) equipped with a
robotic sample injection and ionization device (TriVersa NanoMate, Advion,
Amsterdam, The Netherlands). The collision energy was varied as follows: prec
184, 50 eV; nl 141, 35 eV; nl 87, −40 eV; prec 241, −55 eV. The system was
operated in the multiple reaction monitoring (MRM) mode for quantification of
individual species. Total cholesterol concentrations were measured with the
Amplex Red Cholesterol Assay Kit (A12216, Thermo Fischer Scientific, Erembo-
degem, Belgium) following manufacturer’s instructions.

rEV PEGylation. rEV (2 x 1010) were incubated in 100 µL of 0.016 mg/mL DMPE-
PEG 5k (PG1-DM-5K, Nanocs, NY, USA) at 40 °C for 2 h while being gently
mixed. This concentration of DMPE-PEG 5 K was optimized using a DMPE-PEG-
biotin construct (Nanocs, NY, USA) and precipitation using streptavidin coated
magnetic beads. Using western blot analysis targeting EGFP we saw the highest
signal in the precipitation and the lowest signal in the flow through at a con-
centration of 0.016 mg/mL DMPE-PEG-biotin (supplementary fig. 13c).

Lyophilization. For lyophilization, samples were diluted 1:20 in 100 µL PBS con-
taining 5% trehalose to a final concentration higher than 5 x 1010 particles/mL. The
vials were placed on pre-cooled shelves at -45 °C for 2 h after which the chamber
pressure was lowered to 0.1 mbar. From the moment the desired pressure was
reached, the shelf temperature was increased at 1 °C/min to −25 °C and main-
tained for 24 h. When all ice was completely sublimated the temperature was
increased at 0.15 °C/min to the final drying temperature of 20 °C and this tem-
perature was maintained for 4 h. Finally, the temperature was decreased again at

1 °C/min to a storage temperature of 3 °C while maintaining the vacuum until the
cycle was stopped.

Statistical analysis. All statistical analyses performed in this manuscript were
done using GraphPad Prism v7.

EV-TRACK. We have submitted all relevant data of our experiments to the EV-
TRACK knowledgebase (EV-TRACK ID: EV190040)4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Proteomic data were submitted to PRIDE database (PXD010269). All relevant data of our
experiments were submitted to the EV-TRACK knowledgebase (EV-TRACK ID:
EV190040). The source data underlying Figs. 2, 3, 4, 5 and supplementary figures 1, 2, 5,
6, 7, 8, 10, 11 and 13 are provided as a source data file. All other relevant data that
support the findings of this study are available from the corresponding author upon
reasonable request.
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