Corrected: Publisher correction

ARTICLE

Aerodynamic generation of electric fields in
turbulence laden with charged inertial particles

M. Di Renzo® "2 & J. Urzay'

Self-induced electricity, including lightning, is often observed in dusty atmospheres. However,
the physical mechanisms leading to this phenomenon remain elusive as they are remarkably
challenging to determine due to the high complexity of the multi-phase turbulent flows
involved. Using a fast multi-pole method in direct numerical simulations of homogeneous
turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic
electric fields can be aerodynamically created in bi-disperse suspensions of oppositely
charged particles. The generation mechanism is self-regulating and relies on turbulence
preferentially concentrating particles of one sign in clouds while dispersing the others more
uniformly. The resulting electric field varies over much larger length scales than both the
mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that
low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the
dynamical relevance of this aerodynamic mechanism for electrical breakdown.
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ARTICLE

he transport of charged particles in turbulent flows is a

problem of interest for the study of conditions leading to

atmospheric electricity phenomena in terrestrial and extra-
terrestrial environments. For instance, it is known that desert
sandstorms on Earth routinely bear relatively large electric fields
of order 5-150 kV m~! -6, This phenomenon involves sand or
dust particles, which, upon being lifted off by the wind, become
triboelectrically charged by collisions near the ground within the
saltation layer, where the particle density is large, with small and
large particles tending to be negatively and positively charged,
respectively, as a result of differential transfer of free electrons
from collisions between particles of different sizes>’ 10,

A paradoxical example of these interactions is the Martian
atmosphere, where electricity phenomena is expected to be
important!!. The persistent layer of dust that covers the surface
expanse of Mars can be easily lifted and dispersed by local
weather phenomena such as dust devils and regional storms'.
The dust particles accumulate in clouds that can morph into
global storms known to encircle the entire planet for as long two
Earth years'>. To compound this extreme weather, the prevailing
low pressures of order 10 mbar in the CO,-rich Martian atmo-
sphere may favor electric discharges because of the resulting
much lower values of the breakdown electric field, which is of
order 5-25kV m~!, as opposed to the 3 MV m~! observed on
Earth at sea level'*"1°. As a result, the dust clouds are thought to
be an excellent brewing environment for electric discharges that
might Jose risks to Mars surface exploration instruments and
crews!>15717 In contrast to other planets in the Solar System,
however, conclusive measurements of atmospheric electricity
phenomena in Mars are lacking!®, more so after the recent crash
of ESA’s Schiaparelli Mars lander in 2016 that carried onboard a
dust analyzer to elucidate some of these unknowns. Although

Large eddy Electric-field lines
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cloud of negatively charged, small particles

Fig. 1 Aerodynamic generation of electric fields by turbulence. The
turbulence preferentially concentrates negatively charged small particles in
interstitial regions between vortices, where the strain rate is large
(schematics, not to scale). Conversely, the larger, positively charged
particles are comparatively more ballistic, and as a result they are more
uniformly distributed than the smaller, negatively charged particles. The
large imbalance of charge created within the cloud leads to incoming long-
range electric-field lines

particle-to-ground collisions are generally known to lead to tri-
boelectric charging very close to the ground>”’, the occurrence of
mesoscopic electric discharges in the gas above must however rely
on aerodynamic mechanisms to spatially segregate the charged
airborne dust. One of such mechanisms is formulated in the
present work.

In this investigation, direct numerical simulations (DNS) are
employed to quantify the electric fields generated due to the
aerodynamic segregation of a dilute suspension of bi-disperse,
oppositely charged, inertial point particles laden in statistically
stationary, homogeneous-isotropic turbulence. The particular
dispersing agent studied here is related to the vortical inter-
mittency inherent to turbulent flows, whereby the particles are
centrifuged away from vortices and accumulate in interstitial
strain-rate-dominated regions, as schematically depicted in Fig. 1,
in a phenomenon that is usually referred to as preferential con-
centration'®~?2, The analysis assumes that the distribution of
airborne particles is electrically pre-charged as a result of the
frequent collisions against the ground that prevail within the
saltation layer™’, which is located far below the present simula-
tion domain and extends up to centimeters on Earth?® and meters
on Mars®*, Despite the corresponding exponential decrease in
particle concentration away from the ground??, which facilitates
the analysis by relegating mid-air collisions to a second-order
effect?® (see also the Methods section), the necessary considera-
tion of long-range electric forces between the hundreds of mil-
lions of particles that need to be tracked in the flow field makes
the numerical integration of the problem particularly challenging,
as it involves the resolution of an N-body problem that is addi-
tionally coupled with the multi-scale dynamics of turbulence,
with N=0(108), the number of particles considered here. To
circumvent these difficulties, the present work couples the fast
multi-pole method (FMM)?2® with the turbulent flow calculation,
thereby reducing the simulation cost from O(N?)
to O(Nlog N).

An aerodynamic mechanism for the production of long-
wavelength electric fields in the carrier gas is formulated here
that is unrelated to gravity and collisions, and is based on the
segregation of particles by turbulence depending on their inertia.
The electric-charge sign is imposed to be negative for small
particles and positive for large particles in accord with experi-
mental observations, including characterizations of Martian dust
simulants®!21417, The characteristic length associated with the
resulting electric fields is much larger than the mean inter-particle
distance and the smallest size of the turbulent eddies. Substitution
of characteristic dust storm parameters suggest that the
mechanism may be capable of producing electric fields of
order 40kVm~! in rarefied atmospheres. These results con-
tribute to the general understanding of electric effects in multi-
phase turbulent flows of relevance for space exploration, includ-
ing the prediction of electricity phenomena in dusty planetary
atmospheres.

Results
Characteristic ~dimensionless parameters. A qualitative
description of the dispersed-phase formulation and the associated
dimensionless parameters is given in this section. Quantitative
descriptions, along with more detailed explanations of the for-
mulation for both phases, are discussed in the Methods section.
In order to understand the physical processes involved in the
generation of electric fields in the present work, it is convenient to
outline first some particular limits employed in the simulations.
For instance, the dust particles considered here are small
compared with the smallest turbulent eddies in such a way that
a, /. < 1, where { is the Kolmogorov length and a, is the
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radius of the particle. Two classes of particles are considered that
have different diameters depending on their charge sign, with the
positively charged particles being larger than the negatively
charged ones, a, > a_. In turbulent flows, the Kolmogorov length
differs from the size of the large eddies ¢ by a factor inversely
proportlonal to the Reynolds number Re; = u/f/v > 1, namely
b/l ~ Re, 3% <« 1, with uy the integral fluctuation velocity and v
the kinematic viscosity. Additionally, the dens1ty of the dust
particles p,,, which are typically made up of silica'?, is assumed to
be much larger than that of the carrier gas p, namely Pp /p> 1.
The effects of the particles on the carrier phase are neghg1ble since
the mass-loading ratios employed in the simulations for both
particle classes, & = (4/3)mp,noa; /p, are much smaller than
unity, with 7, the mean number den51ty of particles, which is the
same for both classes. The characteristic Reynolds number of the
relative flow motion around the particles is assumed to be small,
in such a way that the viscous force acting on the particles is the
Stokes drag. Correspondingly, the second Newton’s law for each
particle can be written

4

5 dup
gﬂppa —- = 6mpay(u

=1,...,N 1
P dt P ’ 34V, ()

—u) +Fp,

for every particle, with bold symbols denoting vectors. In Eq. (1),
p is the dynamic viscosity, and

F, = qEp (2)

is the electric force on the p-th particle, where g, is the particle
charge and E, electric field internally generated at x, by the
surrounding particles. In particular, two values of electric charge,
denoted as q_ and q., are utilized for the small and large
particles, respectively, which are equal in magnitude but opposite
in sign (g4 = —g-), in such a way that the particles form an
electroneutral system in the mean, nyq, + nog_ =0, and the net
flux of the electric field through the boundaries is zero.
Additionally, u, and u are the particle velocity and local fluid
velocity, respectively. Specifically, u, is related to the particle
position x,, through the trajectory equation

dx,/dt=w,, p=1,...,N. (3)

Upon normalizing du,/d¢, u — u,, and Fy, the non-dimensional
version of Eq. (1) renders useful information as follows. Consider
nondimensionalizing the slip velocity u — u, with the fluctuation
velocity of the Kolmogorov eddies uy, and the acceleration of the
particles du,/dt with the acceleration of the Kolmogorov eddies
u/ty, where t = b /uy = 12 t/v is the corresponding turnover
time. To complete the normahzatlon a characteristic scale of the
electric force is obtained from the Gauss law

V-E= (n. —n_)q./eo, (4)

where n, and n_ denote, respectively, the local number densities
of positively and negatively charged particles, €, is the vacuum
permittivity, and E is a homogenized electric field that in the
present work is only referred to for illustration, is never employed
to compute the electric force in Eq. (1), and is subject in the
notation to an overbar symbol for reasons that will become
clearer later in the text. The exact form of the electric force
employed in the simulations, which does not involve homo-
genization and makes use of the FMM approach in ref. %¢ to
handle the N-body problem, is discussed in the Methods section.
In idealized conditions where n, were sufficiently large for a
hypothetical continuum limit to hold in the dispersed phase,
Eq. (4) would suggest the scaling E, ~ E ~ noliq. /e for the
electric field when it is assumed that the characteristic charge

variations are of order noq, and that the characteristic length for
the variations of the electric field is of order ¢ (both of which are
underestimates as evidenced by the numerical results presented
below but prove to be convenient for the scaling purposes of this
section). Correspondlngly, the characteristic scale of the electric
force is F, = qpE ~ nolxq’. /eo. Using these scales, the non-
dimensional form of Eq. (1) becomes

duP 1 (el)
R —u, +StF } ,
e s [u o =+ ()

where the + sign becomes + for positively charged particles and
— for negatively charged ones. In addition,

St = tos /i (6)
is the aerodynamic Stokes number, with ¢, + = (2/9)(
the characteristic acceleration time of the partlcles, an(i’
|
St = e+ /t (7)

)

is the electric Stokes number, with ug + = noﬁkqi /(6mpcoa . ) the
electromigration velocity. The parameters Eq. (6) and Eq. (7) are
central to the structure of the ensuing electric field, as discussed
below.

The mechanism of turbulence-driven electric fields. A sketch is
provided in Fig. 1 that illustrates the local charge imbalance
produced by turbulence and the subsequent generation long-
wavelength electric fields. This occurs, for instance, when the
negatively charged small particles preferentially concentrate while
positively charged large particles do not preferentially concentrate
or do so much less intensely (note however that the opposite
situation, namely a preferentially concentrated cloud of positively
charged particles surrounded by a uniform suspension of nega-
tively charged particles, would lead to the same phenomenon). In
the absence of electric fields (i.e., Stl(jll = 0), the disparity between
preferential concentration levels of both classes of particles is
attained when the conditions

Stl(ji) ~1 and St<ae) > 1 (8)
are satisfied?%?2, Specifically, the first condition in Eq. (8) states
that both the acceleration and slip velocity of the negatively
charged small particles are of order unity in Kolmogorov units
u/ty and uy, respectively. As a result, these particles move with
the large eddies of size £ but slip with velocities of order g, — ~ uy
on the small ones of size ¢, which bear the strongest levels of
vorticity in the flow. Because of their slippage, negatively charged
particles preferentially concentrate in the interstitial high-strain
regions between those small eddies, as sketched in Fig. 1. In
contrast, the second condition in Eq. (8) indicates that the
characteristic slip velocity of the posmvely charged partlcles is of
order Uslip. - ™~ (etu+)1/2 = uy [St( )]1/ > uy, where € = u2/t; =
ul [t is the turbulent d1$Slpat10n and t; = £/u, is the integral
time of the turbulence?’. Correspondingly, the posmve artlcles
are ballistic to eddies of sizes ranging from /j to /i [St< +)] > A,
thereby becoming more uniformly distributed in space than the
negative ones, as sketched in Fig. 1. The result is an aerodynamic
mechanism that segregates negative charges into clouds in an
environment of approximately uniformly distributed positive
charges.

The classic portrayal representation of preferential concentra-
tion in particle-laden turbulence outlined above is not funda-
mentally altered if the electromigration velocity ug . is smaller
than the characteristic slip velocity ug,+. In the regime of
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Fig. 2 Electric effects on the spatial distribution of particles. a-c Instantaneous spatial distributions of particles contained in a constant-xs slice of thickness
equal to the Kolmogorov length ¢. d-f Ensemble-averaged spectral energy &, of the concentration fluctuations as a function of the wavenumber «. g-i
Ensemble-averaged radial distribution functions (RDFs) as a function of the radial separation distance r. The figure includes the uncharged case #1(a, d, g),
the charged case #2 (with negatively charged small particles being preferentially concentrated; b, e, h), and the charged case #3 (with none of the two
classes being preferentially concentrated; ¢, f, i). The integral length ¢ and its equivalent size in Kolmogorov units (-<100¢y) are provided for convenience in

the left upper corner of a-c

interest, the present simulations satisfy conditions leading to such
weak electric interactions, in that the electric Stokes numbers are

st<1 and st <[ste). 9)

Specifically, both conditions in Eq. (9) ensure that the electric
charge carried by each particle is not sufficiently large to induce
electric fields capable of causing frequent agglomeration or large
deviations from the trajectories induced by the interplay between
inertia and Stokes drag in Eq. (1). It is shown below that the
overall effect of the electric field on preferential concentration is
to decrease it for negatively charged particles and increase it for
the positively charged large particles, in such a way that the
mechanism of generation of mesoscopic electric fields depicted in
Fig. 1 is self-regulating.

Because of the ellipticity associated with the Gauss law
(Eq. (4)) in electrostatic conditions, in which E is irrotational,
the ensuing electric field that enters the cloud of negatively
charged particles necessarily varies along distances longer than
the characteristic size L. ~ V!/3 of the cloud, where V. = O(£})
is a control volume surrounding it. This effect can be
qualitatively understood by a volumetric integration of
Eq. (4) within a sufficiently large control volume Vg > V.
such that the resulting flux of electric field becomes negligible
due to the electroneutralization of charge inside. Since the
positively charge particles are rather uniformly distributed in
the vicinity of the cloud in comparison with the negatively
charged ones, the volume integral of the first term on the
right-hand side of Eq. (4) can be approximated as #noq; Vel /€.
In contrast, the negatively charged small particles are mostly
concentrated within the cloud in V., and as a result the
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volumetric integral of the second term on the right-hand side of
Eq. (4) yields n.q.V./ey, where n. ~ Cny is a characteristic
number-density fluctuation in the cloud, which, as a result of
particle accumulation, is much larger than the mean number
density ng typically by a factor C of order 100. Equating both
of these estimates to render zero flux of the electric field, the
relation Lg/L. = CY3 ~ 5 is obtained, where Ly~ V:l > s
the characteristic length associated with the variations of the
mesoscopic electric field. Spectral analyses of the electric field
are provided below that ratify these considerations.

Self-regulating dynamics. Three different simulation cases are
analyzed below that correspond to uncharged (case #1) and
charged (case #2) conditions with preferential concentration of
small particles, as well as charged conditions under no significant
preferential concentration of any of the two classes of particles
(case #3). The reader is referred to the Methods section for fur-
ther descriptions of each case.

The electric field generated by the collective effect of the
charged particles is self-regulating, in that it tends to decrease the
baseline preferential concentration levels in uncharged calcula-
tions at the same aerodynamic Stokes numbers. This is visualized
by comparing the instantaneous spatial distributions of
particles shown in Fig. 2a, b. The uncharged case #1 in Fig. 2a
is characterized by sharp filamentous structures of the preferen-
tially concentrated small particles, which are surrounded by more
uniformly distributed particles belonging the other class. In
contrast, the charged case #2 in Fig. 2b leads to thicker cloud
patterns for the preferentially concentrated, negatively charged
small particles, and to a decrease in spatial uniformity for the
positively charged large particles. Similar electric effects on
preferential concentration have been suggested in early work?8-30
albeit for mono-disperse suspensions of much fewer particles in
flows at much lower Reynolds numbers.

The mitigation effect mentioned above is quantified by a
spectral analysis of the particle number-density fields, as shown
in Fig. 2d, e. The calculations are based on the spectrum &, of
the energy of the concentration fluctuations, obtained by
spherically averaging the multiplication of the fast-Fourier
transform of the number density n for each class, in such a way
that the integral of the spectrum along the wavenumber axis is
equal to the variance of the number density (n'n’), where the
angular brackets indicate volume averaging over the entire
computational domain. In particular, the peak of the spectrum
of the small particles in the uncharged case #1 in Fig. 2d is
displaced toward high wavenumbers and leads to a larger
variance of the number-density field in comparison with the
corresponding quantities for the large particles (see legend in
Fig. 2d, e). In contrast, in the charged case in Fig. 2e, the
variance of the number density of negatively charged small
particles is comparatively decreased, while the spectrum peak is
displaced toward larger scales, thereby indicating a decrease in
preferential concentration due to electric effects. Note however
that the opposite trend in the spectrum peak is observed for the
positively charged large particles, which is displaced toward
smaller scales, indicating the occurrence of finer-grained
patterns in the concentration field of this class relative to case
#1, although this effect is counteracted by a smaller variance as
a result of Coulombic repulsion.

Analogous conclusions are provided by the radial distribution
functions (RDFs) shown in Fig. 2g, h, which are defined as the
number density of particles in the volume of a finite-thickness
spherical shell located at radial distance r from the test particle,
divided by the total number density of particle pairs in the
spherical volume 477%/33!. The large values of the RDF for the

small particles at short distances in the uncharged case #1 in
Fig. 2g indicate a high probability of encountering other particles
of the same class in the vicinity due to preferential concentration.
In contrast, that portion of the RDF decreases significantly in the
charged case #2 in Fig. 2h. Specifically, the non-monotonicity of
both RDFs in the charged case #2 in Fig. 2h is a consequence of
the Coulombic repulsion of particles with the same charge sign
that suppresses the occurrence of short separation distances>>.
The discussion of the charged but much more dispersed
suspension in Fig. 2c-i leads to similar conclusions as those
outlined above, including the non-monotonicity aspect of the
RDFs of both particle classes.

The electric effects on preferential concentration described
above can be rationalized by taking the divergence of the Eulerian
version of Eq. (5), obtained by replacing the time derivative d/d¢
by the material derivative D/Dt = 9/dt + u,, - V, thereby yield-
ing the expression

R(V-up) —2Qp:L[V'“piSt1(fDV'FP}’ (10)
St(ae) » E

Dt
k, +

where Q, = (1/4) (wp - w, — 2S,,: ;) is the second invariant of
the particle velocity-gradient tensor. In this formulation, S, =
(1/2) (rVuP + VuE} is the strain rate of the particle velocity field,
and wp = Vx u, i§ the associated vorticity. Of particular interest
are flow conditions where V -u,<0, which correspond to
accumulation of particles along pathlines as dictated by the mass
conservation equation for each class,

1 Dni

n+ Dt

(11)

==V u,>0,

where n, has been normalized with 7. At small Stokes numbers,
the acceleration of the particles resembles the fluid acceleration,
and as a result the particle velocity becomes

(ae) Du

(el)
k, + E iStke,iFP7

u, ~u— St (12)
with D/Dt ~9/dt +u -V to leading order. Upon substituting
Eq. (12) into Eq. (10), the simplified expression

Voup = 286° Qe St (ny — 1) (13)
is obtained, where use of Eq. (2) and of the homogenization
approximation E, ~ E has been made, with V-E ~n, —n_ as
prescribed by the dimensionless version of the Gauss law (Eq.
(4)). In Eq. (13) Q = (1/4)(w - @ — 2S : S) represents the second
invariant of the carrier-phase velocity-gradient tensor defined in
terms of the strain-rate tensor § = (1/2)(Vu+ Vu') and the
vorticity w = Vx u.

In view of Eq. (13), the relative importance of aerodynamic and
electric effects in shaping the particle concentration fields is
quantified bX the Stokes-number ratio Stl((aei) /Stffli. For neutral
particles, Stl((‘li =0, and Eq. (13) leads to the classic conclusion
that flow regions where straining prevails over vortical motion (Q
<0) tend to be preferentially filled with particles since V - up<0
there, while flow regions where vortical motion prevails over
straining (C%T 0) tend to be devoid of particles'®3, For charged
particles, Stl:l >0, and the description also depends on the net
charge density (n, —n_). In particular, in regimes where
electrostatic effects prevail, Stl(:ei> / Stl((fli < 1, particle clouds with
net negative charge (n_>mn,) drive away negatively charged
particles and attract positively charged ones, thus resembling the
self-regulating dynamics of the internally generated electric field
in canceling preferential concentration, as described above. The
opposite trend occurs in positively charged clouds, as schema-
tically shown in Fig. 3.
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a Electric-field lines

Negatively charged
particle cloud
(n_>n,)

Electric-field lines

Positively charged
particle cloud
(n,>n)

Fig. 3 Mitigation effects of electrostatics on preferential concentration. a A cloud of negatively charged particles generates incoming electric-field lines that
steer negative charges away and concentrate positive charges, which tends to electroneutralize the particle charge distribution and overrides the
preferential concentration created by the turbulent flow field (schematics, not to scale). b A similar but opposite phenomenon is illustrated for a positively

charged cloud

(Ir% t}%el) prese(rn§ si(n})ulations, the Stokes-number ratio is
Stka; / Stkf L= St;i / Stki = 10, but despite the prevailing aero-
dynamic effects, the internally generated electric fields are
sufficiently large to noticeably modify the structure of the particle
concentration field. It should be emphasized, however, that
Eq. (13) is an asymptotic approximation for small particle inertia
and electromigration velocities, with finite values of these
quantities entering in the problem to decorrelate the dynamics

of the carrier phase from those of the dispersed phase.

The structure of the electric field. The accumulation of nega-
tively charged small particles in clouds has the fundamental effect
of generating spatially coherent electric fields. This is shown in
Fig. 4 by comparing the electric fields generated in regimes where
preferential concentration is significant (case #2) or negligible
(case #3). In particular, case #3 in Fig. 4b corresponds to charged
particles that are ballistic to the small eddies, and is therefore
characterized by relatively uniform spatial distributions of both
classes of particles. Correspondingly, the number-density fields in
case #3 have a very small content of spectral energy at high
wavenumbers, as observed in Fig. 2f. The absence of any sig-
nificant preferential concentration in case #3 leads to spatially
incoherent electric fields whose peak intensities are of order
nolkq+ /€0, as observed in the contours in Fig. 4b. The spectral
electrostatic energy of this electric field, denoted as & and
computed similarly to &, by spherically averaging the multi-
plication of the fast-Fourier transform of Egny/ \;i by itself, has a
slope close to 2, which resembles white noise, as indicated in
Fig. 5a. In contrast, the preferential concentration of negatively
charged small particles that dominates case #2 produces stronger
electric fields of order 10mpfqy/€o, as shown in Fig. 4a. Such
electric fields are spatially coherent and their maximum inten-
sities occur in the vicinity of the clouds of negatively charged
small particles. Additionally, Fig. 5a shows that the electric fields
in case #2 have a much higher spectral energy content at low
wavenumbers than in case #2, particularly near the integral
wavenumber of the turbulence (27/¢)f = 0.06, where the
spectral electrostatic energy created by the preferential con-
centration effect is >200 times larger than that at the Kolmogorov
scales.

The 10-fold increase of the electric field observed after
switching from case #3 to case #2, where the preferential
concentration of negatively charged small particles is signifi-
cant, is particularly evident by the rightward shift in the
probability density functions (PDFs) provided in Fig. 5b. In

addition, Fig. 5b shows that the effect of decreasing the particle
charges g, and g_ by a factor of 10, which corresponds to a
decrease of both electric Stokes numbers by a factor of 10, is to
decrease the electric field normalized with the baseline charge
level albeit by just a factor of order unity. However, the spectral
electrostatic energy content of this diminished electric field was
observed in the results to be shifted toward larger scales relative
to case #2, because of the tendency of the aforementioned
mitigating effect of the electric field on preferential concentra-
tion to decrease in intensity as the electric charge decreases.
These considerations highlight the fact that regimes at low
electric Stokes numbers are more effective at producing
coherent electric fields at the large scales of turbulence,
although the resulting values are also correspondingly smaller.

As sketched in Fig. 1, the mechanism of aerodynamic
generation of electric fields described above rests upon the
segregation of charges induced by turbulence. This charge
separation is examined in Fig. 5c in terms of the energy spectrum
&, of the fluctuations of net charge density (n, — n_)q,, with &,
being computed analogously to &,. Specifically, the occurrence of
preferential concentration in case #2 leads to a significant high-
wavenumber enhancement of £, because of the long, negatively
charged filamentous structures created by turbulence. The
wavenumber associated with the peak &, is larger than those
related to the maxima of £,_ and &, due to the partial
electroneutralization of the clouds by the surrounding positively
charged large particles, which makes the structures of charge
segregation narrower than the clouds of negatively charged small
particles.

The excess of spectral energy of net charge-density fluctuations
at high wavenumbers in case #2 leaks into the energy spectra of
electric field and electric potential at increasingly larger scales
because of the relation &; = ey = €0K26’¢, that holds in
electrostatics, where & is the energy spectrum of the fluctuations
of the FMM-derived mesoscopic electric potential ¢g\ . As a
result, the latter becomes preferentially organized in much larger
scales than those of the electric field and net charge density. This
leads to a total decay in & in Fig. 5d of ~6 orders of magnitude
along 2 decades of wavenumbers in a similar way to the kinetic-
energy spectrum Ex of the carrier phase in Fig. 5a.

Atmospheric rarefaction effects. Whether the range of dimen-
sionless parameters considered above is of relevance for realistic
dust storms is a question that cannot be categorically answered
due to the large variabilities in flow conditions and particle
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properties reported in the literature, particularly for extra-
terrestrial atmospheres'®!>1>. However, there are aspects rela-
ted to the influences of low ambient pressures in favoring the
phenomena studied here that are worth discussing in terms of
dimensional quantities of practical interest.

Consider, for instance, two separate turbulent flows in the same
homogeneous configuration studied above. Both flows are subject
to the same large-scale forcing and, correspondingly, the same
root-mean-square velocity fluctuation and integral length, which
are chosen here, respectively, as uy ~ 2ms~! and £ ~ 20 cm for
illustration purposes. The rest of the parameters are a;, ~ 40 um
and a_ ~10pm, g, = —q- ~50{C, p, ~ 2650 kgm™3, and
ny ~ 5% 103 m~3. These values lie within the ranges classically
reported in the space-weather literature!=8-17. However, the
gas environments in the two flows considered here are different.
One of them emulates the terrestrial atmosphere with air
(4 = 1.8x10°Nsm™?) at 1bar and 298K, thereby resulting
in a density p, = 1.2kg m 3. The other one emulates the rarefied,
CO,-rich Martian atmosphere (yg=1.3x% 107°Nsm™2) at
6.9 mbar and 210 K, which gives ps = 1.6 x 10~2kgm 3.

The large disparities in densities, R = pg/pg = 75, and kine-
matic viscosities, V = v5/vs = 54, have important effects on the
relative magnitude of the resulting dimensionless parameters
as follows. Perhaps the most significant effect of ambient
rarefaction is on the Taylor-Reynolds number, which changes
from Rey ¢ ~ 630 to

Reyg = V /?Rey ~ 85.

(14)

As a consequence, the Kolmogorov length and time scales
increase from fgo ~96um and fg ~0.6ms, to fog=
V3/4€k7@ ~1.9mm and # 5= Vl/ztkﬁ ~ 4.6 ms. For the terres-
tri(al) environrr(leglt, the co(rlr)esponding Stokes( 1)numbers are

ae ae €l €l
st =5, 5477 =83 st” =002, and St} | =0.01. In

contrast, ambient rarefaction causes a decrease in the aero-
dynamic Stokes numbers,

(ae) (ae)
St(ae) . RStk,*,EB N (ae) . RStan@ ~ 16 (15)
k-0 V3/2 > k4,0 T 13/2 ’

along with an increase in the electric Stokes numbers,

st RSt
(e) k,—® (el) k,+,®
Shmo =i ~ 03 St = ~ 0L (16)

The mean absolute deviations of the mesoscopic electric fields
created by turbulent particle dispersion in the terrestrial and
Martian environments are

ol g+
S —
€o

E,=c ~ % 270[Vm ™! (17)

and
(18)

¢
Eg = (C_O'> VB, = cdm ~ ¢g % 5400[Vm '],
Cp €0

respectively, where cg and cg are prefactors that have to be
computed by numerical integration of each problem.

In principle, since the characteristic Reynolds number of the
flow in the terrestrial environment is too high, no grounded guess
of ¢z can be made in view of the numerical results presented
above. However, the associated aerodynamic Stokes numbers
suggest only marginal levels of preferential concentration. As a
result, large values of order cg 2 10* required for electric
breakdown (i.e., E4>3 MV m~!) are not easily conceptualized
based on the fractional electric fields observed in Fig. 5b for case
#3 where the particles are mostly ballistic, thereby suggesting that
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this aerodynamic mechanism is unlikely to produce electric
discharges for this set of parameters.

On the other hand, the dimensionless parameters (Egs. (14),
(15), and (16)) corresponding to the Martian environment are
similar to the ones of the simulation case #2 studied above, where
the negatively charged small particles preferentially concentrate,
the positively charged large particles do not preferentially
concentrate significantly, and the electric Stokes numbers are
sufficiently small to render weak electric interactions, as in Eq.
(9). Because of the increase in the Kolmogorov length as the
pressure decreases, the characteristic electric field nolkg. /€0 is
much larger in the rarefied environment. In particular, the results
in Fig. 5b indicate that c4 ~ 7.3, thereby making E5 ~ 40 kV m~1,
which, in principle, could trigger electric breakdown in these
rarefied conditions (i.e., Eg>25kV; e.g., see Fig. 1 in ref. '° for
calculation of breakdown values as a function of CO, number
density). In interpreting these estimates, note that the low
pressures in the Martian atmosphere cause a significant increase
in the mass loading, a, s = R+ o, with a_ g ~ 0.004 and a; g ~

0.2 in this example, which may require consideration of two-way
coupling effects that have been neglected in the numerical
simulations presented above. This increase in mass loading is,
however, associated with very small volume fractions ¢, =
(4/3)mngal ~107* and ¢, = (4/3)7noa’ ~ 10~°, which are
independent of the ambient pressure.

Discussion
This study shows that mesoscopic electric fields can be aero-
dynamically created in dilute bi-disperse suspensions of oppo-
sitely charged particles. The generation mechanism relies on the
preferential concentration of the particle class whose response
time is similar to the turnover time of the smallest eddies, whereas
the particles of the other class are ballistic to the small eddies and
do not preferentially concentrate in any significant way.

While the suspension of ballistic particles does not engender
any net electric effect, mesoscopic electric fields are generated in
suspensions where one of the particle classes preferentially
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concentrate. These fields span much larger characteristic lengths
than the mean inter-particle spacing, the length scale of the
smallest eddies, and the size of the thin regions where charge
imbalances occur.

The dynamics involved in the generation of electric fields are
self-regulating, in that the preferential concentration of particles
decreases when they become electrically charged. This mitigation
can be rationalized using the continuum equations of the dis-
persed phase.

The simulations make use of a FMM in order to drastically
reduce the computational cost otherwise incurred by the many-
body electrostatic problem. This technique enables a fast com-
putation of the Coulombic forces on the discrete particles while
avoiding inherent inaccuracies arising in alternative, homo-
genized formulations of the electrostatic problem.

The formulation presented in this work has not incorporated
several important factors that may warrant further investigations.
These include collision-induced charge transfer in denser and
more intensely electrified flows, mean wind shear, and turbulence
anisotropy effects in flows near the ground, two-way coupling
effects and molecular slip on particles in rarefied atmospheres,
and discharge chemistry and flow compressibility effects in
lightning inception and propagation upon electric breakdown in
the carrier gas. In addition, extensions of early theoretical work
on preferential concentration'®**3* may be worth pursuing for
an increased understanding of the phenomenon under electric
interactions.

Methods

Simulations. In this study, DNS of incompressible homogeneous-isotropic tur-
bulence laden with point particles are performed in a Cartesian, cubic, triply
periodic computational domain of side length 5¢ and 2563 grid elements. The
continuity and linearly forced momentum equations

0 1
V.-u=0, a—l:+u-Vu:7—VH+1/V2u+Au, (19)
p

are numerically integrated for the carrier phase, where IT is a hydrodynamic
pressure computed from the integration of a Poisson equation obtained by taking
the divergence of the momentum equation and making use of the divergence-free
constraint for the velocity field®. The forcing coefficient A is such that statistically
steady homogeneous-isotropic turbulence at constant kinetic energy is main-
tained>°. The resulting Taylor-Reynolds number of the simulations is

Re; = (15Re;)"? = uyd/v = 85, where 1 is the Taylor microscale. The resolution
of the computational grid is Kmaxlk = 1.6, where Kpax = 71/A is the maximum
wavenumber and A is the grid spacing. The initial conditions used for integrating
(Eq. (19)) involve a synthetic, solenoidal-isotropic velocity field with a prescribed
Passot-Pouquet kinetic-energy model spectrum3®3”.

The formulation of the dispersed phase is based on the Lagrangian description
given by Eqs. (1)~(3) using N ~ 168x 10° bi-disperse inertial particles equally
repartitioned among the two classes, which warrant a mean number density
ny = (N/2)/(50)° = (N/2)/(256A)° equivalent to five particles of each class per
elementary grid volume A>. The resulting mean inter-particle distance is
8 = (2n0) P ~ 4.

Once the flow has reached a statistically steady state, the particles are randomly
seeded in kinematic equilibrium with the local flow velocity, which is evaluated at
all times at the particle position using a trilinear interpolation. After sufficiently
long times compared to t,, have passed, 10 snapshots equally spaced in time are
recorded during an interval 10¢, for ensemble averaging. Equations (1)-(3), and
(19) are solved simultaneously using a fourth-order Runge-Kutta method for time
advancement and a second-order finite-differences central scheme for the spatial
0perat0rs35.

Three different cases (#1, 2, and 3) are computed in the simulations that are
characterized by different values of Stokes numbers (Egs. (6) and (7)). Specifically,
case #1 corresponds to uncharged particles for which the small ones (denoted by
the subindex .) are subject to preferential concentration, while the larger ones
(denoted by the subindex .) are ballistic to the small eddies, namely

st' =1, and St = 10, (20)

=

with zero electric Stokes numbers for both classes. Case #2 considers charged
particles where the small (negatively charged) ones preferential concentrate,
whereas the large (positively charged) ones remain comparatively uniformly

distributed in space,

st =1, st = 0.1, St = 10, and St = 1. (1)

In contrast, case #3 corresponds to charged particles not subject to any
significant preferential concentration,

st = st = 10, and st = st = 1. (22)

The choice of dimensionless parameters (Eqs. (21) and (22)) has been made
for illustration purposes to yield equal Stokes-number ratios Stkajr /Stke.+ =
Stl(:i)/Stke_l = 10 in both simulation cases. This enables isolation of effects
related to preferential concentration by keeping constant Stl:+ and Stl(:i) across
cases #2 and #3, while inducin% significant preferential concentration of the
negative particles by varying Stka_i) from 10 in case #3, to 1 in case #2. A
noteworthy peculiarity of the selection (Egs. (21) and (22)) is the change of Stff_?
from 1 in case #3, to 0.1 in case #2, which keeps the relative strength of
hydrodynamic and electric effects on the particle clouds (i.e., the first and
second terms on the right-hand side of Eq. (13)) the same in both particle
classes and in both simulation cases. Selection of smaller values of Stl:Jr in case
#2, with Stkf+<Stkf7 to reflect the larger size of the positive particles in
dimensional applications (assuming that all other dimensional parameters are
exactly equal for both classes), does not lead to significant differences in the
overall solution since Stke’Jr = 1 is already below the threshold for weak electric
interactions specified in Eq. (9).

Computation of the electric force on the particles. In principle, in Eq. (1), the
electric force on a particle can be computed in different ways depending on
whether the dispersed phase is assumed to be a continuum, or alternatively, is more
realistically considered as a collection of discrete particles. In the former case, the
electric force F, would be computed by multiplying the particle charge g, by a
homogenized electrostatic field E = —V¢ obtained as a solution of the Gauss (Eq.
(4)) written in terms of the corresponding potential ¢, namely

Vg = —(ny —n_)q/eo, (23)

which is subject to triply periodic boundary conditions. In Eq. (23), the number
densities n, and n_ are continuum representations of the particle concentration
field defined on the DNS grid x and which hereafter are obtained by box-
counting the particles with a nearest-neighbor approach®®. The homogenization
involved in computing (23) implies that E(x) is the local electric field averaged
over a sufficiently large number of particles, whose diameters and inter-particle
distances are much smaller than the homogenization length A. Although this
approach is consistent with Eulerian formulations of the dispersed phase, it
leads to inaccurate computations of the electric force in Lagrangian formula-
tions as Egs. (1)-(3) subject to a finite number of particles. To understand this,
note that turbulence tends to break down the uniformity in the spatial dis-
tribution of particles by generating highly dense and highly devoid regions (see
Results section), in a way that the local number of particles per cell oscillates in
space from zero to O(100) in the present simulations, and consequently &
fluctuates from approximately 0.1A to distances spanning multiple grid cells.
Consider, for instance, the case where two particles of opposite charge are
present in a grid cell thereby yielding zero electric charge inside, and conse-
quently, zero mesoscopic electric field because of the Gauss theorem. Since in
practical implementations of this approach into Eq. (1), the force on the particle
requires differentiation of the potential ¢ and interpolation of the mesoscopic
field E onto the particle position x,, the calculation would yield zero electric
force on both particles even though the electric force computed directly from
the Coulomb theory clearly pushes them toward each other.

A direct calculation of the electric force created by all other particles on the p-th
particle using Coulomb’s point-charge expression

o~ D X~ %p
Fo 3 0N oE o
Tep 47760 [xj — Xp|

therefore becomes more convenient in systems laden with a finite number of
particles. Note however that this operation results in oftentimes untenable CPU-
time requirements of order N? per time step. This hindrance can be circumvented
by methods for approximating the far-field electric potential while employing
Eq. (24) for particles sufficiently close to x,, as in the FMM approach proposed in
ref. 26 and followed in the present work. This method, which is briefly described
below, results in a significant reduction of computational cost by a factor of order
N/log N, which in practice is of order N since N > 1. In addition, FMM does not
require to solve Eq. (23) since it does not make use of the continuum assumption as
opposed to earlier work?3, it does not involve tunable distances to blend continuum
and discrete approaches as in other contemporary methods such as the
particle-particle/particle-mesh (P>M) apgroachzg, and it does not employ tunable
cutoff distances utilized in recent studies®® beyond which the effects of distant
particles are neglected.
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Consider a particle p located at large distances r from a cloud of characteristic
size L, in the sense that r/L. > 1. The exact electric potential at the particle
location

ne

9
Xp) = o — 25
¢( P) ;4H€O|Xj _Xpl ( )
can be approximated using the Laplace expansion
1 0 1 m
W)= D 3 (UM ) Y aRPG) (26)
=0 m=-I j=1

in terms of the regular and irregular solid harmonlcs R]" and I}", respectively,
where . is the number of particles in the cloud®. In Eq. (26), the first term in the
expansion (I=0) corresponds to ¢(x,) = Z] | q;/ (4me|xp|), which represents
the effect at x;, of a point charge of magnitude equal to the cloud charge, while the
second (I=1) and third (I =2) terms vary quadratically and triadically with the
inverse of the distance, respectively, and represent the dipole and quadrupole
effects of the cloud at x,. The contribution of each term in Eq. (26) diminishes as [
increases.

In the FMM, the particle clouds are identified at every Runge-Kutta time
substep using an octree subdivision of the computational domain whereby a
recursive partition into 8 cubic subdomains is performed until each of them (the
octree leaves) does not contain more than a maximum number of particles,
which here is chosen to be N max = 128. Subsequently, the Laplace expansion
(Eq. (26)) is performed to fifth order (I=5). Periodicity is imposed by
duplicating the instantaneous spatial distribution of particles twice on each
direction. The total potential created by clouds of particles surrounding x; is
computed exactly using Eq. (25) if they are contained in leaves that have at least
one node shared with the leaf that contains x,,, while the expansion (Eq. (26))
particularized to fifth order is used to compute the long-range effects of clouds
in leaves beyond the adjacent ones. Lastly, the FMM-derived electric force
(Eq. (2)) is computed based on an electrostatic field E, = —V¢|,_, resulting
from the analytical differentiation of the linear superposition of all the
aforementioned contributions to the potential created by all the other particles
at x,. Note that the differentiation of the short-range component of the potential
(Eq. (25)) leads to the exact electrostatic force (Eq. (24)). As a result, a limiter
for the minimum inter-particle distance is required in order for the force not to
become unbounded. This limiter is set to ¢/100 and does not have any
significant consequence in the regimes analyzed here, where the suspensions are
dilute and the electric Stokes numbers are relatively small.

Quantifications of collision rates were made in a first approximation by
studying the frequency with which the inter-particle distance limiter was
triggered during one integral time in the simulations. The value of the volume
fraction associated with the cross section imposed by the limiter is ¢, ~ 107°.
The results suggested that collisions played a secondary role in the regimes
investigated here and therefore were excluded from the model. For instance, in
case #2, a fraction of order 0.04% of the total number of particles involved
opposite-sign charged particles approaching each other at distances smaller than
the limiter’s value. These events were characterized as necessary but not
sufficient conditions for collisions. The proportion of collisions leading to charge
transfer between particles is smaller and typically amounts to 20% of the fraction
of collided particles with opposite signs’. As a result, ~0.01% of the total amount
of particles could have potentially been subjected during one integral time to
charge transfer, thereby requiring a total integration time of order 10,000
integral times for observing any significant effect related to this phenomenon,
which in the numerical examples discussed above would have translated into an
exceedingly long period of 17 min of real time that has no physical relevance for
the questions addressed here.

In this study, the FMM is implemented via the open-source library ExaFMM*
for massively parallel environments. Using this framework, cases #2 and 3 with
charged particles involved 250,000 CPU hours on 4176 cores (Intel Xeon E5-2695)
in the Lawrence Livermore National Laboratory (LLNL) Quartz supercomputer,
whereas the uncharged case #1 required 60,000 CPU hrs on 1024 cores in the same
machine.

FMM-derived mesoscopic electric field. In order to characterize the statistics of
the electric fields collectively generated by the charged particles, the results
presented above make use of the FMM-derived mesoscopic electric field

Egvm (x) obtained by numerically differentiating the FMM-derived mesoscopic
potential @y, (x) at every point on the DNS grid. Specifically, ¢y (X) is
computed by integrating in a post-processing step the Gauss law (23), where the
number densities #n, are calculated from particle positions obtained by inte-
grating Egs. (1) and (3) with F,, being the FMM-derived electrostatic force
described above. Note that the projection of the full FMM electric field on the
DNS grid resulting from analytically differentiating the short- and long-range
components of the full FMM potential ¢(x;), namely Egs. (25) and (26) parti-
cularized for x, =X, becomes singular when a particle position x; is close to a
grid node, and is therefore a field that is not further analyzed here since its high-
wavenumber behavior is highly grid-dependent. In practice, Epyw (X) behaves as

a low-pass filtered quantity whose spectral response closely reproduces that of
the full FMM electric field up to very high wavenumbers where it decays faster
because it does not contain any singularities related to particles overlapping grid
nodes.

Data availability. The data that support the plots and other findings of this study
are available from the authors upon request.
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