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The concept of feedback is key in assessing whether a perturbation to a system is amplified

or damped by mechanisms internal to the system. In polar regions, climate dynamics are

controlled by both radiative and non-radiative interactions between the atmosphere, ocean,

sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a

process-oriented evaluation of climate models, a clear understanding of the processes

responsible for polar climate changes, and a reduction in uncertainty associated with model

projections. This quantification can be performed using a simple and consistent approach that

is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback

analyses and a better understanding of polar climate changes.

The climate of polar regions is highly sensitive to changes in climate forcing, but also
displays large internal variability. Over recent decades, northern polar regions have
warmed more than twice the global average with sea-ice decreasing trends for all months

of the year, especially in late summer1–3. In contrast, the southern polar regions have warmed
less rapidly with some regions experiencing cooling and sea ice advance and others experiencing
warming and sea ice loss4–6.

Observed changes in polar regions result from numerous interactions involving the atmo-
sphere, land surfaces, ocean and sea ice. Due to the complexity of the underlying processes, we
do not fully understand them. Advancing scientific understanding in polar regions is particularly
challenging due to a short and incomplete observational record5, 6, large internal climate
variability6–9 and the large biases of climate models in these regions10.

The feedback framework11, 12 offers a standard method to analyze such complex dynamics
(Box 1). The first step is to define a simple reference system and to estimate the response of this
reference system to a perturbation. In a second step, the internal dynamics processes are
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represented as feedbacks that are triggered by the initial response
and amplify (positive feedback) or dampen (negative feedback) it.

In climate dynamics, the classical radiative feedback framework
links global surface temperature changes to perturbations of
Earth’s top-of-atmosphere energy budget12–16 and serves as a
critical tool for quantifying climate response to greenhouse gas
forcing. For instance, the magnitude of radiative feedbacks can be
directly related to equilibrium climate sensitivity, commonly
defined as the equilibrium global mean temperature change in
response to a doubling of the CO2 concentration in the atmo-
sphere12–16.

As well as radiative feedbacks, other types of feedbacks affect
polar regions (Fig. 1). While analyses of radiative feedbacks in
polar regions have provided clear insights into processes con-
trolling high latitude climate change, there is much less agree-
ment on the relative importance of non-radiative feedbacks and
on the way to quantify them.

Here, we provide an overview of key radiative and non-
radiative feedbacks in polar regions, how they are currently
evaluated and discuss why they are important for our under-
standing of polar climate change. We also propose an inclusive
methodology that can be applied to quantify the influence of
all those feedbacks, and eventually stimulate more systematic

analyses in observational and model ensembles. Estimating
the magnitude of feedbacks is essential for improving our
understanding of the dynamics of polar climate and to identify
the relative contribution of various processes to observed high-
latitude changes. In addition, it is a powerful tool to identify
the origin of model biases and to reduce the uncertainty in the
response to anthropogenic forcing which is directly linked to
feedbacks.

Feedbacks in polar regions
Radiative feedbacks. The temperature feedback represents the
changes in infrared (longwave) radiative fluxes due to changes
in surface and tropospheric temperatures (Table 1). It can be
decomposed into a Planck feedback due to radiation changes
caused by vertically uniform warming of the surface and tropo-
sphere and a lapse rate feedback due to vertically non-uniform
warming17. The negative Planck feedback is the climate system’s
basic response to forcing that drives the system to a new equili-
brium temperature. Due to the dependence of blackbody radia-
tion on temperature, the Planck feedback, or in other words the
increase in outgoing longwave radiation per unit of local warm-
ing, is less negative in polar regions than at lower latitudes18.

Box 1 | the standard radiative feedback framework

The radiative feedback framework is based on the analysis of changes to the energy balance at the top of the atmosphere (TOA) caused by a
perturbation. An initial perturbation to TOA radiation, F (in Wm−2), is termed the ‘radiative forcing’ and is due, for instance, to a change in the
atmospheric concentration of carbon dioxide (CO2) or in solar irradiance. Consider as an example the response to a positive radiative forcing resulting
from an increase in greenhouse gas concentrations. This will initially lead to a decrease in outgoing longwave radiation, resulting in a TOA radiative
imbalance and accumulation of energy within the climate system117. This in turn will trigger changes in the climate, in particular a temperature increase
that leads to larger emissions of infrared radiation by the Earth. Ultimately, those larger emissions will compensate for the additional energy input due to
the forcing. After some time, the climate system will come into a new equilibrium characterized by higher temperatures than before the perturbation
was applied.
When studying the energy budget of the whole Earth, it is convenient to assume that the modification of the radiative fluxes emitted by the Earth is
proportional to changes in global mean surface temperature Ts (in K). The imbalance of the energy budget at the TOA averaged over the whole Earth at
any time (ΔR, in Wm−2) is then expressed as

ΔR ¼ F þ λΔTS ð1Þ
where λ is the net climate feedback parameter (Wm−2 K−1), which is a key characteristic of the climate system response, and ΔTs is the global surface
air temperature change following the perturbation. λ is negative for a stable climate and a larger absolute value corresponds to a less sensitive climate
characterized by a smaller temperature change for a specific forcing. At equilibrium, when by definition the heat budget is balanced at the TOA (i.e., ΔR
= 0), the surface temperature change in response to the perturbation is simply ΔTs=−F/λ. The equilibrium climate sensitivity, estimated as the global
mean temperature change in response to a doubling of the CO2 concentration in the atmosphere, which corresponds to a radiative forcing F of roughly
3.7Wm−2, is thus equal to −3.7/λ. The transient imbalance at the TOA corresponds to heat storage, which is mainly accounted for by the ocean, so
the term ΔR is often approximated by the ocean heat uptake66.
The net climate feedback parameter λ can be separated into contributions from changes in surface albedo, clouds, water vapor and temperature,
referred to as the feedback variables. The feedback related to temperature is itself the sum of a contribution from vertically homogenous warming or
cooling (black-body response or Planck feedback, denoted by λ0) and one from changes in vertical temperature gradient (the lapse rate feedback). For
each process, a specific feedback parameter λi can be computed. Their sum approximatively gives back the net climate feedback parameter
λ ¼ λ0 þ

P
i
λi þ ε, where ε is a small residual accounting for non-linearities. A positive value of the feedback parameter λi corresponds to a positive

feedback, a negative one to a negative feedback
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Schematic illustration of the radiative feedback framework (based on ref. 12). With no feedback, the reference response of the system to a radiative
forcing F is considered to be ΔT0=−F/λ0. A feedback, with a feedback parameter λi, will induce a change in the radiative balance λiΔTs that will
reinforce or dampen the effect of the radiative forcing, leading to a response of the system of ΔTs=−(F+ λiΔTs)/λ0.
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While the lapse rate feedback is negative in the tropics, it is often
positive in polar regions because stable stratification, especially in
non-summer months, suppresses vertical mixing and warming
remains largely confined to a thin near-surface layer19, 20.

As the surface warms, additional water vapor amplifies the
greenhouse effect and induces further warming21, 22. This water
vapor feedback is largest in the tropics where the climatological
temperature is higher and the increase in water vapor is at its
maximum. In polar regions, the positive water vapor feedback is
weaker than in the tropics but it still plays a relevant role in the
polar response to the forcing19, 23, 24.

The surface albedo feedback is a first-order visible (shortwave)
positive radiative climate feedback mechanism in polar regions25–
28. As the climate warms, snow and ice cover melt, exposing
underlying surfaces that typically have much lower albedos. This
leads to an increased absorption of shortwave radiation by the
surface, and as a result amplifies the initial warming. When
melting, the snow covering Arctic sea ice contributes to forming
melt ponds. increasing the absorption of solar radiation and
amplifying the surface albedo feedback29. Melt ponds do not
form in the Southern Ocean as surface melting is very limited
there, providing an illustration of different ways snow and ice
interactions affect the surface albedo feedback29, 30.

Clouds influence the heat balance of the Earth by affecting the
radiative fluxes in both visible and infrared bands and are
involved in a variety of feedbacks14, 31, 32. The sign of any cloud
feedback depends on the balance of shortwave cooling and
longwave heating by the clouds. Cloud feedbacks are the most
uncertain of all the radiative feedbacks as the cloud radiative
effect depends on several factors that can be modified by the
initial response to the perturbation14, 33–35. Among all mechan-
isms involved, two polar-specific cloud feedback examples are
listed in Table 1: the cloud sea-ice feedback36–39 and the cloud
optical depth feedback32, 34, 40. When sea ice melts and new open
water is exposed, surface turbulent heat fluxes can increase
humidity in the lower atmosphere and increase low-level clouds.
During polar night, increasing low cloud increases downwelling
longwave radiation, leading to further sea ice loss and thus to a
positive feedback. Observational evidence shows that this cloud-
sea ice feedback operates in non-summer months in both the
Arctic37, 39 and the Antarctic41. The cloud optical depth feedback
operates both at mid- and high- latitudes. Cloud liquid particles
are smaller than cloud ice particles, and are therefore more
efficient at reflecting solar radiation back to space. As the climate
warms, the total amount of cloud water in mixed phase clouds
increases, which increases the amount of reflected solar radiation
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Fig. 1 A schematic of some important radiative and non-radiative feedbacks in polar regions involving the atmosphere, the ocean, sea ice and ice sheets.
TOA refers to the top of the atmosphere. Solar radiation (in yellow) and Infrared Radiation (in red) represent the shortwave (solar) and longwave (infrared)
radiation exchanges. A red plus sign means that the feedback is positive, a negative blue sign corresponds to a negative feedback. Both signs are present
for cloud feedbacks as both positive and negative feedbacks are occurring simultaneously and the net effect is not known. The gray line on the right
represents a simplified temperature profile in polar regions for the atmosphere and the ocean, the dashed line corresponding to a strong surface inversion.
Oceanic and atmospheric heat transport are mentioned but without signs as the processes involved are not restricted to polar regions and it is not clear if
they could be formally expressed using a closed feedback loop
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Table 1 Key radiative and non-radiative feedbacks in polar regions that are related to the atmosphere, ocean, sea ice, ice sheets
and land surfaces and can be measured using a feedback factor

Name Description Measure Reference(s)

Radiative
feedbacks

Planck (−) Higher surface and atmospheric
temperatures increase outgoing
longwave radiation, avoiding
runaway warming

Change of TOA flux due to
temperature change at constant
lapse rate divided by surface
temperature change

12–14,18

Lapse rate (+ in Arctic,
close to 0 in Antarctic)

In a warmer world and at high
latitudes, stable stratification
conditions in the lower troposphere
result in a larger warming of the
lower than of the upper troposphere,
leading to a smaller increase in
outgoing longwave radiation
compared to vertically uniform
warming, and thus to further
warming

Change of TOA flux due to lapse
rate changes divided by surface
temperature change (normalized
by Planck feedback)

19,20

Surface albedo (+) Melting ice and snow lowers surface
albedo, leading to increased
absorption of shortwave radiation
and amplified warming

Change of TOA flux due to
surface albedo change divided by
surface temperature change
(normalized by Planck feedback)

19,27,28,101

Water vapor (+) In a warming climate, the amount of
water vapor in the atmosphere
increases, which amplifies the
greenhouse effect and leads to
further warming

Change of TOA flux due to water
vapor change divided by surface
temperature change (normalized
by Planck feedback)

22–24

Cloud (+/−) Two
examples are provided
below

Warming of the atmosphere leads to
changes in the amount and
characteristics of clouds, modifying
the radiative balance. The cloud
contribution can be decomposed in
several ways, two examples being
given below

Change of TOA flux due to
changes in cloud properties
divided by surface temperature
change (normalized by Planck
feedback)

14,31–41

Example 1: Cloud-sea ice (+
in non-summer months,
close to 0 in summer)

Decreased sea ice extent in non-
summer months results in greater
cloud cover and increased
downwelling longwave radiation,
leading to further sea ice loss

Change of TOA flux due to
changes in cloud amount and
opacity resulting from varying sea
ice concentration divided by
surface temperature change

36–39

Example 2: Cloud optical
depth (−)

As the climate warms, the fraction of
liquid water in mixed-phase clouds
increases, resulting in higher cloud
albedo, more reflection of shortwave
radiation and reduced warming

Change of TOA flux due to
changes in cloud optical depth
divided by surface temperature
change

32,34,40

Non-radiative
feedbacks

Ice production–entrainment
(−) (mostly active in
Southern Ocean)

Brine rejection during sea ice
formation induces an ocean mixed
layer deepening that brings to the
surface warmer water from deeper
levels, melting a part of the ice
initially formed and inhibiting further
ice production.

Ratio of the sea ice melt due to
the entrainment of warmer water
in the mixed layer to the initial ice
formation

50,51

Ice production–ocean heat
storage (+) (mostly active
in Southern Ocean)

Anomalous sea ice production
induces vertical exchanges of salt, a
higher stratification, storage of heat
at depth and finally lower oceanic
heat fluxes that favor further ice
production.

Ratio of the latent heat associated
to ice production to the heat
content change of the ocean
subsurface layer

52,53

Ice growth–thickness (−) Thin sea ice grows more rapidly than
thick sea ice due to its higher heat
conduction, dampening the response
to an initial decrease imposed by a
perturbation.

Normalized difference in the
thickness response to an
energetic perturbation with and
without thickness dependence of
the ice growth rate

48,49

Surface mass
balance–elevation (+)
(mostly active in Greenland
Ice Sheet)

Increased air temperature leads to
ice melting, which lowers the surface
elevation of the ice sheet, hence
leading to ice exposure to warmer
air temperatures and further ice
melting.

Ratio of the additional sea level
contribution due to this feedback
to the sea level contribution
without feedback

56,57

Ice shelf melting sea ice (−)
(mostly active in Southern
Ocean)

Ocean warming leads to ice shelf
melting, which releases freshwater
into the ocean and reduces vertical
mixing. This results in sea ice
expansion and reduced ocean
warming.

Ratio of the additional change in
sea ice extent caused by this
feedback to the total change in
extent without feedback

63,64

Marine ice sheet instability
(+) (mostly active in West
Antarctic Ice Sheet)

An initial retreat in the grounding
line position of a marine ice sheet on
an upward-sloping bed towards the
ocean leads to increased ice
discharge, ice thinning and further
retreat.

Ratio of the additional sea level
contribution due to this feedback
to the sea level contribution
without feedback

58–60

The proposed selection is illustrative rather than exhaustive. The sign in the first column indicates whether the feedback is positive or negative in polar regions
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(i.e., increase the planetary albedo), acting as a negative
feedback32. At the same time, the fraction of cloud water that is
liquid also increases, enhancing the effect of this cloud optical
depth feedback (Supplementary Fig. 1). Climate models robustly
show this feedback34 but in a manner that is stronger than
implied by observations42, 43 —in many cases due to excessive
cloud ice in the present-day modeled climate44–46.

Feedbacks related to sea ice and the ocean. As the magnitude of
some radiative feedbacks is modulated by processes that may
appear hidden in their overall evaluation, focused analyses have
been proposed to reveal elements specifically related to sea ice
and ocean. For instance, the surface albedo feedback is more
efficient for thin than for thick sea ice as a similar change in
thickness induced by a given perturbation will lead to a larger
increase in the open water area and thus a larger change in
albedo. This has led to the definition of the open water formation
efficiency as the percent open water formation per cm of ice melt
over the melt season47.

Some other feedbacks are not directly related to radiative
processes. For example, basal sea ice growth rate is largely driven
by heat conduction, which varies as the inverse of sea ice
thickness: thin ice grows much faster than thick ice48. At the same
time, sea ice melt rate is nearly independent of ice thickness. This
leads to the negative ice growth-thickness feedback. When a
positive radiative perturbation is applied to the sea ice surface
energy balance leading to an initial ice thinning, ice formation in
winter is enhanced so that the ice adjusts its thickness to match
the new growth rates to the new melting rates49, resulting in a
new equilibrium for the sea ice thickness. As the thermal
insulation power of snow is even more efficient than that of sea
ice, its influence on the ice growth-thickness feedback is
important, but not fully quantified due to the complex relation-
ship between snow depth and sea-ice thickness30.

Because of the large heat fluxes at the ocean–ice interface in the
Southern Ocean, feedback analyses there have often focused on
the interactions between ocean and sea ice. In the ice-covered
parts of the Southern Ocean, the stability of the upper water
column is controlled by salinity, with the ocean temperature and
salinity increasing with depth below the surface mixed layer (the
ocean layer that has a nearly homogeneous density). In winter,
when brine is released by sea ice formation, surface mixed layer
density increases, inducing a mixed layer deepening and the
entrainment of relatively warm water into the surface oceanic
layer. This warm water reduces ice formation and can even melt
ice, which partly compensates for the initial ice formation, leading
to a negative ice production–entrainment feedback50, 51

The ice production–entrainment feedback is acting at the
seasonal scale but the magnitude of the ice–ocean flux can also be
modulated at inter-annual to decadal timescales, leading to the
positive ice production heat-storage feedback52, 53. If ice
production is very large during a particular year, the mixed layer
will be deeper and the salt released by ice formation will be
distributed over a larger depth range. In summer, the mixing is
weaker and the freshwater input due to ice melting will be spread
over a shallower layer, leading to a net downward vertical salt
transport. This can restrain the vertical exchanges in the water
column the subsequent winter, leading to less heat transfer to the
surface and more heat storage at depth. Finally, the weaker heat
flux at the ice–ocean interface would favor additional ice
formation, leading to a positive feedback amplifying the initial
perturbation. The heat storage at depth can also be reinforced by
a net freshwater input at the surface (due for instance to a net
transport of sea ice to the region) that further stabilizes the water
column.

Feedbacks related to land surfaces and ice sheets. At low and
mid-latitudes, a drying of the soils in response to an initial
temperature rise can amplify the warming as the evapo-
transpiration that normally cools the surface is reduced54. This
positive soil moisture–temperature feedback is less active at high
latitudes but, despite the low temperatures, evapotranspiration
strongly contributes to moderate the summer warming over
land55.

Ice sheets, glaciers and snow cover over land provide key
components to the surface albedo feedback25–28. They also give
rise to a number of specific feedback mechanisms. Three
important ones are discussed here. Compared to the feedbacks
mainly involving the atmosphere and sea ice, ice sheets generally,
but not exclusively, play a role on longer time scales. In the
positive surface mass balance–elevation feedback, increased air
temperature leads to ice melting, which lowers the surface
elevation of the ice sheet, exposing the ice to warmer air
temperatures and thus further melting56, 57. This positive
feedback is mostly relevant for the Greenland ice sheet where
surface melting is substantial, while currently the Antarctic ice
sheet hardly experiences it due to very low surface temperature.

The marine ice sheet instability has the potential to destabilize
large ice sheet regions58–60. The stability of a marine ice sheet
such as the West Antarctic Ice Sheet is determined by the position
of the grounding line, i.e., the boundary between the grounded ice
sheet and the floating ice shelf. If it is located on a bedrock
sloping downward toward the interior of the ice sheet, an initial
retreat of the grounding line, for instance due to basal ice melting,
leads to an increase in ice discharge, which results in a further
retreat of the grounding line inland until a new stable position is
reached. Rapid changes in ice sheets may also be linked to the
acceleration of the ice transport due to basal lubrication caused by
meltwater penetration at the bed or to breakup of the ice shelves
because of a weakening of the ice due to surface melting61, 62.

Another feedback mainly acting in the Southern Ocean is
related to the interactions between floating ice shelves, sea ice and
the surrounding ocean. A subsurface Southern Ocean warming
leads to increased basal ice shelf melting, and the upper ocean
layers get fresher due to the resulting cold freshwater input. This
results in lower heat flux from the ocean interior to the surface,
sea ice expansion and reduced ocean surface warming, providing
a negative ice shelf melting sea ice feedback63, 64.

Non-local feedbacks and feedbacks involving other compo-
nents of the climate system. While this Perspective focuses on
feedbacks that act through physical processes in polar regions
(Table 1, Fig. 1), we should mention that many other feedback
processes exist, some of which involve biological processes and
biogeochemical cycles65–68. One example is the bio-optical feed-
back, which occurs when climate warming and sea ice retreat in
the Arctic Ocean lead to intense phytoplankton blooms69. These
blooms trap the penetrating solar heat flux at the ocean surface,
which increases sea surface temperature. As a result, sea ice
concentration decreases, which leads to enhanced absorption of
solar energy into the ocean and further warming of the Arctic70.

The response to a perturbation also implies a redistribution of
the energy between different latitudes. First, the warming of the
tropics under greenhouse gas forcing leads to enhanced poleward
energy transport by the atmospheric circulation to higher
latitudes, contributing to warming there71–75. This indicates a
coupling between radiative feedbacks and atmospheric heat
transport74, 76, 77. Moreover, radiative feedbacks at low latitudes
may influence polar warming through their effect on poleward
energy transport, while changes in polar regions may affect
dynamics in the lower latitudes78. This is an area of ongoing
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research, and it is not yet clear if the response of the system has a
direct impact on the original perturbation itself such that a closed
feedback loop can be identified.

Second, the ocean heat transport has been found to strongly
shape polar climate change, with increased poleward heat
transport into the Arctic79–81 and decreased poleward heat
transport into the Southern Ocean4, 79 under global warming.
Here too, it is unclear whether these changes can be represented
in terms of a closed feedback loop (e.g., sea ice thinning
enhancing ocean heat transport into the Arctic81) or should be
classified as important drivers of polar climate change that cannot
be expressed within a feedback framework.

Quantitative evaluation of feedbacks in polar regions
Radiative feedbacks. The feedback parameters provide classical
measures of the magnitude of the radiative feedbacks (Box 1).
They are defined as the change in radiative fluxes due to the
impact of a change in surface temperature upon the variable of
interest (e.g., surface albedo, water vapor amount, cloud cover
also referred to as climate variable) and are quantified in Wm−2

K−1. The net climate feedback parameter λ, which is equal to the
sum of all the parameters for the individual feedbacks, can be
estimated by measuring all the terms of the equation describing
the global mean radiative balance (Eq. (1) in Box 1) or by
regressing the change in radiative flux at the top of the atmo-
sphere (TOA) against the global mean surface temperature
change82. It is somewhat more complex to evaluate specific
feedback parameters λi, as this requires isolating the impact of
each feedback variable on the Earth’s energy balance31, 33, 83–87.

Since TOA fluxes determine the total energy budget of the
Earth’s climate system, they are a natural reference point for
computing climate feedbacks at a global scale. They are also
closely connected to surface temperature change in the Tropics,
where deep convection leads to a vertically well-mixed atmo-
sphere. In the Arctic, where deep vertical mixing is suppressed by
strong static stability in the troposphere, computing feedback
parameters based on surface fluxes can lead to important
additional insights19, 23, 55, 74. For example, a change in clouds
that raises atmospheric emissivity in the Arctic inversion layer
can lead to increases in both upwelling and downwelling
longwave radiation, and thus lead to energy loss and a negative
cloud feedback at TOA but energy gain and a positive cloud
feedback at the surface19, 88.

Individual feedback parameters defined at the surface or TOA
can be diagnosed using several different methods, including
partial radiative perturbations31, the less computationally

expensive approximate partial radiative perturbations83, and the
even more idealized radiative kernel technique85, 86. Using this
now widely used method, changes in TOA radiative fluxes due to
a uniform, idealized perturbation in the feedback variable are first
computed using a radiative transfer model to obtain the so-called
kernel. The kernel thus only depends on the radiative transfer
algorithm and the mean state of the system. λi can then be derived
by multiplying the kernel by the response of the feedback variable
to changes in global mean surface temperature.

In parallel to feedback parameters, other expressions can
sometimes be easier to interpret or be more convenient. One
option is to diagnose the temperature change that can be
attributed to each feedback explicitly, known as a warming
contribution (see the methods). It is also instructive to compare
the temperature changes due to a particular feedback to changes
of a reference system in which the feedbacks of interest are
inactive. In the radiative feedback framework, the reference
system is traditionally chosen as the Planck response. The
feedback factor γi is then defined as the ratio of each feedback
parameter to (minus) the Planck feedback λ0: γi= λi/−λ0. An
advantage of this approach is that the feedback factor γi is
dimensionless because it is expressed relative to the reference
system. It can then be used to compare the impact of very
different processes, bearing in mind that its specific value depends
on the reference system chosen12(for more details see the
methods).

In addition to the approaches focused on the top of the
atmosphere or the surface, it is possible to analyze the origin of
three-dimensional temperature changes such as in the climate
feedback response analysis method89 (CFRAM). It has also been
proposed to decompose the feedbacks in ways that differ55, 90

from the traditional one described in Box 1. Each methodology is
adapted to a special purpose but also has its own limitations. For
instance, a three-dimensional analysis can highlight the processes
that are at the origin of the changes at various level in the
atmosphere, but it may require model outputs that are not
routinely saved by climate modeling centers. Finally, applying
different methods leads to different definitions of feedbacks and
ultimately differing quantitative assessment of feedback strengths.

Limitations of the linear approach. The standard radiative
feedback framework assumes that the response of the system can
be expressed as a linear function of the surface temperature. It is a
very useful approximation but some processes cannot be
expressed in terms of functions of single variables and the
radiative feedback framework has to be adjusted to capture
changes in the system not directly related to surface
temperature91, 92. Moreover, assuming linearity in feedbacks fails
in many cases, as can be expected for a system as complex as the
Earth’s climate. For example, the magnitude of the climate
feedback parameter λ generally decreases with time in climate
models after a rise in atmospheric CO2 concentration, corre-
sponding to increasing climate sensitivity as equilibrium is
approached32, 76, 92. λ may also depend on the magnitude of the
perturbation87, 93–95.

The non-linearity of the feedbacks can be described in different
ways. A simple definition will be used here: the feedback is non-
linear if the feedback factor γ is not constant. Non-linearities can be
caused by several processes. The strength of the feedback can be a
function of the state of the system. This state dependence can often
be expressed as a time dependence when the state changes with time.
Furthermore, the different processes controlling the response to a
perturbation may have different time scales. Their relative contribu-
tion to local and global scale feedbacks may thus evolve leading to
spatially or temporally non-constant feedback factors76, 92, 96.
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Fig. 2 Nonlinearity in the surface albedo feedback factor for three
consecutive doublings of CO2. The feedback factor, defined as the ratio of
the magnitude of the albedo feedback on the Planck feedback, is calculated
using the radiative kernel technique85 and zonal averages are plotted for
three consecutive doublings of CO2 concentrations in CCSM3. The global
average feedback factor decreases87 from 0.097 for 2xCO2–CNTL to 0.053
for 8xCO2–4xCO2
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In polar regions, the presence of different phases of water
implies that many feedback parameters display a particularly
strong dependence on the state of the system near the freezing
point and are thus highly non-linear. For instance, phase changes
play an important role in polar clouds leading to non-linearities
in the cloud feedback32, 34, 39, 40. Furthermore, feedbacks related
to the cryosphere generally depend on the surface area covered by
snow or ice. As temperatures rise, this area decreases and the
feedback strength is reduced. This is illustrated87 in Fig. 2 for the
surface albedo feedback in response to three consecutive
doublings of CO2 in the Community Climate System Model
version 3 (CCSM3). At many latitudes, the value of the feedback
factor is smaller for the third doubling (8 × CO2–4 × CO2) than it
is for the first (2 × CO2–CNTL). Between 50°S and 60°S the
feedback approaches zero for the third doubling, since the
Southern Ocean is already ice-free at these latitudes in the 4xCO2

climate, and no further melting can occur. On the other hand, the
value of the feedback factor increases at northern high latitudes
(75°N–90°N), as the sea ice edge retreats within the central Arctic
at high warming.

Non-radiative feedbacks. The traditional radiative feedback fra-
mework has been extended to additional processes that influence
the energy balance of the Earth, offering an effective way to
evaluate and compare the strength of the different
feedbacks55, 76, 89. This approach has also been successful for
some biogeochemical and biogeophysical feedbacks66.

In contrast, the evaluation of key non-radiative polar feedbacks
is generally inconsistent among the different feedbacks and even
among different studies of the same feedback. For the ice
growth–thickness feedback, in analogy with the radiative feed-
back framework, the thickness sensitivity parameter is defined as
the ratio of the sea ice thickness change to the perturbative
forcing49, but this definition has not been widely used so far. The
effectiveness of the ice production-entrainment feedback can be
measured50, 51 as the ratio between the melting immediately
caused by the entrainment of warmer water in the surface layer to
the initial ice growth. The ice production-ocean heat storage
feedback has been estimated by the ratio between the heat losses
associated with sea-ice volume changes to the heat storage below
the surface level52, 53. Both quantities can be evaluated directly
from observations or model results. (Supplementary Note 1).

Those definitions appear justified taken alone but the diversity of
definitions and methods to quantify those feedbacks complicates
their systematic evaluation and the comparison of the role of the
different processes in observed changes. A common framework
would thus be very helpful.

Implications of correctly quantifying feedbacks
The analysis and quantification of feedbacks have many potential
applications. This is illustrated in this section by explaining how
this can be used to understand the higher temperature changes
expected in the Arctic compared to other regions, to perform a
process-oriented evaluation of model behavior, and to reduce the
uncertainty in projections.

Polar amplification. Overall, climate feedbacks are less stabilizing
(i.e., feedback parameters are less negative or more positive) in
polar regions than in the tropics. This explains the larger tem-
perature changes experienced in polar regions in response to a
perturbation (Fig. 3), a phenomenon referred to as polar
amplification19, 20, 23, 97. For the climate changes projected for the
21st century, polar amplification is much stronger in the Arctic
than in the Antarctic. In the Arctic, the large amplification mostly
results from (1) a relatively large and positive lapse rate feedback,
due to a different vertical distribution of the temperature change
compared to the tropics; (2) a relatively weak negative Planck
response, due to smaller blackbody emissions per unit warming at
lower temperatures (Stefan–Boltzmann law); and (3) a large
positive surface albedo feedback, due to the loss of high albedo
snow and ice-covered surfaces, as well as a contribution from
atmospheric heat transport (Fig. 3a). In the Antarctic, both the
weak Planck response and the positive surface albedo feedback
induce polar amplification. Warming is damped relative to the
Arctic due to a less positive lapse rate feedback, more negative
cloud feedback, and strong ocean heat uptake in the Southern
Ocean under transient warming (Fig. 3b).

Note that if feedbacks are defined using global mean rather
than local surface temperature change, the Planck feedback
appears strongly negative in the Arctic because the local
temperature change exceeds the local mean. Additionally, the
polar amplification has a large seasonal cycle, displaying over the
Arctic a minimum in summer and a maximum in fall/winter. In
summer, the influence of the large positive surface albedo
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feedback is compensated by a strong oceanic heat uptake and
negative cloud feedbacks while in fall/winter the heat released by
the ocean, the contribution of lapse rate feedback and cloud
feedbacks induce a large warming55, 98.

Origin of model biases. In polar regions, many studies have
identified model strengths and weaknesses in reproducing
observations1, 8, 10, 99, 100. Yet, perhaps the most important
challenge is identifying the climate system processes that must
be represented in order to consider a model realistic enough for
mechanistic studies and projections. More generally, simple
comparisons between model results and observations do not
allow estimating the origin of model biases or their impact.
Process-based model evaluation offers the possibility of exploring
the causes of discrepancies more deeply, identifying the links
between various variables and ultimately suggesting model
improvements8, 46, 101–103.

To illustrate this point, we compare the ice
production–entrainment feedback in three existing simulations
for all the sectors of the Southern Ocean with estimates derived
from observations and a reanalysis (Fig. 4). A clear link is found
between the value of the feedback factor and the amplitude of the
seasonal cycle of ice volume: since the ice production–entrainment
feedback is negative, it tends to damp the seasonal cycle; i.e., a
stronger feedback corresponds to a weaker seasonal cycle. The
spread across simulations and Antarctic sea ice regions in Fig. 4
stresses the large sensitivity of the feedback to the ocean properties.
As many climate models suffer from large biases in their
representation of the vertical structure of the Southern Ocean,
they are unlikely to predict this feedback accurately. For instance,
the overestimation of the amplitude of the seasonal cycle of sea ice
volume in the model CCSM4 is likely related to a too weak
negative feedback and improvements in the representation of

ocean properties, in particular of temperature and salinity below
the surface layer, would reduce this bias.

Uncertainties in model projections. One justification of the
development of the radiative feedback framework is to determine
the processes that can explain the range of model projections
for a specific scenario of future changes in radiative forcing. As
expected, the models displaying the largest surface temperature
changes are the ones for which the radiative feedbacks have
the largest (most positive) values. The same approach can be
applied to the non-radiative feedbacks investigated here as they
are related to the magnitude of the response to any type of
perturbation.

Although it is better if a model is able to reproduce the
observations with a bias that is as small as possible, it is not clear
for many variables, such as the global mean temperature, that the
response to a perturbation is a function of this bias104. In other
words, there is no a priori reason to believe that a model which
reproduces the present global mean temperature well will provide
more reasonable projections of future climate than a model that
has larger biases. Indeed, a model may have a global mean
temperature close to observations due to compensations between
many factors that may not necessarily balance in a projected
climate105.

The situation is distinctive for polar regions, where the
feedbacks are strongly non-linear and thus state dependent. This
provides an instructive way to interpret the range of model
responses as a function of the value of some variables for present-
day conditions106, 107. Furthermore, it has been argued that a
model displaying a more realistic mean state in polar regions will
also have a better representation of key processes and thus will
provide a more likely estimate of future climate changes than a
model with larger biases. This has then been used to justify the
selection of models based on their mean state108, 109. This idea
appears useful in principle but is hard to generalize and is subject
to criticism. In particular, it is not always clear to determine how
to evaluate models, which variable should be used to select
models, and if the currently available model sample is adequate to
apply a meaningful selection. This has led to strong debate in the
community about the justification of this approach, which may
artificially reduce the uncertainty range by discarding model
results that are as likely as the others110. We propose to use
feedback quantification more extensively to evaluate model
behavior, and foresee that this can contribute to more robust
estimates of the likelihood of projections.

A simple and consistent approach for non-radiative
feedbacks
The review above illustrates that many definitions and evaluation
methods have been proposed for the various radiative and non-
radiative feedbacks. Nevertheless, all the feedbacks can be
described and quantified using a simple and consistent frame-
work, based on the definition of a feedback factor γ.

For radiative feedbacks, the feedback factor γi is the ratio of a
particular feedback parameter to minus the Planck feedback
parameter. An analogous expression can be written for any other
feedback. When only one feedback is operating (see the methods
for the case of multiple feedbacks), the feedback factor γ can be
quantified as the ratio between the additional changes specifically
due to the feedback and the response of the full system including
all the feedbacks (Total response). This additional change (Total
response− Reference response) is itself computed as the differ-
ence between the response of the full system and the one of a
reference system in which the feedback under consideration does
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1990–2005 for a standardized perturbation corresponding to an increase of
10 cm of sea ice. For both observational and model datasets, the evaluation
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not operate (Reference response):

γ ¼ Total response� Reference response
Total response

ð1Þ

The methodology requires explicitly identifying (1) a pertur-
bation or a class of perturbations, (2) a response variable involved
in the feedback loop, (3) the full system with all processes
operating and its response to the perturbation, and (4) the
reference system with the process of interest not operating and
the reference system response to the perturbation. While the
framework is general, a clear definition of this system is required,
as the value of the feedback factor depends on the way the
reference system is chosen12. Let’s examine radiative feedbacks as
one example (see the methods): (1) the perturbation is the
radiative forcing F, (2) the response variable is Ts, (3) the full
system includes one or more radiative feedbacks plus the Planck
response referenced to Ts, and (4) the reference system is the
Planck response only.

As it is based on the same principles, analysis of non-radiative
processes using this feedback factor retains the main advantages
of the radiative feedback framework. First, each feedback can be
associated with a well-defined conceptual model describing the
mechanisms and interactions involved. This is essential in order
to allow each feedback to be firmly rooted in a process-based
analysis that is straightforward to apply and understand. Sec-
ondly, it is possible to evaluate the magnitude of the feedbacks
using a dimensionless factor, ideally both in models and obser-
vations. This is required to assess the contributions of the dif-
ferent feedbacks to the total response and to compare the role of
each feedback in various Earth System models to determine
which is responsible for their distinctive sensitivities.

As in the example below, the feedback factor can in some cases
be evaluated using observations or model outputs only, but it may
also require specific additional calculations. This is illustrated
using a simple model in Supplementary Note 2 for the ice
growth-ice thickness feedback. In this case, potential compensa-
tions can occur between feedbacks and the interpretation of
the estimates that are obtained must then take into those
synergies65, 89.

An example of the approach for the ice production-ocean
entrainment feedback. We illustrate the methodology with the
ice production–entrainment feedback50. For this negative feed-
back, (1) the perturbation is a given amount of ice production, (2)
the reference variable is ice thickness, (3) the full system is the sea
ice plus ocean column with the entrainment process, and (4) the
reference system is the sea ice plus ocean column but without
entrainment. The intensity of this feedback can then be evaluated
using the ratio

γθ ¼ Total ice thickness changes�Ice thickness changes without entrainment
Total ice thickness changes ð2Þ

Despite a different form, this expression is strictly equivalent to
the original formulation proposed in ref. 50 and used for Fig. 4
(see Supplementary Note 1 for the demonstration).

As the mixed layer deepens, it entrains water with increasing
temperature (since temperature increases with depth) and the
heat input grows. Consequently, the absolute value of the
feedback factor γθ increases with ice formation (meaning that
its value decreases, since it is a negative feedback) until the end of
winter (Fig. 5). This non-linear behavior can be illustrated using a
simple analytical model as shown in Supplementary Note 3 and
Supplementary Fig. 3.

In practice, it is usually not possible to completely quantify all
the dependencies of a non-linear, spatially variable feedback
factor. This is why it has been suggested to select a prescribed
perturbation representative of the condition of interest, similarly
to the classical analysis of radiative forcing in terms of
doublings of atmospheric CO2 concentrations (Fig. 2). For the
ice production-ocean entrainment feedback, we propose to
evaluate γθ by considering the response to a standardized
perturbation corresponding to an increase in sea ice thickness
of 10 cm (Fig. 4). The number of observed profiles being much
higher in summer, the feedback parameter is evaluated from data
collected during this season. It is clear that the corresponding
values of the feedback factors are not universally valid but they
provide a standard benchmark for comparisons and analyses.

Concluding remarks
This Perspective underlines the critical role of feedbacks in the
dynamics of polar climate and the need to quantify them pre-
cisely. Feedback quantification provides a powerful tool to
understand the interactions between the components of the sys-
tem, to analyze model biases and to determine the origin of the
differences within a set of model predictions. We have focused on
some physical processes affecting the atmosphere, sea ice, ice
sheets, land surfaces and ocean in polar regions. Yet, the dis-
cussion can be extended to feedbacks including biogeochemical
processes.

Quantification of feedback strength is not simple as many polar
feedbacks are strongly non-linear. Indeed, feedback magnitude
depends on the location, the season and is a function of the
climate state. We have provided here values in specific
conditions for some of the feedbacks investigated. However, one
single number or a range, as could be included in a table for
instance, is not sufficient to fully characterize a feedback and its
variations.

While the quantitative estimation of feedbacks follows well-
established methodologies for radiative feedbacks, this is not the
case for many other feedbacks. Nevertheless, the traditional
radiative feedback analysis can be extended to define a feedback
factor that can be used as a standard measure of most polar
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Fig. 5 Evolution of the ice production-entrainment feedback factor as a
function of ice production. For each value of ice production, the entrainment
is computed from the January–February 1990–2005 mean temperature and
salinity profiles115 assuming a mixed layer deepening restoring the static
stability of the water column after the brine release. It is shown here for a
Weddell Sea location typically covered by ice in winter (near 30°W, 65°S).
The strength of the pycnocline is thus evaluated in summer but it must be
measured below the layer close to the surface that is warmed above
freezing point temperature if sea ice completely melts, as the heat in this
layer is removed quickly in fall when the temperature drops and is not
involved in the ice production-ocean entrainment feedback
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feedbacks. This feedback factor is estimated as the relative con-
tribution of the feedback to the total change of the system in
response to a perturbation. It has several advantages: (1) it is
compatible with the radiative feedback framework which has
proven useful over the past three decades, (2) it is based on a clear
physical interpretation of key physical processes, (3) the frame-
work is simple to articulate, and (4) an unambiguous quantifi-
cation can be obtained allowing an objective evaluation of the
processes that control the response to a perturbation.

Using a feedback factor provides the clear theoretical advan-
tages of being consistent with the feedback theory, general and
easy to interpret. Nevertheless, based on data availability or on
the specific goal of a study, other parameters will continue to be
used to diagnose the magnitude of some feedbacks. This may
of course be perfectly justified. However, the limitations and
merit of such an approach compared to a more general view need
to be discussed and taken into account when interpreting the
results.

Even though the feedbacks discussed here are well-known,
some are often only used to provide a qualitative interpretation or
a narrative framework to explain the changes occurring in polar
regions. In particular, the quantitative evaluation of non-radiative
feedbacks in models is rare, with only few and, in some cases, no
publications on this topic for some feedbacks. This Perspective
motivates the use of more systematic approaches to analyze past
and upcoming model results. In particular, the framework pre-
sented here allows tracing the origin of model diversity back to
physical considerations. Identifying the feedbacks that are critical
for correctly simulating the mean state and variability of polar
climate will ultimately promote the development of targeted
observational campaigns, by means of which models will be
evaluated. Such campaigns already exist or are underway: the
Year of Polar Prediction (YOPP) or the Multidisciplinary drifting
Observatory for the Study of Arctic Climate (MOSAiC) are two
examples. In summary, advancing evaluation of feedbacks will
require dedicated model experiments and careful analyses, com-
plemented with the collection of dedicated observations that can
constrain model feedbacks. Some of those elements are clearly
challenging, but this will be strongly beneficial for our under-
standing of polar climate dynamics and of the future changes
expected at high latitudes.

Methods
Radiative feedbacks expressed as feedback factors. The global mean radiative
balance at the TOA in response to a radiative forcing F (in Wm−2) at equilibrium
can be written as

F þ λ
0
þ
X
i

λi

 !
ΔTS ¼ 0 ð3Þ

where ΔTS (in K) is the surface temperature change, λ0 (~−3.2Wm−2 K−1) the
Planck response and the λi (in Wm−2 K−1) correspond to the radiative feedback
parameters related to the response of surface albedo, clouds, water vapor and
vertical temperature gradient (lapse rate feedback).

In the absence of these feedbacks, the equilibrium surface temperature change
in response to a doubling of CO2 would be governed by only the Planck response,
given byΔT0 ¼ �F=λ

0
and equal to approximately12 1.2 K. This temperature

change is amplified or damped by individual feedbacks, depending on whether they
contribute to a positive or negative additional radiative perturbation to the TOA
radiative balance in response to warming. The overall equilibrium warming
resulting from a CO2 doubling is thus greater than ΔT0, likely12–14 between about 2
and 4.5 K.

The primary advantage of the feedback framework is that it allows a process-
based analysis of the adjustment of the system to a radiative perturbation and a
quantification of the importance of each process. Traditionally, the magnitude of
each feedback is compared to that of the Planck response, giving dimensionless
feedback factors γi= λi/−λ0. In turn, the surface temperature change in response to

forcing can be cast in terms of the feedback factors as

ΔTs ¼ ΔT0= 1�
X
i

γi

 !
ð4Þ

The sum of all the feedback factors γg ¼
P
i
γi ¼

P
i

λi
�λ0

can also be calculated as

γg ¼
ΔTs � ΔT0

ΔTs
ð5Þ

This sum can thus be interpreted as the additional warming due to the feedbacks
divided by the total temperature change.

Radiative feedbacks expressed as warming contributions. The formalism can
be extended to assess the relative contributions of individual feedbacks to local
surface warming by use of the local energy budget equation:

F þ λ
0
þ
X
i

λi

 !
ΔTS þ ΔOHUþ ΔAHT ¼ 0 ð6Þ

where each variable is a function of latitude, ΔOHU is the change in ocean heat
uptake (positive into atmospheric column) and ΔAHT represents the change in
atmospheric heat flux convergence (positive into atmospheric column). Following
previous studies18, 19, 72, we define the warming contribution as the energetic
contribution (in Wm−2) associated with a particular feedback (λiΔTs) or atmo-
spheric forcing (F, ΔOHU or ΔAHT) divided by the magnitude of the global-mean
Planck response �λ0:

ΔTs ¼ �F=λ0 � λ′0ΔTs=λ0 �
X
i

λiΔTs=λ0 � ΔOHU=λ0 � ΔAHT=λ0 ð7Þ

where the terms on the right-hand side each represent an individual warming
contribution and together sum to the total surface warming ΔTs (with small
residual ignored here); λ′0 ¼ λ0 � λ0 represents the deviation of the local Planck
response from its global-mean value. Here we use local feedbacks λ diagnosed using
radiative kernels85 averaged over years 85–115 of abrupt CO2 quadrupling simu-
lations of 13 models72; ΔOHU is diagnosed as the anomalous net surface heat flux
and ΔAHT as the difference between ΔOHU and net TOA radiation flux
anomalies. Figure 3 shows the calculated warming contributions of feedbacks and
forcings in polar and tropical regions.

Feedback factor and the feedback gain when several feedbacks are operating.
When several feedbacks are operating, their contribution to the changes in the
radiative balance is additive. Using the same notations as above, the radiative
balance at equilibrium is

F þ λ
0
þ
X
i

λi

 !
ΔTS ¼ 0 ð8Þ

leading when dividing by λ0 to

F
λ
0

þ 1þ
X
i

λi
λ
0

 !
ΔTS ¼ 0 ð9Þ

and

�ΔT0 þ 1�
X
i

γi

 !
ΔTS ¼ 0 ð10Þ

The contribution of the feedback factors is thus also additive.
This is not the case for feedback gain G

G ¼ ΔTs

ΔT0
¼ 1

1�P
i
γi

¼ 1
1� γg

ð11Þ

As the various feedbacks are interacting to get the full response, the gain when two
feedbacks are active is not the sum of the gains when the feedbacks are acting
separately.

When only one feedback is acting or if only the sum of all feedbacks is
considered, γg can be simply evaluated by

γg ¼
ΔTs � ΔT0

ΔTs
ð12Þ

Several techniques are available82, 85 to estimate the individual γi. They
generally require to perform specific analyses to extract the contribution of a
particular feedback. One example is to perform an experiment when only the
investigated feedback is operating and comparing the changes ΔTsi in this
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experiment to the one of the reference system ΔT0.

γi ¼
ΔTsi � ΔT0

ΔTsi
: ð13Þ

This solution is not the one traditionally used for radiative feedbacks but the
approach can be generalized to any feedback where this alternative may be a
practical solution for feedback evaluation.
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