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Functional characterization of disease-causing variants at risk loci has been a significant

challenge. Here we report a high-throughput single-nucleotide polymorphisms sequencing

(SNPs-seq) technology to simultaneously screen hundreds to thousands of SNPs for their

allele-dependent protein-binding differences. This technology takes advantage of higher

retention rate of protein-bound DNA oligos in protein purification column to quantitatively

sequence these SNP-containing oligos. We apply this technology to test prostate cancer-risk

loci and observe differential allelic protein binding in a significant number of selected SNPs.

We also test a unique application of self-transcribing active regulatory region sequencing

(STARR-seq) in characterizing allele-dependent transcriptional regulation and provide

detailed functional analysis at two risk loci (RGS17 and ASCL2). Together, we introduce a

powerful high-throughput pipeline for large-scale screening of functional SNPs at disease

risk loci.
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S ince 2005, more than 2000 genome-wide association studies
(GWASs) have been published, identifying loci associated
with susceptibility to over 1000 unique traits and common

diseases1,2. With an eventual goal of finding new therapies and
preventative measures for these diseases, efforts are now focused
on determining the functional underpinnings of these associa-
tions. For example, prostate cancer GWASs have been extremely
productive, yielding over 100 single-nucleotide polymorphisms
(SNPs) with risk association3,4. Importantly, a significant number
of these have subsequently been validated in well-powered, large
case–control studies. Despite exceptional success, however, we are
faced with the tremendous challenge of how to interpret these
emerging results. There is currently a substantial knowledge gap
between SNP–disease associations derived from GWASs and an
understanding of how these risk SNPs contribute to the biology
underpinning human diseases5.

As most risk SNPs have been found in non-coding regions of
the genome, with many residing some distance from nearby
annotated genes, it is believed that many of these (or their closely
linked causal SNPs) will be located in regulatory domains of the
genome that control gene expression rather than in coding
regions that directly affect protein function3,4. Due to lack of
more effective screening approaches, identification and functional
characterization of disease-causal SNPs remains as a significant
challenge. For a given GWAS locus, the SNP with the lowest P
value is not necessarily causal. Any SNP in linkage disequilibrium
(LD) with a reported risk SNP may be causal, and the number of
such LD SNPs are often from dozens to thousands6. To associate
GWAS variants with regulatory elements in the genome, epige-
nomic profiling such as ChIP-seq, DNase-seq, and their deriva-
tives (ChIP-exo and ChIP-nexus) have been developed7–11.
Several computational programs have also been developed to
integrate epigenomic landscapes with GWAS SNPs12–16. These
profiling analyses and computational programs have been widely
used and help facilitate discovery of candidate regulatory SNPs.

However, there remains a significant challenge from the
knowledge-based prediction to functional validation. Currently,
to experimentally validate putative SNPs for regulatory potential,
the commonly used assays include electrophoretic mobility shift
assays (EMSA) and reporter assays. EMSA can test whether a
given SNP influences binding ability of a transcription factor (TF)
to the regulatory element while a gene reporter assay can test the
effect of a SNP on promoter or enhancer activity. More recently,
CRISPR/Cas9-based gene editing technology has emerged as
important tool to evaluate the effect of a single-nucleotide var-
iant17,18. Although these current methods have enabled func-
tional characterization of regulatory variants at some GWAS loci,
the progress is extremely slow. Given the huge number of disease-
associated regulatory variants, high-throughput methods are
urgently needed to overcome limitations of these one-assay-one-
SNP approaches.

One existing high-throughput method is to calculate allele-
specific read counts from available ChIP-seq data. Significant
deviation of read counts between two alleles indicates allelic
binding preference for the unique TF. However, to be informa-
tive, the SNPs of interest need to be heterozygous in the tested cell
line. For a large group of SNPs, it is difficult to find cell lines with
heterozygous status in all (or most) candidate SNPs. In this study,
we report a new massively parallel sequencing technology to
distinguish potentially functional from nonfunctional SNPs. We
apply the sequencing technology (named as single-nucleotide
polymorphisms sequencing or SNPs-seq) to examine potential
functional SNPs at prostate cancer-risk loci. We also test a unique
application of self-transcribing active regulatory region sequen-
cing (STARR-seq)19–21 in characterizing allele-dependent tran-
scriptional regulation and provide detailed functional analysis at

two risk loci (RGS17 and ASCL2). This study introduces a pow-
erful experimental pipeline to functionally screen for regulatory
SNPs at GWAS-defined risk loci.

Results
Principles of functional SNP sequencing. To precisely determine
allelic protein-binding differences with high-throughput capacity,
we developed the massively parallel sequencing technology based
on the principal that protein-bound DNA oligos will be retained
in a protein purification column after extensive washes to remove
free oligos. Following recovery from the column, SNP-containing
oligos that are bound to nuclear proteins can be sequenced to
determine allele-dependent protein binding (Fig. 1). Because this
technology will test the SNP-dependent protein-binding differ-
ence, we defined the sequencing technology as SNPs-seq. Mean-
while, to identify DNA sequences that act as transcriptional
enhancers in a direct, quantitative, and genome-wide manner, the
STARR-seq has been developed by taking advantage of the
knowledge that enhancers can work independent of their relative
locations19–21. This assay inserts candidate DNA sequences
downstream of a super core promoter and allows the active
enhancers to transcribe themselves. Such a direct coupling of
candidate sequences to enhancer activity enables the parallel
evaluation of millions of DNA sequences from arbitrary sources.
We hypothesize that STARR-seq can quantitatively detect the
enhancer activity of allele-specific sequences by measuring the
RNA abundance among cellular RNAs. The principle and work-
flow of STARR-seq are shown in Supplementary Fig. 1 and 2.

Study design. We first examined our prostate-specific expression
quantitative trait loci (eQTL) dataset22 and functional annotation
databases to determine candidate functional SNPs at prostate
cancer GWAS loci. To further screen for candidate functional
SNPs, we then performed SNPs-seq to determine allele-
dependent protein-binding differences at these SNP sites simul-
taneously. To evaluate if these SNPs also showed differential
transcriptional regulation, we performed STARR-seq and deter-
mined allelic read count of SNP-containing RNA transcripts.
Finally, we applied a series of functional assays to validate the
sequencing results. The overall study design is depicted in Fig. 2.

Selected candidate SNPs. We previously performed eQTL ana-
lysis at 100 prostate cancer-risk intervals covering 146 risk SNPs in
471 normal prostate tissues and identified 51 loci showing sig-
nificant cis-eQTL signals (P value threshold of 1.96E−07), which
were involved in a total of 2208 SNPs and 88 individual genes22.
To select candidate functional SNPs from this reported eQTL
SNPs, we examined prostate-specific ChIP-seq data23 and sear-
ched HaploReg database14. These analyses identified 255 potential
functional SNPs involving 35 genes with eQTL P ≤ 1.96E−07. To
expand the candidate SNP list, we selected an additional 51 SNPs
involving 10 genes with eQTL P value between 0.05 and 1.96E
−07. Finally, we selected 68 SNPs that were either reported risk
SNPs or in LD with these SNPs but did not show any association
with any reference genes in ±1Mb regions. Overall, we selected
374 SNPs at 33 separate risk loci including 755 unique sequences
(369 SNPs with one variant, 3 SNPs with 2 variants, and 2 SNPs
with 3 variants). Most of the candidate SNPs were located at
introns or intergenic regions (Supplementary Data 1 for SNP
names and chromosome coordinates, corresponding genes, eQTL
P values and ChIP-seq score).

Quality check of SNPs-seq libraries. To determine allele-
dependent protein binding, we mixed 755 unique ds-oligos
equally (5.05 nM each oligo) and used 264 ng of the oligo pool
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(25.23 fmols each oligo) for protein-binding assay. After extensive
washes, the average yield of the eluted protein-bound oligos was
6–10 ng, accounting for 2–4% of original input (Supplementary
Fig. 3a). Due to the addition of adaptor sequences during library
preparation, we expected to see the library size at ~161 bp (21 bp
oligo+ 140 bp adaptors). For the libraries prepared from input
controls, the size distribution was as expected (sharp band at
~161 bp). Because nuclear extract may contain low level “naked”
fragmented DNA, library sizes from nuclear extract-bound oligos
varied from ~150 to ~500 bp (Fig. 3a).

Owing to single-nucleotide differences between variant and
reference alleles, we only counted sequence reads with a perfect
match to one of 755 unique oligo sequences. Depending on the
individual library, the SNP-specific sequences accounted for
~70% of raw reads, ranging from 57% in protein-bound ds-oligos
to 94% in input control ds-oligos (Fig. 3b). Low on-target reads in
the protein-bound ds-oligos were expected since some fragmen-
ted DNAs from nuclear extract were also sequenced. To examine
reproducibility of the technology, we performed each assay with a
technical replicate and tested two different protein isolation
platforms (Affymetrix and Signosis). Correlation coefficient
analysis showed high reproducibility in all technical replicate
pairs (R2 > 0.95) (Fig. 3c) and between different platforms (R2 >
0.86) (Supplementary Fig. 3b). We also estimated the effect of
input oligo quantity on read counts by comparing 88, 264, and
792 ng ds-oligo pool as input. This analysis showed no clear read
count difference among the three inputs (Supplementary Data 2).

755 ds-oligos pool

374 SNPs
variant/reference allele, +/– strand

(21 bp, SNP in the middle)

GWAS + ChIP-seq + eQTLs

Protein binding
ds-oligo purification

DNA-seq

Allele enrichment
analysis 

Preparation of SNP sequences
(500–700 bp)

Construction of STARR-seq plasmid

RNA-seq

Allele enrichment analysis

Candidate functional SNPs

SNPs-seq STARR-seq

Cell transfection
Isolate polyA mRNA

Fig. 2 Overall study design. SNPs-seq workflow (left panel): 374 SNPs were
selected from analyzing GWAS, ChIP-seq, and eQTL data. SNP-containing
oligos were synthesized, followed by annealing the positive and negative
strands to make ds-oligos. By mixing ds-oligos with nuclear extract, the
protein-bound ds-oligos were separated and used for library preparation
and allele-specific sequencing analysis. STARR-seq workflow (right panel):
Significant SNPs selected from SNPs-seq were PCR-amplified, pooled and
inserted into STARR-seq vector. After co-transfecting LNCaP cells, the
mRNAs from transfected cells were isolated and used to make STARR-seq
library for allele-specific sequencing analysis
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Fig. 1 Workflow of SNPs-seq. The SNPs-seq includes three key steps: binding of SNP-containing oligos to nuclear protein, separation of protein-bound
oligos from protein-free oligos, and sequencing library preparation and analysis
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Effect of oligo content on read counts. Although we attempted
to pool these oligos equally, we observed a significant read count
difference between different SNPs. Median read count per allele
was 10,210, ranging from 0 to 1,294,410 in 20 different SNPs-seq
assays including 6 assays with Affymetrix kit and 14 assays with
Signosis kit. The significant variations of read counts among these
oligos could be caused by multiple factors including poor oligo
quality, inaccurate quantity of input, nucleotide composition, and
thermostability of each oligo. We first evaluated the effect of GC
content and thermodynamic nature on the read counts. This
analysis revealed significant correlation of read counts with oligo
GC content (R2= 0.6234), with low GC content toward low read
counts. Among 755 unique oligo sequences, 49 sequences had low
GC content (25% GC as cutoff) and 50% of these low GC oligos

had low read counts (read counts 50 as cutoff) (Fig. 3d).
Accordingly, the read counts were also associated with Tm values
(R2= 0.6458, Supplementary Fig. 3c). We also calculated delta G
using online program (http://primerdigital.com/tools/)24 to
determine thermostability of each oligo and observed a significant
association (R2= 0.6526, Fig. 3e). Clearly, higher thermostability
of these single-stranded oligos increased annealing efficiency to
form double-stranded oligos, hence providing more templates for
sequencing library preparation.

We then tested the effect of nucleotide compositions at 5′/3′
ends on read counts. We grouped the 755 oligos into different
groups, based on their nucleotide compositions. When compared
to G/C, single-nucleotide A/T at either 5′ or 3′ end significantly
reduced read counts of corresponding oligos. When comparing
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16 possible two nucleotide combinations at either 5′ or 3′ ends,
the combinations of AA, AT, TA, and TT showed the lowest read
counts (Fig. 3f, Supplementary Fig. 3d). Clearly, overall GC
content (GC%, Tm, and thermostability) and 5′/3′ end nucleo-
tides have a significant effect on read count in the final
sequencing libraries.

SNPs with allele-dependent protein binding. To evaluate allelic
protein-binding differences, we calculated biased allelic binding
(BAB, see Methods for detail) scores for all 374 candidate SNP
sites. Example of the score calculation for SNP rs7123418 is
illustrated in Supplementary Fig. 4 and the distribution of BAB
scores is shown in Fig. 3g. When comparing variant allele to
reference allele, protein-binding capacity varied significantly,
ranging from ~14.37-fold decrease (BAB score=−3.85) to
~15.20-fold increase (BAB= 3.93). When applying an absolute
BAB score of ≥ 0.58 (1.5-fold difference between variant and
reference alleles) and eQTL P value ≤ 1.00E−05 as significant
cutoffs, 101 of the 374 candidate SNPs met the selection criteria
(Supplementary Data 3).

Quality check of STARR-seq libraries. To test whether the
candidate SNPs selected from SNPs-seq also showed allele-
dependent enhancer activities, we constructed a plasmid library
by inserting PCR-generated fragment pool (see Supplementary
Data 3 for primer sequences) into STARR-seq vector. After
transfecting LNCaP cells with the plasmid library, we isolated
polyA+mRNA from the cells and performed RT-PCR to amplify
the target sequences. As expected, the RT-PCR product showed a
size of ~600 bp (Supplementary Fig. 5a). To effectively sequence
through SNP sites, we sheared the PCR products into 100–150 bp
before preparing final sequencing library. We mapped the
sequence reads to 96 amplicons covering all 101 selected candi-
date SNPs. The mapped sequences accounted for an average of
76% raw reads, ranging from 70% in PolyA+mRNA group to
81% in plasmid DNA control group (Supplementary Fig. 5b).
Pairwise comparison between technical replicates showed sig-
nificant correlations in each of three technical repeat pairs (R2 ≥
0.95) (Supplementary Fig. 5c).

SNPs with allele-dependent enhancer activities. For the 202
alleles (101 SNPs), the median read depth per allele was 20,961,
ranging from 0 to 622,402. To select sequences with regulatory
potential, we first transformed the read counts to RPM (read count
per million mapped sequences) and then compared allele-specific
read counts between test samples and input control samples. This
analysis identified 56 SNPs with at least one allele showing 1.5-fold
difference between test samples and input controls. To determine
allele-dependent enhancer activity of the 56 SNPs, we calculated
biased allelic enhancer (BAE, see Methods for detail) score using
allele-specific read counts and observed 20 SNPs with absolute BAE
score ≥ 0.58. The overall distribution of the BAE score is shown in
Supplementary Fig. 5d (Supplementary Data 4 for STARR-seq read
counts and BAE scores for all 101 SNPs). These SNPs were asso-
ciated with 11 separate eQTL genes, including LOC284581 (1 SNP),
NOL10 (1 SNP), RAB17 (4 SNPs), RGS17 (1 SNP), HCG4B (1
SNP), PCAT1 (3 SNPs), CTBP2 (2 SNPs), NCOA4 (1 SNPs),
ASCL2 (4 SNPs), C14orf39 (1 SNP), and FAM57A (1 SNP).

Functional characterization of selected SNPs. Based on the BAE
score, eQTL P value and ChIP-seq evidence, we selected one SNP
(rs13215402) in the RGS17 region, and three SNPs (rs6579003,
rs7123299, and rs7123418) in ASCL2 region for further analysis.
The SNP rs13215402 is located at 4.84 kb upstream of RGS17
transcription start site. ChIP-seq analysis shows that rs13215402 is

at the center of multiple TF-binding sites including AR, FOXA1,
and HOXB13. The SNP site is enriched with active enhancer epi-
genetic marks, H3K4me1/2 and H3K27ac (Fig. 4a). However, there
is no enrichment of silent epigenetic mark H3K27me3 and con-
densed chromatin regulator EZH2. To further test the TF enrich-
ment, we carried out ChIP assays, followed by quantitative PCR
and confirmed the chromatin binding of prostate cancer master
regulators AR, FOXA1, and HOXB13 at the SNP site (Supple-
mentary Fig. 6a, b). To assess whether rs13215402 showed allele-
specific effect in vivo, we performed ChIP-based allele-specific
quantitative PCR (ChIP-AS-qPCR) in the LNCaP cells that are
heterozygous for rs13215402. We observed a marked decrease of
FOXA1 binding at the variant allele A when compared to the
reference allele G (Fig. 4b). To test the regulatory potential of this
SNP, we further performed an allele-specific luciferase reporter
assay and observed significantly lower signal in variant allele A than
reference allele G (P= 1.13E−05 in dihydrotestosterone (DHT)-
treated cell line and P= 6.78E−03 in cell line without DHT
treatment) (Fig. 4c). The luciferase activity difference between allele
A and allele G was even more significant (P ≤ 3.09E−09) when
replacing pGL4.28 minimal promoter with RGS17 promoter
regardless DHT treatment (Fig. 4d). This result is consistent with
STARR-seq showing significantly lower read counts in variant allele
A than reference allele G. The BAE scores were −0.88 in DHT-
treated group and −0.52 in cell line without DHT treatment
(Supplementary Data 4).

To further delineate regulatory role of the rs13215402, we
applied CRISPR interference (CRISPRi) technology to evaluate the
repression effect by interfering the SNP region on the RGS17
expression. We designed small guide RNAs to target either
rs13215402 A or rs13215402 G allele in LNCaP cell line
(heterozygous G/A for rs13215402). We then quantified the
expression of RGS17 and observed its downregulation by either
allele G or allele A interference. Compared to non-target control
(NTC), the downregulation of RGS17 expression was statistically
significant in allele G (P= 0.028) but not allele A (P= 0.633)
(Fig. 4e). We also applied CRISPR/Cas9-based genome editing
technology in the 22Rv1 cell line (heterozygous G/A for
rs13215402) with an aim of creating subclones with homozygous
alleles (A/A or G/G) and determining direct effect of these different
genotypes on RGS17 expression. We successfully generated two
subclones with genotype G/G (Supplementary Fig. 7a) but did not
receive subclones with genotype A/A. The quantitative RT-PCR
analysis showed 3-fold increase of RGS17 expression in subclones
with homozygous G/G (P ≤ 3.80E−04) when compared to parental
cell line with heterozygous G/A (Fig. 4f). Correspondingly, eQTL
analysis using 467 benign prostate tissues showed an association of
the variant allele A with reduced expression of RGS17 (eQTL P=
9.61E−31) (Fig. 4g). Additionally, eQTL analysis using three other
independent datasets encompassing 602 prostate tumor samples23

also showed the significant reduction of the gene expression in
patients with allele A (Supplementary Fig. 7b).

The haplotype SNPs (rs6579003, rs7123299, and rs7123418)
are located at ~59.8 kb upstream of ASCL2 transcription start site.
ChIP-seq data show various degrees of overlapping with TF-
binding sites including AR, FOXA1, and HOXB13 (Fig. 5a).
Because they are clustered in a small 68 bp region, the three SNPs
were tested as haplotypes including two common (C–G–C and
A–A–A) and one rare haplotype (A–G–C). To test whether the
haplotype SNPs also demonstrated allele-specific protein binding
in vivo, we performed ChIP-AS-qPCR assay in VCaP cell line
with heterozygous genotype for rs7123299 and observed an
increased chromatin binding of FOXA1 and HOXB13 at the allele
A compared to the allele G (Fig. 5b). Interestingly, the binding
ability of the two alleles was switched upon DHT treatment in
VCaP cells, showing reduced recruitment of AR, FOXA1, and
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HOXB13 at the rs7123299 allele A. We also performed a
luciferase reporter assay to examine enhancer activity of different
haplotypes in vitro and found much higher regulatory activity of
the DNA fragment carrying variant haplotype (A–A–A) than the
other two haplotypes (C–G–C and A–G–C) (P < 0.002, Fig. 5c).

To see whether the haplotype-based reporter assays were
consistent with STARR-seq, we re-examined STARR-seq data to
construct the haplotypes by counting sequence reads that covered
all three SNPs. Among 96 amplicon fragments tested, three were
found to span across these three SNPs. We counted each

P = 6.33E–10

0

1

2

3

4

5

6

ETH DHT

R
el

at
iv

e 
lu

ci
fe

ra
se

0

1

2

3

4

Clone-1 Clone-2 Parental

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sgRNA-NTC sgRNA-A sgRNA-G

0

0.5

1

1.5

2

ETH DHT

R
el

at
iv

e 
lu

ci
fe

ra
se

0

2

4

5

3

1

c

G GA A

R
G

S
17

 R
P

K
M

G/G 

n = 162

A/G 

n = 216

A/A 

n = 89

P = 9.61E-31

P = 6.78E–03

P = 1.13E–05

b ETH DHT

F
ol

d 
en

ric
hm

en
t

7

6

5

4

3

2

1

0

A
R

FO
X

A
1

H
O

X
B

13 Ig
G A
R

FO
X

A
1

H
O

X
B

13

lg
G

P = 0.028

P = 0.01

G A G A G A G A G A G A G A G A

d

gfe

R
el

at
iv

e 
R

G
S

17
 e

xp
re

ss
io

n

P = 0.028

G A G A

P = 0.633

R
el

at
iv

e 
R

G
S

17
 e

xp
re

ss
io

n

G/G G/G A/G

P = 1.4E–04

P = 3.8E–04

Minimal promoter RGS17 promoter

P = 3.09E–09

a
H3K4me1_LNCaP_Vehicle
H3K4me1_LNCaP_R1881
H3K4me1_LNCaP
H3K4me2_LNCaP
H3K4me2_LNCaP_abI
H3K4me2_VCaP
H3K27ac_LNCaP_Vehicle
H3K27ac_LNCaP_DHT
H3K27me3_PrEC
AR_VCaP_Vehicle
AR_VCaP_DHT
AR_VCaP_DHT2h
AR_VCaP_DHT24h
AR_VCaP_Prostate_tumor
FOXA1_VCaP_ETH1
FOXA1_VCaP_ETH2
FOXA1_VCaP_R1881
FOXA1_LNCaP_DHT
FOXA1_LNCaP
HOXB13_VCaP
EZH2_VCaP
Chr.6:153,438,733
RefSeq Genes        RGS17

rs13215402

153,456,367

[0–13]
[0–14]
[0–40]
[0–55]
[0–32]
[0–61]
[0–27]
[0–16]
[0–2]
[0–14]
[0–22]
[0–14]
[0–15]
[0–3.08]
[0–63]
[0–65]
[0–32]
[0–59]
[0–20]
[0–11]
[0–1]

Fig. 4 Allele-dependent transcriptional regulation at rs13215402. a TF enrichment at SNP rs13215402 site by ChIP-seq analysis. The SNP region is occupied
by multiple TFs including AR, FOXA1, HOXB13, and active enhancer epigenetic marks including H3K4me1/2 and H3K27ac. b TF enrichment at SNP
rs13215402 site by ChIP-AS-qPCR analysis. Allele A of this SNP has lower FOXA1 occupancy than allele G in LNCaP cells. The P values were calculated
using the two-tailed Student’s t-test, mean ± s.d. c, d Luciferase reporter assay at rs13215402 site. The relative luciferase activity for allele A is lower than
allele G both under ETH and DHT treatment in LNCaP cells. The P values were calculated using the two-tailed Student’s t-test, mean ± s.d. e Suppression of
RGS17 expression through allele-specific CRISPRi assay. Compared to non-target control (NTC), interference of either allele A or G downregulated RGS17
expression, with allele G showing statistical significance. The P values were calculated using the two-tailed Student’s t-test, mean ± s.d. f Elevated RGS17
expression after converting genotype of rs13215402 G/A to G/G in 22Rv1 cells by CRISPR/Cas9. Compared to parental cell line 22Rv1 with G/A genotype,
two subclones of 22Rv1 with G/G genotype show threefold increase of RGS17 expression. The P values were calculated using the two-tailed Student’s t-
test, mean ± s.d. g eQTL analysis between rs13215402 and RGS17. Compared to G/G genotype, the A/A genotype is associated with lower expression of
RGS17 in benign prostate tissues22. The upper, middle, and lower bounds of boxes represent the 75th, 50th, and 25th percentile of the values, respectively.
The whiskers represent 95th to 5th percentile. The P values were calculated using the correlation/trend test (genotype association test in Golden Helix)
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individual haplotype in the three amplicons and calculated the
haplotype-based BAE scores (A–A–A as variant and C–G–C as
reference). This analysis showed significant enrichment of
haplotype A–A–A with an average BAE score= 3.13 (range:
2.98–3.37) in DHT-treated group, and 2.46 (range: 1.91–2.99) in
non-DHT group. Clearly, A–A–A haplotype showed an increased
enhancer activity when compared to C–G–C haplotype. To
further confirm the effect of the haplotype on gene expression, we
examined the haplotype-based eQTL in a collection of 462 benign
prostate tissues and observed haplotype-dependent dosage effect
on ASCL2 expression with two copies of A–A–A showing the
highest gene expression (P= 2.65E−06) (Fig. 5d). The cancer
tissue-based eQTL analysis in three independent datasets also
showed the increased expression of ASCL2 in patients with
haplotype A–A–A (Supplementary Fig. 7c).

RGS17 as oncogene of prostate cancer. Previous GWAS has
shown that variant allele G of the risk SNP rs1933488 was
associated with decreased prostate cancer risk (OR= 0.89)25.

Because the allele G is in complete LD with variant allele A of
the functional SNP rs13215402 reported in this study, we rea-
soned that the allele A would also be associated with reduced
prostate cancer risk. Based on our prostate tissue eQTL ana-
lysis, allele A significantly downregulated target gene RGS17,
consistent with the protective effect of GWAS risk SNP on
prostate cancer. To test whether downregulation of RGS17
inhibited prostate cancer cell growth, we performed cell pro-
liferation assays in the prostate cancer cells using siRNA against
RGS17 and observed greatly reduced cell growth and viability
when compared to the cells with control siRNAs (Fig. 6a, b).
Additionally, we examined genome-wide CRISPR/Cas9-based
loss-of-function screen data for the identification of genes that
are essential for cell growth and survival26, and found critical
role of RGS17 for survival of prostate cancer cells LNCaP and
PC3 (Supplementary Fig. 8a, b). Furthermore, by querying
prostate cancer datasets, we found that RGS17 was up-regulated
in prostate adenocarcinoma (Fig. 6c). Higher mRNA level of
RGS17 was associated with higher clinical stage and poor
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Fig. 5 Allele-dependent transcriptional regulation at a haplotype region containing rs6579003, rs7123299, and rs7123418. a TF enrichment at SNPs
(rs6579003, rs7123299, and rs7123418) by ChIP-seq analysis. The region is occupied with TFs such as AR, FOXA1, and HOXB13, and enriched with active
chromatin mark H3K4me2. b TF enrichment at SNP rs7123299 site by ChIP-AS-qPCR analysis. The rs7123299 allele A shows higher binding ability to
FOXA1 and HOXB13 than allele G in VCaP cells under ETH treatment but effect of the two alleles are switched under DHT treatment. The P values were
calculated using the two-tailed Student’s t-test, mean ± s.d. c Luciferase reporter assay at three haplotype SNPs (rs6579003, rs7123299, and rs7123418) in
LNCaP cells. The relative luciferase activity for haplotype A–A–A is higher than haplotype C–G–C in both ETH and DHT treatment. The P values were
calculated using the two-tailed Student’s t-test, mean ± s.d. d eQTL analysis between haplotype-based genotypes (rs6579003, rs7123299, and rs7123418)
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values were calculated using the correlation/trend test (genotype association test in Golden Helix)
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prognosis (Fig. 6d–f). Strikingly, RGS17 expression showed the
highest level in prostate cancer among tens of different cancer
types in over 10,000 tumor samples (Supplementary Fig. 9a, b),
further supporting that RGS17 is a plausible prostate cancer
susceptibility gene.

Discussion
One of major challenges in the post-GWAS era is the lack of
high-throughput assays to screen a large number of candidate
SNPs for their potential functional consequences3,4. To address
this challenge, we report here, for the first time, the development
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of the SNPs-seq technology, a high-throughput approach based
on massively parallel sequencing strategy to examine SNPs for
their protein-binding differences. By applying the technology in
prostate cancer-risk regions, we successfully identified over a
hundred of SNPs showing allele-dependent protein binding. To
evaluate the regulatory potential of these selected SNPs, we fur-
ther tested the SNP-containing fragments using STARR-seq, a
high-throughput enhancer assay, which further defined 20 SNPs
with differential transcriptional regulation. Sequential use of the
two sequencing technologies may enable comprehensive survey of
regulatory SNPs to better understand biological roles of GWAS
signals and their functional consequences.

Currently, to determine whether a given SNP is functional, a
common approach is to map the SNP to a regulatory element
defined by ENCODE and other epigenomic projects7–9. Although
useful for mapping regulatory genomic regions, none of these
datasets provide direct access to allelic binding preferences. One
potential solution is to extract read counts at SNP sites from these
sequencing data. To date, ENCODE project has collected over six
thousands of epigenomic profiling data including ChIP-seq and
DNase-seq. Systematic examination of these sequencing data may
reveal allele-specific transcriptional control at each SNP site.
However, for a specific disease type, there may be no or few
epigenomic profiling data available. Importantly, most current
epigenomic profiling datasets are based on a handful of cell lines.
If a cell line used is not heterozygous for a specific SNP, it will not
generate any allelic information. For example, only 96 (25.67%) of
374 candidate SNPs selected in this study are heterozygous in
LNCaP cell line. Furthermore, most current epigenomic profiling
datasets have relative low coverage at a certain SNP sites, which
makes determination of allele-specific binding difficult.

Additionally, allele-specific EMSA and luciferase reporter assays
are commonly used in laboratory validation of candidate reg-
ulatory SNPs27–32. However, both EMSA and reporter assay are
not practical if a large number of candidate SNPs are tested. To
overcome this limitation, we developed the SNPs-seq by taking
advantage of higher retention rate of protein-bound DNAs and
high capacity of sequencing technology. This technology applies
easy-to-use protein purification columns and determines allele-
dependent protein–DNA binding by counting sequence reads.
Due to high-throughput nature, this sequencing technology can
examine hundreds or even thousands of protein-bound DNA
oligos simultaneously, significantly increasing screening capacity
for candidate functional SNPs. It is worth mentioning that reg-
ulation of gene expression is cell and tissue type-specific, so is
allelic binding preference detected by SNPs-seq. When applying
the SNPs-seq to detect allele-specific binding difference, cell/tissue
type and surrounding environments that are involved in the dis-
eases/phenotypes of interest should be taken into consideration.

Although several high-throughput technologies including
MPRA33–35, MPFD36, CRE-seq37–39, STARR-seq19–21, TRIP40,
FIREWACh41, and SIF-seq42 have been developed to evaluate
regulatory potential of target sequences, these technologies were
initially designed to determine transcriptional regulation at
selected genomic regions. So far, no report has been published to
test their applications in allele-dependent transcription controls.
Due to its simplicity, STARR-seq was selected to examine this
unique application. Our result strongly suggests that STARR-seq
is capable of characterizing functional SNPs in disease risk
regions. Furthermore, we performed in depth evaluation on the
regulatory role of two prostate cancer-risk loci and provided
strong evidence showing essential role of RGS17 for the main-
tenance of the proliferative potential of tumor cells43,44. Further
characterization of the gene and its regulatory variants will have
important implications for developing potential screening stra-
tegies to assess prostate cancer predisposition.

Main advantage of SNPs-seq is its high capacity to screen a
large number of candidate SNPs in a flexible, easy-to-use and
low-cost procedure (Supplementary Data 5 for time and cost
estimation). When combining with another high-throughput
technology STARR-seq, we may not only detect the allele-
dependent protein-binding difference, but also identify the allele-
specific regulatory activity. Although both technologies, whether
used alone or combined, are powerful enough to screen hundreds
to thousands of SNPs simultaneously, they are not able to
recognize which protein or TF causes the allelic difference. To
overcome this limitation, we may replace nuclear extract with a
candidate protein or TF during SNPs-seq. We may also identify
the candidate protein or TF through mass spectrometry-based
proteomics analysis of allelically enriched protein complex.

In summary, we reported a high-throughput sequencing
technology SNPs-seq for a large-scale screening of candidate
SNPs to detect their allele-specific protein-binding difference. We
also tested a unique application of STARR-seq to examine SNP-
dependent transcriptional regulation at candidate SNP regions.
The SNPs-seq along with STARR-seq provides a high-throughput
pipeline for experimentally characterizing potential causal SNPs
at GWAS-defined common disease loci. Knowledge gained from
these technologies will facilitate translational studies for better
preventive strategies and personalized clinical intervention.

Methods
SNP selection. To select candidate functional SNPs at prostate cancer-risk loci, we
systematically examine 146 risk SNPs and their LD SNPs (r2 ≥ 0.5) for a total of
6324 SNPs22. We first excluded any SNPs with eQTL P value ≥ 1.96E−07. We then
examined these eQTL SNPs for potential overlap with prostate-specific ChIP-seq
signals. The ChIP-seq data were previously collected23, including TFs of FOXA1,
AR, CTCF, ETS, EZH2, GR, JUND, NKX3_1, NR3C1, RUNX2, TCF7L2, and
epigenomic marks of H3Ac, H3K4me2, H3K4me3, H3K27ac, and H4K5ac. Based
on number of colocalization with ChIP-seq signals, we assigned a ChIP-seq score
for each SNP and selected the candidate SNPs if ChIP-seq score was ≥ 1, meaning
at least one overlap between ChIP-seq signal and a SNP. We also examined
HaploReg database (http://archive.broadinstitute.org/mammals/haploreg/haploreg.
php) for additional predicted regulatory signals to prioritize the SNP selection.

Nuclear protein preparation. We cultured human prostate cancer cell line LNCaP
in RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin (Life
Technologies, Grand Island, NY, USA). Before androgen treatment the culture
medium was replaced with phenol red free RPMI supplemented by 10% charcoal-
dextran-treated FBS (HyClone, Logan, Utah, USA) and 1% penicillin/streptomycin
for 3 days. Final concentration of androgen in the form of DHT (Steraloids,
Newport, RI, USA) was 10 nM for treatment cells and 0.1% ethanol (ETH) for
control cells. After 24 h treatment, we extracted the nuclear proteins using Ne-Per
nuclear and cytoplasmic extraction reagents (Pierce Biotechnology, Rockford, IL,
USA). The protein concentrations were determined using BCA protein assay kit
(Pierce Biotechnology). Aliquots at 25 µl each were stored at −80 ℃ until use.

Double-stranded oligo (ds-oligo) preparation. For each selected SNP site, we
synthesized four single-stranded oligos (Integrated DNA Technologies. Coralville,
IA, USA) with each allele having two complementary oligos. For each oligo (21 nt),
SNP site was in the middle (11th nucleotide). Concentration of each oligo was 20
µM in 25 µl duplex buffer. To make ds-oligos, we mixed 5 µl of each forward and
reverse strand. After denaturation for 3 min at 95℃, the oligo mix was subjected to
annealing by gradually reducing temperature from 95 to 25℃ in 70 min. The ds-
oligos were then combined in equal molar concentration to generate a large oligo
pool containing all selected SNP sequences.

Protein-bound ds-oligo isolation. To facilitate DNA–protein binding, we mixed
the ds-oligo pool with 10 µg nuclear extract in 1× incubation buffer (Affymetrix,
Santa Clara, CA, USA or Signosis, Santa Clara, CA, USA) at 15 oC for 30 min
before transferred to the center of the Spin Columns. After extensive washing (×6
times), the protein-bound ds-oligos were eluted in 1× Column Elution Buffer and
further purified using Oligo Clean & Concentrator (Zymo Research, Irvine, CA, U.
S.A.). Final concentrations of purified oligos were quantified using Qubit dsDNA
HS Assay Kits (Life Technologies). We ran each assay in duplicate to test
reproducibility.

SNPs-seq library preparation and data analysis. 2 ng of purified ds-oligo pool
were subjected to sequencing library preparation using ThruPLEX DNA-seq kit (15
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cycle amplification, Rubicon Genomics, Ann Arbor, MI, USA). The sequencing
libraries were purified by Agencourt AMPure XP Beads (Beckman Coulter Life
Sciences, Indianapolis, IN, USA) and quantified by Qubit. A pool of indexed
sequencing libraries was sequenced in an Illumina HiSeq 2500 sequencer with 50
bp single read. To count sequence reads, we mapped sequencing data (fastq files)
directly to 755 allele-specific sequence templates (Lasergene Genomics Suite,
DNASTAR, Madison, WI, USA). Only 100% match to each oligo was allowed
during the mapping. Because all sequences are unique, the perfect match will
ensure complete separation of 755 oligo sequences, even for oligos with only one
nucleotide difference (two different alleles for a specific SNP). We counted
sequence reads for variant and reference alleles separately. To determine allele-
specific binding difference, we developed a BAB score using following formula: log2
[test(RCvariant/RCreference)/input(RCvariant/RCreference)]. The test and input repre-
sented tested samples and input control samples, respectively. RCvariant/RCreference

represents ratio between read count from variant allele and read count from
reference allele. We defined absolute BAB score ≥ 0.58 as significant cutoff for
allelic binding difference, which represents 1.50-fold difference between variant
and reference alleles.

STARR-seq plasmid library preparation. Human STARR-seq vector was kindly
provided by Dr. Stark (Research Institute of Molecular Pathology, Vienna, Austria).
The plasmid vector was linearized by AgeI-HF and SalI-HF digestion (New Eng-
land Biolabs, Ipswich, MA, USA), followed by agarose gel purification (QIAquick
Gel extraction, Qiagen, Germantown, MD, USA) and then 1.0 × AMPure XP DNA
bead purification. To prepare inserts (candidate SNP-containing sequences), we
performed PCR to amplify DNA fragments covering all SNPs selected from SNPs-
seq. The template was a mixed DNA from 111 prostate cancer patients to generate
DNA fragments with heterozygous alleles. To facilitate cloning of the pooled PCR
products, the PCR primers were designed to have an additional 15 nt recombi-
nation arms at 5′ end of each forward primer (TAGAGCATGCACCGG) and
reverse primer (GGCCGAATTCGTCGA). We used highly efficient
recombination-based cloning (In-Fusion HD Cloning Plus, Clontech, Mountain
View, CA, USA) to construct the expression vector by mixing 50 ng pooled SNP-
containing amplicons with the STARR-seq vector (100 ng). To avoid biases during
the cloning, we performed a total of 8 separate recombination reactions and pooled
every 4 reactions. After further purification (Agencourt AMPure XP DNA beads),
we used the SNP-containing vectors (2.5 µl) to transform MegaX DH10B T1
electrocompetent bacteria (20 µl, Life Technologies). The electroporation was
carried out using Gene Pulser II Electroporation system (2.0 KV, 25 µF, 200 Ω, Bio-
Rad, Hercules, CA, USA). Again, we performed 8 separate transformation reactions
and pooled every 4 transformations. The transformed bacteria were grown in two
500 ml LBAMP media overnight before extraction of the plasmid libraries that
contained a pool of target sequences (Plasmid Plus Mega kit, Qiagen).

Cell transfection for STARR-seq. We transfected per 8.0 × 106 LNCaP cells using
20 µg plasmid DNA library and 40 µl Lipofectamine 3000 (Life Technologies). 24 h
after transfection, we extracted total RNA from 3.2 × 107 cells with on-column
DNase treatment (RNeasy mini kit, Qiagen). We also extracted the plasmid DNA
(as input control) from 1.6 × 107 cells using Qiagen plasmid plus midi kit. By
further 10-unit DNase treatment using TURBO DNase (Life Technologies) and
RNA purification using RNeasy MinElute clean up kit (Qiagen), we isolated the
polyA+mRNA using Ambion Dynabeads Oligo-dT25 (Life Technologies) from
the total RNA. We ran each assay with technical repeat to estimate its
reproducibility.

STARR-seq library preparation and data analysis. We used 150 ng polyA+
mRNA and performed first strand cDNA synthesis (Superscript III, Life Tech-
nologies) with a reporter RNA specific primer (GTCCAAACTCATCAATGTATC)
in 16 separate reactions. After pooling every 4 reactions, we split each of the pooled
cDNAs into five separate aliquots for a total of 20 PCR reactions (15 cycles, Q5
High-Fidelity DNA Polymerase, New England Biolab, Ipswich, MA, USA) using 2
reporter-specific primers (TGCTGGGATTACACATGGCAT and CTTAT-
CATGTCTGCTCGAAGC) (Supplementary Fig. 10). We pooled every 5 PCR
reactions and purified them using 1.0 × AMPure XP DNA beads. We sheared the
PCR products into 100–150 bp by sonication and used 2 ng fragmented DNA for
sequencing library preparation (15 cycles, ThruPLEX DNA-seq kit). As an input
control, we amplified control plasmid DNAs isolated from transfected cells in 10
independent PCR reactions (15 cycles, 2 ng plasmid DNA per reaction) and pre-
pared the sequencing libraries as described above. Finally, we used 1.0 × AMPure
XP DNA beads to purify a total of 6 sequencing libraries including 2 DHT
treatment samples, 2 ETH control samples and 2 plasmid input controls. The final
libraries were sequenced on an Illumina Sequencer (HiSeq 2500) for 100 bp PE
read. Sequence mapping and SNP read counting were the same as SNPs-seq. The
BAE score calculation was the same as BAB score. The BAE score represents degree
of transcriptional regulatory activity differences between variant and reference
alleles.

eQTL association analysis in additional datasets. To validate the selected
candidate SNPs, we performed additional eQTL analysis in three independent

prostate datasets including The Cancer Genome Atlas (TCGA), Camcap and
Stockholm cohorts which comprised of 389, 119, and 94 prostate samples,
respectively23. We used Matrix eQTL to test the cis-eQTL associations and para-
meters “useModel=modelLINEAR”, “errorCovariance= numeric ()” were
applied45. In addition, we applied the non-parametric Kruskal–Wallis H test to
assess the statistical significance between the gene expression and SNP genotypes.
For haplotype (rs6579003, rs7123299, rs7123418) analysis, we first defined hap-
lotypes for each patient using MACH146 and minimac program47,48 in 1000
Genomes Project Phase I V3 EUR reference (n= 379) and then performed linear
regression analysis, regressing normalized expression levels on the number of
minor alleles of each SNP/haplotype genotype. R (version 3.2.2) was used to per-
form the statistical tests and graphically visualize the association between SNP
genotypes and gene expression levels. The RGS17 and ASCL2 mRNA levels were
assessed by RNA-seq in TCGA, Illumina Expression BeadChip-based transcrip-
tional profiling in Camcap and Stockholm cohorts of human prostate tissue
samples.

Cell culture for functional analysis. The LNCaP, 22Rv1, and VCaP cells were
originally obtained from the American Type Culture Collection (ATCC, Manassas,
VA, USA) and confirmed to be mycoplasma-free during the experiments. The cell
culture condition was at 37 °C with 5% CO2. Specifically, LNCaP and 22Rv1 cells
were grown in RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA), VCaP cells were
grown in DMEM (Invitrogen, Carlsbad, CA, USA). Ten percent FBS and anti-
biotics (penicillin and streptomycin, Sigma-Aldrich) were added to the base media.
To study AR activity and stimulate androgen signaling in these cell lines, we
cultured cells in charcoal-stripped medium for up to 48 h, then the cells were
treated with 100 nM DHT (dissolved in ethanol).

Luciferase reporter assay. To validate allele-dependent regulatory differences in
selected candidate SNPs, we applied dual-luciferase reporter assay system by
cloning SNP-containing sequences into vector pGL4.28 (Promega, Madison, WI,
USA). We used the pGL4.74 as an internal control and measured the luciferase
activity of the transfected cells according to the manufacturer’s protocol on a bio-
luminometer. We also replaced minimal promoter in pGL4.28 with target gene
RGS17 promoter (chr6:153131052–153132096, hg38) to evaluate direct effect of a
candidate SNP on its target gene. All reading measurements were obtained from at
least three replicates. Statistical analysis of significance was determined by two-
tailed student’s t-test using IBM SPSS statistics software version 24.

Chromatin immunoprecipitation (ChIP). To test for TF-binding status at selected
SNP sites, we fixed the LNCaP and VCaP cells using 1% formaldehyde for 10min
and stopped the fixation using 125mM glycine at room temperature. To isolate
nuclei, we suspended the cell pellet in hypotonic lysis buffer (Sigma-Aldrich) for 45
min. The nuclei were washed twice by cold PBS and then suspended in SDS lysis
buffer. The nuclei chromatin was sonicated to an average of 400 bp. To make
dynabeads–antibody complex, we first washed dynabeads (Dynabeads Protein A/G
for Immunoprecipitation, Invitrogen) twice by blocking buffer, and then incubated
the beads with 7 µg antibodies for 10 h at 4 °C. 250 µg of sonicated chromatin was
diluted in IP buffer to final volume of 1.35ml, then added to 70 µl of
Dynabeads–antibody complex (~1:400 dilution for the antibodies with 2 µg/µl
concentration in stock). After 12 h incubation at 4 °C, the complex was washed once
with wash buffer I and buffer II, followed by two more washings with buffer III and
buffer IV. The DNA–protein complex was separated from beads by extraction
buffer, then DNA and protein were reverse cross-link with Proteinase K and NaCl
overnight at 65 °C. The DNA was purified by MinElute PCR Purification Kit
(Qiagen). The buffers and antibodies are listed in Supplementary Tables 1 and 2.

ChIP allele-specific quantitative PCR (ChIP-AS-qPCR). To confirm TF-binding
at selected SNP sites, we performed ChIP-AS-qPCRs to quantify TF-binding dif-
ferences between variant and reference alleles. We designed PCR primers to
amplify the DNA fragments harboring the different alleles at these SNP sites. We
performed the quantitative PCRs at each SNP site in triplicates. We determined the
relative enrichment of each candidate TF at target DNA fragments by comparing to
IgG controls. The qPCR and allele-specific qPCR primers are listed in Supple-
mentary Table 3.

CRISPR interference (CRISPRi) at rs13215402 site. To test direct effect of a
candidate SNP on RGS17 mRNA expression, we applied online tool (http://crispr.
mit.edu/) and designed small guide RNAs (sgRNAs) targeting 20 bp at SNP site of
interest49. We cloned the sgRNAs into the pLV hU6-sgRNA hUbC-dCas9-KRAB-
T2a-Puro plasmid (Addgene, 71236). To confirm genotype of individual clones, we
performed sequencing analysis with hU6 primer. The constructed plasmids were
used to transfect LNCaP cell lines with Lipofectamine 3000 (Thermo Fisher Sci-
entific, Waltham, MA USA). 48 h after transfection, we isolated total RNA and
performed RT-qPCR using SuperScript VILO cDNA Synthesis Kit (Thermo Fisher
Scientific). We performed each transfection in triplicates and each RT-qPCR in
triplicates. We determined relative gene expression using the ΔΔCt method with
ACTB as a control. sgRNA and PCR primer sequences are listed in Supplementary
Table 4.
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Single nucleotide editing at rs13215402 site. To further examine direct effect of
a candidate SNP on RGS17 expression, we inserted sgRNAs into pSpCas9(BB)-2A-
Puro (PX459) V2.0 (Addgene, 62988)50. The single-stranded oligodeoxynucleotides
(ssODNs) that were centered at rs13215402 (either A or G) were used as repair
templates (Supplementary Table 4). We co-transfected 70% confluence of prostate
cancer cells 22Rv1 with the 300 ng Cas9 plasmid (sgRNA rs13215402 A or G) and
1 µl of ssODN template (10 µM) using Lipofectamine 3000. The medium was
changed after overnight incubation followed by adding 0.8 µg per ml puromycin
(Sigma) into the transfected cells. 48 h after puromycin treatment, we seeded the
single cells in 96-well plates and checked single clonality to exclude non-single
clones within 9–16 days. Eventually, we selected the single clones for subculture
and performed Sanger sequencing for genotype examination within 1 to 2 months.
To quantify RGS17 expression after genotype changes, we performed RT-qPCR in
selected subclones with different genotypes.

siRNA transfection and cell proliferation assays. To evaluate functional con-
sequence of selected target gene, we performed siRNA-mediated knockdown assay
in prostate cancer cell lines and determined the effect of the gene knockdown on
cancer cell proliferation. 24 h before transfection, we seeded 50–60% confluent
LNCaP or 22RV1 cells. We reversely transfected LNCaP or 22RV1 cells (2.5 × 103

per well) with control, cell death, RGS17 siRNAs using HiPerFect transfection
reagent (Qiagen). We changed the medium after 24 h and collected the cells after
48 h to test siRNA-mediated knockdown efficiency. To determine the cell viability
and proliferation, we applied XTT (Roche Diagnostics GmbH, Mannheim, Ger-
many) reagent and measured the absorbance at 450 nm at a designated time point
following manufacturer’s instruction. Two-tailed t-test was used to calculate the
significances. siRNAs are listed in Supplementary Table 5.

Clinical association analysis for target gene expression. To estimate clinical
relevance of RGS17, we examined the association of the gene expression with
prostate cancer and clinicopathological features using RNA profiling data from
TCGA (from The cBio cancer genomics portal51). We applied the non-parametric
Mann–Whitney U test to evaluate the significance of gene expression levels
between 52 normal and 497 tumor tissues. R (version 3.2.2) was used to perform
statistical analyses and box plot was used to graphically display gene expression
intensities (log base 2) between different groups. In addition, we evaluated the
association of target gene expression with tumor stage, Gleason score, prostate-
specific antigen (PSA), and the severity in TCGA dataset. To assess the potential
association between target gene expression levels and prostate cancer survival, we
applied the non-parametric statistic Kaplan–Meier estimator and tested 162 stage 1
patients in TCGA data and 79 patients from the Glinsky52 in Oncomine data-
base53. Samples were stratified into two groups based on the mean values of RGS17
expression levels. R (version 3.2.2) and R package “Survival” were used for the
analysis.

Data availability. All relevant data are available within the article and supple-
mentary files, or available from the authors upon request.
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