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The southern ocean meridional overturning in the
sea-ice sector is driven by freshwater fluxes
Violaine Pellichero 1, Jean-Baptiste Sallée 1, Christopher C. Chapman1 & Stephanie M. Downes2

The oceans are traversed by a large-scale overturning circulation, essential for the climate

system as it sets the rate at which the deep ocean interacts with the atmosphere. The main

region where deep waters reach the surface is in the Southern Ocean, where they are

transformed by interactions with the atmosphere and sea-ice. Here, we present an

observation-based estimate of the rate of overturning sustained by surface buoyancy fluxes

in the Southern Ocean sea-ice sector. In this region, the seasonal growth and melt of sea-ice

dominate water-mass transformations. Both sea-ice freezing and melting act as a

pump, removing freshwater from high latitudes and transporting it to lower latitudes, driving

a large-scale circulation that upwells 27 ± 7 Sv of deep water to the surface. The upwelled

water is then transformed into 22 ± 4 Sv of lighter water and 5 ± 5 Sv into denser layers that

feed an upper and lower overturning cell, respectively.
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The Southern Ocean is a known region of intense water-
mass transformation and formation1,2 and thereby plays a
central role in the climate system by controlling the rate at

which ocean reservoirs of tracers, such as heat and carbon,
communicate with the surface. The upper cell of the meridional
circulation in the Southern Ocean (Fig. 1) is commonly recog-
nized as a wind-driven circulation, with Circumpolar Deep Water
(CDW) upwelling along steeply tilted isopycnals, driven by
divergent Ekman transport at the surface. CDW originates from a
range of deep waters that enter into the Southern Ocean, and
upwells in the Antarctic Circumpolar Current (ACC)3,4. At the
surface CDW is exposed to surface buoyancy fluxes, then trans-
forms into lighter Subantarctic Mode Water (SAMW) and Ant-
arctic Intermediate Water (AAIW); these water-masses constitute
the upper branch of the Meridional Overturning Circulation5.
The Southern Ocean is also a major source of dense Antarctic
Bottom Water (AABW), which forms primarily in the Ross and
Weddell Seas, and along the eastern coast of the Antarctic
continent6–8. In these regions, the intense surface buoyancy fluxes
associated with the interactions between the ocean and the
atmosphere, ice shelves, and sea-ice, produce cold and salty Dense
Shelf Water (DSW), which is transformed into AABW that fills
most of the world’s oceans9–11.

Recently, the Southern Ocean freshwater cycle, of which sea-ice
formation and melting is an important component, has been
suggested to play an important role in driving the large-scale
overturning circulation12. However, due to the logistical chal-
lenges in acquiring direct observations of atmosphere-ice-ocean
fluxes in remote regions and under sea-ice, the link between the
large-scale ocean circulation and freshwater cycle have only been
estimated using data assimilating numerical models, in which

fluxes and small scale physics are adjusted to best-match ocean
observations, but remain questionable12.

In this paper, we present a novel and complementary analysis
in which we estimate surface buoyancy fluxes and their impacts
on ocean surface water-masses, without the use of a complex
numerical model, but rather directly from an unprecedented
database of ocean measurements under sea-ice; combining
observations from ships, autonomous floats, and animal-born
sensors13. Surface buoyancy fluxes received by the ocean surface
mixed-layer from atmosphere, ice, and diapycnal mixing are
inferred as a residual of observation-based mixed-layer heat and
salt budgets (see Methods section, Eqs. (4) and (5)), and water-
mass characteristics are derived from hydrographic
observations13.

Results
Atmospheric and sea-ice buoyancy fluxes. The seasonal varia-
tion of the estimated net buoyancy fluxes to and from the surface
mixed-layer in the sea-ice sector is shown in Fig. 2, with an
overall loss of buoyancy in winter (Fig. 2a, c), and gain of
buoyancy in summer (Fig. 2b, d) in the order of 100–200Wm−2

(in this paper, all buoyancy flux units are converted into an
equivalent heat flux). Interestingly, it is the freshwater contribu-
tion that dominates the seasonal variation of the net buoyancy
flux. The heat flux contributes only marginally (a factor ~2–5
lower than the freshwater contribution), and mostly in regions
near the winter sea-ice edge that spend much of the year ice-free.
The relative contribution of freshwater and heat to the net
buoyancy flux is consistent with sea-ice partially isolating the
ocean from atmospheric heat fluxes, combined with large
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freshwater fluxes associated with brine rejection and ice melt.
Additionally at near freezing temperatures, the thermal expansion
coefficient of sea-water is close to zero14, meaning the density of
water is quite insensitive to heat fluxes.

The geographical pattern of buoyancy fluxes presents a large-
scale meridional gradient, with the largest fluxes near the
Antarctic coast. This meridional gradient is largely dominated
by the freshwater flux contribution (Fig. 2), and is more marked
in winter than in summer. Even though we are unable to
disentangle from our dataset the contribution of sea-ice,
precipitation, and diapycnal mixing, sea-ice is likely a strong
contributor to the freshwater flux13. The meridional gradient in
the buoyancy flux and its seasonal evolution is consistent with the
fact that the largest amount of ice formation occurs near the
Antarctic coast on continental shelves, while ice melt tends to be
more spread out after ice has been exported away from its
formation region by wind and currents15.

Water-mass transformation and related vertical circulation. In
1982, Walin16 proposed a framework to estimate the annual-
mean water-mass transformation from knowledge of surface heat
fluxes. Using this framework and the net mixed-layer buoyancy
fluxes presented above, we derive the annual-mean water-mass
transformation in the mixed layer in the Antarctic sea-ice zone
(See Methods section; Eq. (2); Fig. 3a). These water-mass trans-
formation rates show buoyancy gain in the lightest density class
encountered in the sea-ice sector (γ ≤ 27.6 kg m−3), and loss of
buoyancy in the heaviest density class (γ ≥ 27.6 kg m−3). The
buoyancy gain peaks at 27.3γ, reaching ~−22 ± 4 Sv of trans-
formation directed toward lighter waters, while the loss of
buoyancy peaks at 27.9γ, yielding ~ 5 ± 5 Sv of transformation
toward heavier waters (for details on error estimates, see Methods
section).

The net water-mass transformation has a strong seasonal cycle
(Supplementary Note 1). In fall and winter, water-masses are
transformed into denser waters, while in spring and summer
water-masses are transformed into lighter waters, but act within
lighter density classes (Supplementary Note 1; Supplementary
Fig. 1). Such a seasonal cycle is consistent with the influence of
melting and refreezing sea-ice, as brine rejection associated with
ice formation in fall/winter would densify the dense water-masses
that lie close to the Antarctic continent where sea-ice forms.
Lightening in spring and summer is instead more spread out in
density, and shifted to lighter density classes consistent both with
the seasonal cycle of the upper ocean and with the northward ice
advection toward lighter density class areas after its formation. As
an attempt to quantify the impact of sea-ice in our derived water-
mass transformation, we use a recent estimate of ice–ocean
fluxes17 from which we derive an independent water-mass
transformation. In addition, we also estimate transformation by
precipitation18 and iceberg melt19 (Supplementary Note 2;
Supplementary Fig. 2). Although each freshwater flux product
has numerous limitations (especially the precipitation flux; see
Supplementary Note 2), they permit us to compare the relative
order of magnitude of water-mass transformation by each
component of the freshwater cycle within our estimate of the
total buoyancy flux. The water-mass transformation rates
obtained from the sum of the three products and those from
our in situ observation-based estimates compare very well,
suggesting that precipitation and sea-ice fluxes are the dominant
contributors to water-mass transformation. This relatively good
comparison gives us confidence in our water-mass transforma-
tion estimate. To further test the robustness of our calculations,
we have compared our estimates of the total buoyancy flux with
four other products (see Supplementary Note 3; Supplementary
Fig. 4). Although there are differences in the details in the
buoyancy flux distributions between the different products, all
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Fig. 2 Surface buoyancy fluxes in the sea-ice sector. Winter (a,c) and summer (b,d) surface buoyancy fluxes derived from an observation-based mixed-
layer buoyancy budget, and decomposed into surface freshwater flux (a,b) and surface heat flux (c,d). Units are equivalent Wm−2. The positive values
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agree on the order of magnitude of the heat and freshwater fluxes,
and their large-scale structure (See Methods section).

In the water-mass transformation framework, water-masses
can either accumulate or reduce in volume in a given density
class, which (in steady state) must be balanced by, subduction or
upwelling, respectively, through the base of the ocean mixed-
layer16,20 (Eq. (2)). The water-masses lighter than 27.3γ (Fig. 3b)
subduct into the Southern Ocean interior, with a peak subduction
at 9 ± 4 Sv in the density class 27.1 ± 0.05γ that is dominated by
freshwater-driven water-mass transformation. This density range
(27–27.2γ) corresponds to the dense mode waters and inter-
mediate waters5 that constitute the upper branch of the Southern
Ocean meridional overturning circulation (Fig. 1, red arrow).
Upper Circumpolar Deep Waters (27.3–27.8γ; Fig. 1, gray arrow)
primarily upwells into the mixed-layer from the ocean interior.
The errors are large when computing subduction/upwelling on
narrow density bins (0.1γ; Fig. 3b), but the signal-to-noise ratio
improves when computing subduction/upwelling over wider
density range (26.3–27.3γ; 27.3–27.9γ; 27.9–28.8γ; Fig. 3b). The
overall net upwelling is 27 ± 7 Sv, distributed relatively evenly
over the entire 27.3–27.9γ density range, but slightly greater in
the lighter part of the layer, with a peak upwelling of ~8 ± 8 Sv in

each of the layer 27.3 ± 0.05γ and 27.4 ± 0.05γ. Water denser than
~ 27.8γ tends to subduct below the ocean surface (Fig. 1, blue
arrow). Subduction peaks in the Lower Circumpolar Deep Waters
density class (27.9–28.2γ), with smaller subduction rates also
observed in the Dense Shelf Waters density class, 28.5–28.8γ.
Overall, the subduction of dense Circumpolar Deep Waters and
Dense Shelf Waters are the precursor to the formation of
Antarctic Bottom Waters.

In agreement with previous studies based on large-scale
inversion of the global ocean circulation4,21,22, we find that the
density surface 27.3γ marks the approximate division between
water that upwells and is converted into lighter waters, and water
that upwells and is converted into denser waters (Fig. 3c). The
upwelling density class, 27.3–27.9γ, outcrops circumpolarly in
winter in large portions of the sea-ice sector. Density layers lighter
than 27.3γ overall subduct and outcrop in winter close to the
position of the polar front, consistent with a subduction of mode
and intermediate waters in the vicinity of the Antarctic
Circumpolar Current fronts23 (Fig. 3c). Water denser than
27.9γ also primarily subducts, but outcrops in winter close to the
Antarctic continent in East Antarctica, and in the Ross and
Weddell Seas.
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Transformation at regional scales. The sign and magnitude of
the annual-mean transformation rate varies regionally in each
density classes (Fig. 4; see Brambilla et al.24 and Maze et al.25 for
detailed discussion of the calculation of transformation maps).
The transformation in the lightest layer 26.5–27.3γ is associated
with a lightening that covers mostly the outer edge of the sea-ice
sector (Fig. 4a). All sectors of the associated outcrop are con-
sistently associated with an annual-mean lightening of the water-
masses. In contrast, the annual-mean transformation in the Cir-
cumpolar Deep Waters density class (27.3–27.6γ and 27.6–27.9γ)
varies in sign from one region to another. We find a dominant
lightening of the lightest Circumpolar Deep Waters density layer,
27.3–27.6γ, slightly counterbalanced by densification (Fig. 4b) in
primarily the Bellingshausen and Amundsen Seas. In denser
Circumpolar Deep Waters, 27.6–27.9γ, the annual-mean trans-
formation is almost exclusively densification in all regions, except
the southern Weddell and Ross Seas (Fig. 4c). In particular, large
densification of the layer 27.6–27.9γ occurs along the east-
Antarctica continental shelf. Such large densification in this
region must contribute to feeding the production of dense waters
that ultimately form dense bottom waters7,8. Finally, the densest
waters, in the range 27.9–28.7γ, are only observed in the well-
known regions of dense water formation: the Weddell Sea, the
Ross Sea, and the Prydz Bay (Fig. 4d). All of these regions are
associated with densification of the densest Circumpolar Deep
Waters into precursors of Antarctic Bottom Waters.

Annual-mean densification of waters adjacent to the Antarctic
continental shelf is likely associated with the local convergence of
water that would feed the bottom cell subduction. While a
detailed local buoyancy budget (probably beyond what can be
accomplished with the current observations system, given the
associated errors) would be needed to further investigate this
question, our analysis suggest that local convergence along the

Antarctic coast occurs in different density classes in different
regions: ~ 27.3–27.6γ in the Bellingshausen and Amundsen seas;
~ 27.6–27.9γ in East Antarctica; ~ 27.9–28.7γ in the Weddell and
the Ross Seas, and the Prydz Bay. We note, however, that the local
water-mass transformation associated with coastal processes and
polynyas, while potentially key for transformation in the densest
waters, are unlikely to be well represented in our observations.

In waters denser than 27.9γ in the Weddell sector, closed
density contours allow estimation of the net subduction. We find
that 4 Sv subducts in the Weddell sector, only slightly lower than
the estimate of 6 ± 2 Sv from inverse box model of the region26,27.
We note that one important difference between our approach and
an inverse model is that estimates from inverse box model include
production by entrainment that occurs under the mixed layer; a
process excluded in our estimate that focuses on mixed-layer
processes. Based on the calculation in the Weddell Sea, we deduce
that only 1 Sv of water denser than 27.9γ subducts outside this
region. We believe this value to be strongly underestimated due to
the poor resolution of potentially key local and transient
processes (e.g., coastal processes and polynyas) in our dataset.
Important buoyancy fluxes are not likely to be captured within
the very dense layers, especially in regions of intense polynyas
activity such as the East Antarctica and the Ross Sea (See
Supplementary Note 5 and Supplementary Fig. 6).

An alternative and complementary way to examine the
variability of water-mass transformations within each density
layer is to investigate transformation in temperature-salinity
space, which allows us to distinguish some features that are
overlooked when viewed only in neutral density space28. In
temperature-salinity space (Fig. 5), water-mass transformations
show a clear dipole, with a large-scale lightening of almost all the
temperature-salinity bins of the surface ocean, and a densification
confined in the coldest water-masses of the domain, close to the
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freezing point. Except for the lightest and densest layer of the
domain, almost all densities are associated with water-masses that
both lighten and densify, but the sign of the transformation is
clearly separated by temperature: densification when the water is
cold, mostly in fall and winter; and lightening when the water is
warmer, mostly in spring and summer. In accordance with the
transformation rates calculated in neutral density space, the
transformations computed in temperature–salinity space indicate
that waters around the characteristics 27.6γ/−1.5 °C/34.3 g kg−1

are associated with a divergence of transformation rate, associated
with an upwelling from the deep ocean.

Surface closure of the overturning circulation under sea-ice.
Most of our current observation-based knowledge of the Southern
Ocean meridional overturning circulation is founded upon large-
scale inverse models2,21,29, but these models generally mis-
represent polar processes such as sea-ice/ocean interaction,
meaning that little is known about the near-surface closure of the
overturning circulation south of the Antarctic Circumpolar
Current. Consistent with our results, the most recently published
global ocean inverse model estimated a southward transport of
~25 Sv of Circumpolar Deep Waters (e.g., 25.5 ± 5 Sv in ref. 28; ~
20 Sv in ref. 21) in the density range ~27.3–27.9γ, and a north-
ward return flow within lighter and denser density classes. In
addition, we find that the estimates of water-mass transformation
in the surface layer agree well with a complex assimilated solu-
tion12, both in terms of the density range and rate of overturning
(though we do observe notable differences when disentangling
freshwater and heat fluxes contributions; See Supplementary
Note 3 and Supplementary Fig. 3). The overall agreement over a
range of very different methods and approaches is to be noted
and provides confidence in our understanding of the large-scale
overturning of the Southern Ocean. The Southern Ocean over-
turning can be interpreted as a two-cell system: one upper cell
associated with upwelling of mid-depth waters and their trans-
formation into lighter waters; and one bottom cell associated with
upwelling of mid-depth waters and their transformation into
denser waters (Fig. 1). But this two-cell system can also be
thought as a single connected pathway in a three-dimensional
view30. In such a conceptual view of the overturning, dense CDW

(Lower Circumpolar Deep Waters, LCDW) originating from the
Atlantic basin are transformed in the polar Southern Ocean
region into bottom waters (bottom cell), which are exported
northward as Antarctic Bottom Waters in the Pacific and Indian
basins, where they lighten into CDW (Upper Circumpolar Deep
Waters, UCDW), before re-entering the Southern Ocean, and
being converted into lighter waters (upper cell). In the three-
dimensional framework, LCDW of typical density ~28γ is
upwelled and converted into denser waters, and UCDW of typical
density ~27.7–27.8γ is upwelled and converted into lighter waters.
In order for the surface fluxes inferred from this study to match
this scenario, LCDW and UCDW need to be converted to lighter
water before they reach the surface, so LCDW can reach the
surface ocean in a density class lighter than 27.9γ (which are
converted into denser water at the surface), and UCDW can reach
the surface in a density class lighter than 27.6 (which is converted
into denser water at the surface). Diapycnal mixing beneath the
mixed-layer is responsible for the conversion before water enters
the mixed-layer. This view is consistent with the model estimate
of Abernathey et al.12, who found that almost ~10 Sv of water is
transformed to lighter density class by diapycnal mixing at all
densities across UCDW and LCDW in the upper 700 m of the
ocean. Upper-ocean transformation of water-masses within the
ocean interior before they reach the mixed-layer is likely be an
important component of the overturning circulation that needs to
be clarified in future work.

Previous work has mostly discussed the ocean circulation
response to cryosphere change in terms of weakening convection
due to increased stratification31–33. In the present study, we show
that sea-ice change, or even change in the regional distribution of
sea-ice, as observed during the last few decades34, could have a
major role in modifying surface water-mass transformation and
the overturning circulation, with critical implication for the global
carbon cycle35–37. Present climate models vary widely in their
ability to represent sea-ice and the Southern Ocean freshwater
cycle38, and thus their present and future rates of overturning
circulation and associated carbon cycle39. Our results provide a
novel observationally-based estimate of the exchanges between
the mixed-layer and the ocean interior in the sea-ice sector that
can be used to assess the ability of models to represent the closure
of the meridional overturning circulation in this key region.
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Additionally, our calculations of the large-scale overturning
circulation are based on ongoing long-term funded international
observation programs. Thus, the method described here could be
used in the future to diagnose variability in circulation rates in a
climate change context.

Methods
Water-mass transformation and formation framework. In this paper, we
compute water-mass transformation and formation based on the study by Tzi-
perman and Speer20, which used a framework first introduced by Walin16. Water-
mass transformation is defined as the volume flux of a water-mass consumed or
produced by buoyancy forcing in a given density class. In contrast, water-mass
formation refers to the convergence or divergence of transformed water-masses,
and can be associated with subduction and upwelling through the base of the ocean
mixed-layer. Buoyancy forcing considered here can be either surface buoyancy
fluxes (exchange of buoyancy between the ocean and atmosphere or between the
ocean and cryosphere), or diapycnal mixing in the ocean interior.

The surface buoyancy flux Bðx; y; tÞ can be expressed as a function of location
and time as follows:

Bðx; y; tÞ ¼ � g
ρ

αH
Cp

þ βðFWF � SÞ
" #

ð1Þ

where α is the thermal expansion coefficient at constant pressure defined by α=
−(1/ρ) × ∂ρ/∂T, β is the saline contraction coefficient at constant pressure defined
as β= (1/ρ) × ∂ρ/∂S, Cp is the specific heat of seawater, ρ is the density of seawater,
H represents the surface heat flux (in Wm−2), FWF is the surface freshwater flux
from evaporation, precipitation and ice formation/melt (in m s−1), and S is the
mean salinity in the mixed-layer. Here, we express the heat flux (first term in the
right hand side of Eq. (1)) and the freshwater flux (second term in the right hand
side of Eq. (1)) as equivalent heat fluxes in Wm−2, for easier comparison of their
respective contributions. The convention used in this study is that a negative flux
corresponds to a buoyancy flux out of the ocean, i.e., the ocean surface layer loosing
buoyancy and becoming denser (e.g., cooling, evaporation and brine rejection).

In addition to surface buoyancy fluxes, diapycnal fluxes can arise from mixing
(either vertically through the base of the mixed-layer, or horizontally through
outcropped isopycnal surfaces), which we will refer to in the study as Rðx; y; tÞ.

The annual-mean transformation rate F(σ0), expressed in m3.s−1, in a given
potential density class σ0, associated with a diapycnal flux, D ¼ B þR,
corresponds to the yearly integrated contribution of diapycnal fluxes to the density
class:

F σ0ð Þ ¼
Z

year
dt
Z Z

area
dxdyDðx; y; tÞδ σðx; y; tÞ � σ0ð Þ; ð2Þ

where δ is a delta function equal to zero except when mixed-layer density is within
the range σ0 � 1

2Δσ
�

: σ0 þ 1
2Δσ

�
.

The water-mass formation, M(σ)24,40,41, is defined as the water that
accumulates over 1 year between two successive isopycnals, σ1 < σ < σ2

MðσÞ ¼ � F σ2ð Þ � F σ1ð Þ½ � ð3Þ

Since we are working on upper-ocean processes, we compute the
transformation/formation rates with respect to surface-referenced potential density
as introduced in the above prognostic equations. Then, in order to identify the
well-known water-masses in neutral density coordinates, we interpolate before each
plot the potential density to neutral density (see Supplementary Note 4 and
Supplementary Fig. 5). We use the relationship γ ’ γðσÞ, presented in
Supplementary Note 4, to convert all results from potential density to neutral
density. All figures in this study are presented in neutral density coordinates.

Computation of water-mass transformation and formation. As shown in Eq.
(2), two critical pieces of information are needed to compute annual-mean water-
mass transformation and formation. The first of these is the climatological seasonal
cycle of potential density (σ) in the ocean surface mixed layer. The second is the
climatological seasonal cycle of the diabatic flux, D, in the ocean surface mixed
layer. In this paper we infer these two terms using a large database of hydrographic
observations in the Southern Ocean sea-ice sector. We define the sea-ice sector as
the region seasonally capped by sea-ice, i.e., the region south of the winter (Sep-
tember) sea-ice extension with an ice concentration greater than 15%. The seasonal
cycle of sea-ice extent is estimated using a climatological-mean (2000–2015)
satellite-derived observations from Nimbus-7 SMMR and DMSP SSMI/SSMIS
passive microwave data at 25 km resolution.

The international Argo project revolutionized our knowledge of the oceans over
its entire seasonal cycle and in the middle of the basins, far from repeat
hydrography lines and coastal regions. In particular, in the historically poorly
sampled Southern Ocean, the Argo project provided a detailed understanding of
the mixed-layer and its density42,43. However, until recently, Argo floats were

unable to sample in the sea-ice sector. In combination with the Argo program, and
traditional ship based observations, Pellichero et al.13 used observations from
instrumented marine mammals44 that widely cover the Southern Ocean sea-ice
sector over its entire seasonal cycle. These complementary databases produced a
robust climatology of Southern Ocean mixed-layer characteristics in the sea-ice
sector, which we use in this study to compute an observation-based seasonal cycle
of potential and neutral density in the Southern Ocean mixed-layer. As such the
water-mass transformation calculations are applied to the Southern Ocean mixed-
layer which varies from tens of meters in summer to more than 200 m during
winter (see Pellichero et al.13 for more details).

Surface diapycnal fluxes are composed of ocean buoyancy exchanges with the
atmosphere and the cryosphere, as well as diapycnal mixing (both vertical and
horizontal). Ocean buoyancy fluxes are commonly obtained from atmospheric
reanalysis datasets. Unfortunately, in the Southern Ocean such reanalysis products
are poorly constrained, and essentially unusable in the seasonally sea-ice covered
region. Instead, we derive our own unique estimate of surface diapycnal fluxes
product based on the climatological seasonal cycle of ocean surface layer
characteristics under sea-ice13.

The mixed-layer heat and freshwater budget can be expressed as

Sm
hm

� FWFþRS ¼
∂Sm
∂t

þ ue � ∇Sm þ ug:∇Sm þ weΔSm
hm

; ð4Þ

and

H
ρ0Cphm

þRT ¼ ∂Tm

∂t
þ ue:∇Tm þ ug:∇Tm þ weΔTm

hm
; ð5Þ

where ue is Ekman velocity, ug is geostrophic velocity, Sm and Tm are respectively
the mixed-layer absolute salinity and conservative temperature, hm is the mixed-
layer depth, we is the entrainment velocity, and RS and RT are respectively salinity
and temperature diapycnal mixing in the ocean mixed layer (both lateral and
vertical).

Each of the terms on the right hand side of Eqs. (4) and (5) are computed as in
Pellichero et al.13. In addition, we compute the lateral geostrophic advection term
from the mean dynamic topography (MDT) provided by AVISO for the period
1993–2012 (http://www.aviso.altimetry.fr/). Using a range of estimates of FWF and
H, Pellichero et al.13 showed that the budgets are relatively well closed in the sea-ice
sector. In this paper, instead of using one of the existing products for FWF and H
in the sea-ice sector, we have derived our own estimates of FWFþRS and H þRT
from Eqs. (4) and (5). The existing products for FWF and H, are instead used for
comparative purpose, and help place an error bound estimate on our calculations
(See Supplementary Note 3 and Supplementary Fig. 4). We consider four products:
two of which have been produced by Tamura et al.45 by using the reanalysis
products NCEP2 and ERA, but coupled with sea-ice observations, and we hereafter
refer to them as “Tamura (NCEP2)” and “Tamura (ERA)”; a third product has
been developed by Petty et al.46 and is based on a mixed-layer model incorporated
into a sea ice model CICE and we hereafter refer to it as “Petty (CICE)”; finally a
fourth product is an output of an ocean model (NEMO3.5) coupled to a sea-ice
model (LIM3.6) which has been produced by Barthélemy et al.47, which we
hereafter refer to as “Barthélemy (NEMO).” Each of these products have their own
limitations and constraints, but taken together, give a sense of where our
observation-based estimate stands when compared to those that are state of the art.

Error estimate and propagation. Water-mass transformation (Eq. (2)) is com-
puted from the knowledge of buoyancy fluxes in the mixed layer (Dðx; y; tÞ), and
the mixed-layer density (σ(x, y, t)). Below, we detail how we compute the error on
buoyancy fluxes, and error on the mixed-layer density field, before describing how
each of those errors are propagated in the computation of water-mass
transformation.

Error from surface buoyancy flux (εD): As stated in the previous section, surface
buoyancy fluxes are computed from Eqs. (4) and (5). Errors on the computation of
surface buoyancy fluxes arise from the mixed-layer detection method, the
instrumental errors in measurements of pressure, temperature, and conductivity
and the spatial sampling. All of these errors are presented in Pellichero et al.13 and
we use them to compute errors pertaining to each of the terms on the right hand
side of Eqs. (4) and (5). The total error for the surface buoyancy fluxes is computed
for each month of the year, and taken as the sum of errors arising from each term
on the right hand side of Eqs. (4) and (5). The annual-mean error fields are
presented in Supplementary Fig 6. Largest errors are found co-located with flux
maxima and are greater for the freshwater flux than the heat flux.

Error from mixed-layer density (εσ): The error of the mixed-layer density field is
computed from the errors associated with mixed-layer salinity and temperature
presented in Pellichero et al.13. Error estimates of temperature and salinity include
instrumental error, error from the mixed-layer depth detection method, and
optimal interpolation errors.

Propagation of the error: The water-mass transformation (Eq. (2)) is computed
by discretizing the integral as a sum. Equation (2) can be rewritten

F ¼
Xn
i

Xn
j

Xn
t

C Di;j;t ; ¼ ; σ i;j;t ; ¼
h i

ð6Þ
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where C=Ai;j ´Di;j;t ´ δ σ i;j;t

� �
, and Ai;j is the area of the corresponding

longitude × latitude grid bin (i,j) at time t, and Di;j;t and σi,j,t are the surface
buoyancy fluxes and surface density at the longitude × latitude grid bin (i,j) at time t.

From error propagation theory, one can write the covariance of F in terms of
covariance of Di;j;t and σi,j,t (Ai;j has no associated error):

covðFÞ ¼ J covðCÞJT ð7Þ

with:

Assuming that errors in surface buoyancy fluxes and density have no spatial and

temporal correlation, one can write: cov Di;j;t

� �
=Diag ε2Di;j;t

� �
, and cov σ i;j;t

� �
=

Diag ε2σ i;j;t

� �
, where Diag is a diagonal matrix.

The terms of the matrix J can be expressed as:

∂F
∂Di;j;t

¼ Ai;j ´ δ σ i;j;t

� �
ð8Þ

∂F
∂σ i;j;t

¼ Ai;j ´Di;j;t ´
∂δ σi;j;t

� �
∂σ i;j;t

ð9Þ

The derivative of a delta function is not defined where its argument is zero.
However, the delta function can be approximated by a normal distribution with a
small standard deviation:

δσ i;j;t ¼ e�
σ�σi;j;tð Þ10

2a10 ;witha ¼ 0:05;

which provides a derivative of the delta function for the purpose of error
propagation.

By combinging these terms in Eq. (7), we find that the error on F, expressed as
its standard deviation, std(F), is:

stdðFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðFÞ

p
; ð10Þ

with:

covðFÞ ¼ Pn
i;j;t

Ai;j ´ εDi;j;t
´ δ σ i;j;t

� �h i2

þPn
i;j;t

Ai;j ´Di;j;t ´ εσ i;j;t ´ δ σ i;j;t

� �h i2

´
5 σ�σ i;j;tð Þ9

a10

� �2

ð11Þ

The first term on the right hand side of the Eq. (11) corresponds to the source of
error coming from errors in the surface buoyancy flux (Supplementary Fig. 7c),
while the second term corresponds to the source of error coming from errors in the
density field (Supplementary Fig. 7b). The major source of error in the calculation
of water-mass transformation originates from surface buoyancy fluxes, whereas the
density-based error contribution is minor (Supplementary Fig. 7).

Data availability. All relevant data are available from the authors.
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