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Abstract
Several studies have uncovered a highly heterogeneous landscape of genetic differentiation across the genomes of closely
related species. Specifically, genetic differentiation is often concentrated in particular genomic regions (“islands of
differentiation”) that might contain barrier loci contributing to reproductive isolation, whereas the rest of the genome is
homogenized by introgression. Alternatively, linked selection can produce differentiation islands in allopatry without
introgression. We explored the influence of introgression on the landscape of genetic differentiation in two hybridizing goose
taxa: the Taiga Bean Goose (Anser fabalis) and the Tundra Bean Goose (A. serrirostris). We re-sequenced the whole
genomes of 18 individuals (9 of each taxon) and, using a combination of population genomic summary statistics and
demographic modeling, we reconstructed the evolutionary history of these birds. Next, we quantified the impact of
introgression on the build-up and maintenance of genetic differentiation. We found evidence for a scenario of allopatric
divergence (about 2.5 million years ago) followed by recent secondary contact (about 60,000 years ago). Subsequent
introgression events led to high levels of gene flow, mainly from the Tundra Bean Goose into the Taiga Bean Goose. This
scenario resulted in a largely undifferentiated genomic landscape (genome-wide FST= 0.033) with a few notable
differentiation peaks that were scattered across chromosomes. The summary statistics indicated that some peaks might
contain barrier loci while others arose in allopatry through linked selection. Finally, based on the low genetic differentiation,
considerable morphological variation and incomplete reproductive isolation, we argue that the Taiga and the Tundra Bean
Goose should be treated as subspecies.

Introduction

It is increasingly appreciated that interspecific gene flow,
or introgression, is a common phenomenon. Numerous
species have exchanged genetic material with other species
through introgressive hybridization (Barlow et al. 2018;
Palkopoulou et al. 2018; Árnason et al. 2018; Wu et al.
2018; Gopalakrishnan et al. 2018), including our own
species, Homo sapiens (Patterson et al. 2012; Vernot et al.
2016; Villanea and Schraiber 2018). This widespread
genetic exchange has changed our views on the evolu-
tionary process and the nature of species (Mallet et al. 2016;
Shapiro et al. 2016; Roux et al. 2016).

A number of studies have revealed a highly hetero-
geneous landscape of genetic differentiation across the
genomes of closely related species (Turner et al. 2005;
Nadeau et al. 2012; Ellegren et al. 2012; Renaut et al.
2013). Genetic differentiation (measured for example by
FST, the fixation index) between species pairs is often
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concentrated in a few genomic regions, the so-called islands
of differentiation (Wolf and Ellegren 2017). This finding led
to the formulation of a verbal model in which such islands
diverge over time (i.e. higher absolute divergence, dXY)
because they contain loci involved in reproductive isolation
(and hence originally referred to as “genomic islands of
speciation”, Turner et al. 2005), whereas the rest of the
genome is homogenized by interspecific gene flow (Wu
2001; Turner et al. 2005; Feder et al. 2012). This leads to
small genomic regions of high divergence against a back-
ground of low divergence.

Rigorous tests of islands of differentiation have revealed
that reduced diversity due to linked selection can also lead
to heterogeneous genomic landscapes (Cruickshank and
Hahn 2014; Wolf and Ellegren 2017). This is thought to
arise from two processes: genetic hitchhiking or background
selection (Cutter and Payseur 2013; Burri 2017; Rettelbach
et al. 2019; Stankowski et al. 2019; Buffalo and Coop
2019). Genetic hitchhiking refers to the situation in which
positive selection on a variant results in selection for the
genetic region in which this advantageous variant occurs.
As the advantageous variant goes toward fixation, loci
linked to this variant hitchhike along and increase in fre-
quency (Smith and Haigh 1974). Background selection
involves purifying selection against recurring deleterious
mutations (Charlesworth 1994). This process also reduces
diversity at linked sites. Genomic regions with high levels
of recombination are expected to experience less linked
selection because recombination uncouples loci from the
advantageous or deleterious variant under selection
(Hudson and Kaplan 1995; Nordborg et al. 1996). These
processes–genetic hitchhiking and background selection—
can produce islands of differentiation in allopatry in the
absence of gene flow.

The True Geese (genera Anser and Branta) are an
excellent system to explore the consequences of intro-
gressive hybridization on a genomic level (Ottenburghs
et al. 2016a). Previous work has uncovered introgression
between several goose species (Ottenburghs et al.
2016b, 2017a), but it remains to be determined when these
introgression events occurred and how these species remain
distinct in the face of gene flow. In this study, we focus on
two Bean Goose taxa: the Taiga Bean Goose (Anser fabalis)
and the Tundra Bean Goose (A. serrirostris). These taxa
belong to the Bean Goose complex (which also includes the
Pink-footed Goose, A. brachyrhynchus) and have been
considered conspecific based on morphology (Delacour
1951; Sangster and Oreel 1996; Mooij and Zöckler 1999)
and mitochondrial DNA (Ruokonen et al. 2008). Genomic
analyses have indicated that divergence within the Bean
Goose complex occurred ~2 million years ago (Ottenburghs
et al. 2016b). Moreover, ecological evidence suggests that
the Taiga and the Tundra Bean Goose might be distinct

species since they use different breeding grounds (Burgers
et al. 1991) and show differences in behavior and vocali-
zations (Sangster and Oreel 1996). Also, slight differences
in morphology exist between the taxa in body size, shape,
plumage patterns and in beak morphology and coloration:
the Taiga Bean Goose has a longer beak with a broad
orange marking whereas the Tundra Bean Goose has a
shorter beak with a reduced orange band on the bill.
However, a recent study showed that only two measure-
ments out of total of 17 distinguished the Taiga and the
Tundra Bean Goose from each other (de Jong 2019), thus
considerable interspecific overlap exists. Hybrids between
taxa of the Bean Goose complex have been reported
(Ottenburghs et al. 2016a; Honka et al. 2017), mainly based
on genetic tests because hybrids are difficult to identify due
to morphological similarities with both parental species
(Randler 2004). Moreover, most hybrids were reported
during migration and on the wintering grounds, so it is
currently not possible to pinpoint a putative hybrid zone on
their breeding areas. Whether the hybrids are fertile and
backcross with the parental species—and thus resulting in
introgression–remains to be investigated.

In this study, we explore the evolutionary history of the
Taiga and the Tundra Bean Goose using whole-genome re-
sequencing data (on average 37× coverage with paired-end
sequencing). We investigate (1) how genetic differentiation
is distributed across the genome and (2) how the timing of
introgression influences the structure of the genomic land-
scape of differentiation. We address these questions through
a combination of population genomic summary statistics,
including relative divergence (FST), absolute divergence
(dXY), nucleotide diversity (π) and Tajima’s D. We also
apply demographic modeling. Finally, we assess the taxo-
nomic status of the Taiga and the Tundra Bean Goose,
which has been heavily debated, by combining the genetic
results with morphological and ecological information.
Moreover, the Taiga Bean Goose is declining: population
numbers have halved since the 1990s, but the Taiga Bean
Goose is still being hunted. Current population size esti-
mates are 53,000–57,000 individuals for the Taiga Bean
Goose and 600,000 individuals for the Tundra Bean Goose
(Fox and Leafloor 2018). Thus, verifying the taxonomical
position of the Taiga and Tundra Bean Goose is of utmost
importance for the correct management of the taxa.

Material and methods

Sequencing and quality assessment

We collected blood and tissue samples for the Taiga Bean
Goose (A. fabalis, n= 9) and the Tundra Bean Goose (A.
serrirostris, n= 9), migrating within Europe (Fig. 1a,
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Supplementary Table S1). Due to elusive nature of the spe-
cies, especially during the breeding time, and remote breeding
sites (mires and tundra-like habitats), the samples were col-
lected from legally hunted geese during their migration. The
tissue samples were collected in years 2010–2013 and stored
frozen in absolute ethanol. Genomic DNA was isolated from
the blood and tissue samples using the Qiagen Gentra kit
(Qiagen Inc.). Quality and quantity of the DNA was measured
using the Qubit (Invitrogen, Life Technologies).

Sequencing libraries were prepared from 100 ng DNA
using the TruSeq Nano DNA sample preparation kit (cat# FC-
121-4001/4002, Illumina Inc.), targeting an insert size of
350 bp and a target coverage of 30×. Whole-genome paired-
end sequencing (150 bp) was performed on an Illumina
HiSeqX following standard procedures. Sequencing reads
were mapped to the reference genome of a closely related
goose species with the highest quality, namely Swan Goose
(Anser cygnoides) genome version 1.0 (Gao et al. 2016),
using Burrows–Wheeler Aligner (BWA) version 0.7.17 (Li
and Durbin 2009). The resulting BAM-files were sorted with
Samtools version 1.6 (Li et al. 2009) and duplicates were

marked with Picard version 2.10.3 (http://broadinstitute.
github.io/picard/). Next, local realignment was performed
using GATK version 3.7 (McKenna et al. 2010).

For each individual, a first round of variant calling was
performed with GATK HaplotypeCaller. The resulting list
of variants was filtered on mapping quality (MQRankSum
< 0.22) and read depth (DP > 10). The variants passing these
filters were then used as a reference set for base quality
score recalibration (BQSR) following a bootstrapping
approach in GATK (following Kardos et al. 2018). Next,
we applied a hard filter in line with the GATK best practices
pipeline (Van der Auwera et al. 2013), applying the fol-
lowing filtering criteria: QD < 2.0 | | FS > 60.0 | | MQ <
40.0 | | MQRankSum <−12.5 | | ReadPosRankSum <−8.0.
The final dataset contained 13,890,330 SNPs. Different
filtering steps were applied in the consequent analyses.

Population structure and differentiation

Using VCFtools version 0.1.15 (Danecek et al. 2011), we
removed loci for which the p-value was smaller than 0.01 in

Taiga Bean Goose
(Anser fabalis)

Tundra Bean Goose
(Anser serrirostris)

A

Tundra Bean Goose
(Anser serrirostris)

Taiga Bean Goose
(Anser fabalis)
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.2
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C

Fig. 1 Population genetic structure of Taiga and Tundra Bean
Goose. a Map of sampling locations of migrating Taiga and Tundra
Bean Goose. b Principal component analysis (PCA) and

c ADMIXTURE-analyses show clear genetic differentiation between
Taiga and Tundra Bean Goose. Drawings used with permission of the
Handbook of the Birds of the World (del Hoyo et al. 2018).
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a test for excess of heterozygotes relative to
Hardy–Weinberg genotype proportions. Moreover, we
retained only loci with a minor allele frequency ≥ 0.05.
Finally, the SNPs were filtered on linkage disequilibrium
along windows of 50 markers with a R2-threshold of 0.5.
The resulting dataset of 6,221,883 SNPs provided the input
for the principal component analysis (PCA) using the pca-
function in Plink version 1.07 (Purcell et al. 2007). These
analyses were repeated with different settings for the
Hardy–Weinberg test and linkage disequilibrium to assess
the robustness of the patterns.

The same dataset of 6,221,883 SNPs was used to assess
the ancestry composition of each individual in ADMIX-
TURE version 1.3.0 (Alexander et al. 2009). All SNPs were
formatted for the ADMIXTURE-analyses (i.e. converted to
BED-format) using Plink version 1.07 (Purcell et al. 2007).
We ran analyses with the number of clusters set from K= 1
to 4, and performed 10-fold cross-validation to assess the
optimal number of clusters. The final admixture proportions
per individual (Q-estimates representing the log-likelihood
of cluster assignment) were visualized with R version 3.5.0
(R Core Team 2018).

The filtered dataset of 13,890,330 SNPs was used to con-
struct the genomic landscape of differentiation. Summary
statistics were calculated across non-overlapping windows of
200,000 nucleotides (200 kb). To assess the genome-wide
heterogeneity in genetic differentiation, we calculated relative
divergence (FST). However, this statistic is a relative measure
of differentiation that is dependent on the underlying genetic
diversity within the population (Ottenburghs et al. 2017b;
Wolf and Ellegren 2017). Therefore, we also estimated abso-
lute divergence (dXY) and nucleotide diversity (π) to rule out
any effects of local reductions in genetic diversity on patterns
of genetic differentiation. Finally, to infer whether these
regions of reduced genetic diversity are the result of (linked)
selection, we calculated Tajima’s D. Negative values of this
statistic suggest purifying selection or population expansion
(Tajima 1989). Moreover, divergent selection is expected
result in higher absolute divergence (dXY) and lower nucleotide
diversity (π) in particular genomic regions. Hence, we corre-
lated FST with dXY and π. Relative divergence (FST) and
Tajima’s D were calculated using VCFtools version 0.1.15
(Danecek et al. 2011), whereas absolute divergence (dXY) and
nucleotide diversity (π) were calculated with the popgen-
Windows.py script from Martin et al. (2015) which is avail-
able here: https://github.com/simonhmartin/genomics_general.
The analyses were repeated for different window sizes (10, 20,
50 and 100 kb) to rule out any effects of window size.

Because the Swan Goose genome has not been assem-
bled on a chromosome level, we aligned scaffolds to the
highest quality bird genome currently available, namely the
Chicken (Gallus gallus) genome assembly Galgal6 (Hillier
et al. 2004), with LASTZ version 1.04.00 (Harris 2007).

The scaffolds were ordered and orientated based on the
coordinates from the Chicken genome and consequently
merged into pseudo-chromosomes. The resulting alignment
was visualized with R version 3.5.0 (R Core Team 2018)
using the package ggplot2 (Wickham 2016).

Demographic analyses

Demographic inference was performed using the software
package DADI (Gutenkunst et al. 2009). Because demo-
graphic analyses can be biased by selection (Ragsdale et al.
2018), we only used non-coding loci (5,397,934 SNPs).
These loci were selected using snpEff version 4.3T
(Cingolani et al. 2012), which annotates SNPs into several
functional classes, such as protein-coding, intronic, and
intergenic regions. Due to the lack of an outgroup to
establish the ancestral state for each SNP, we used a folded
frequency spectrum. We tested several demographic models
with increasing complexity to estimate the timing of gene
flow between the Taiga and the Tundra Bean Goose, ran-
ging from strict isolation to secondary contact with asym-
metrical gene flow. For each scenario, ten simulations were
run with different starting values to ensure proper explora-
tion of the likelihood landscape. After convergence of
parameters, the simulation with the highest likelihood was
retained. The final set of parameters was converted into
absolute time and population size estimates using a muta-
tion rate of 1 × 10−9 per nucleotide per generation (Pujolar
et al. 2018) and a generation time of two years (Ottenburghs
et al. 2017a). Confidence intervals for parameters were
generated using a bootstrap approach (10 iterations) in
which 1 million SNPs were randomly selected and a
demographic model was tested with DADI using the para-
meter values from the most likely model as a starting point.

Results

Sequencing and quality assessment

We re-sequenced the genomes of nine Taiga Bean Geese
and nine Tundra Bean Geese. All 18 samples were mapped
to the Swan Goose genome (Supplementary Table S2), with
an average mapping percentage of 92.6% (range:
83.7–97.6) and an average sequencing depth of 37× (range:
31–44). SNP calling, following the GATK best practices
guidelines (Material and methods), resulted in a final dataset
of 13,890,330 SNPs.

Population structure and differentiation

The PCAs indicated that the Taiga and the Tundra Bean
Goose can be separated using genomic data. The first
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principal component discriminated between the two taxa
and the second principal component indicated some
intraspecific population structure within both taxa (Fig. 1b).
This intraspecific population structure might relate to the
distribution of breeding areas, but unfortunately we do not
have information about sites of origin because the birds
were sampled during migration. The principal components
explained little genetic variance, suggesting that only a
subset of genetic loci drive the genetic differences between
the taxa. However, the PCA-patterns were robust to dif-
ferent filtering settings (Supplementary Fig. S1). In contrast,
the individual ancestries estimated by ADMIXTURE pointed
to one population (K= 1 had the lowest CV-error, Sup-
plementary Fig. S2) although the analyses with K= 2
confidently discriminated between two genetically distinct
populations under particular filtering criteria (Fig. 1c).
Moreover, relaxing the thresholds for linkage dis-
equilibrium and minor allele frequency in filtering the SNPs
highlighted a more admixed pattern (Supplementary Fig.
S1), suggesting that a large proportion of genetic variation
is shared between the taxa. This observation is confirmed by
the genomic window analyses which show that genetic

divergence was concentrated in a small number of differ-
entiated loci. The majority of genomic windows showed
low levels of FST (genome-wide FST= 0.033, Fig. 2a) and
intermediate values of dXY (Fig. 2b) and π (Fig. 2c). Most
genomic windows showed a negative value for Tajima’s D
(Fig. 2d), which can be due to purifying selection or
population expansion (Tajima 1989). High FST-windows
were characterized by slightly higher levels of absolute
divergence (dXY, Spearman correlation, ρ= 0.14,
p < 0.01, Fig. 2e) and lower levels of nucleotide diversity
(Spearman correlation, ρ=−0.16, p < 0.01, Fig. 2f). These
results were robust against different window sizes (Sup-
plementary Table S3).

The results from Fig. 2 were visualized in the genomic
landscape of differentiation (Fig. 3, Supplementary Fig. S2).
The FST-landscape was largely flat with a few notable peaks
that were scattered across chromosomes (82 FST-windows
above 0.25). Peaks in FST were often accompanied by lower
levels of dXY and a drop in nucleotide diversity in one or
both taxa (e.g., highlighted regions on chromosomes 1, 2
and 3 in Fig. 3). However, in some cases, a peak in FST

corresponded to an increase in dXY (e.g., highlighted regions
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on the Z-chromosome in Fig. 3). Although there were a few
notable FST-peaks on the Z-chromosome (Fig. 3), the mean
FST between windows on the autosomes and the Z-
chromosome was not significantly different (two-sample
t-test, t= 0.49, p= 0.62).

Demographic analyses

Demographic modeling indicated that a model of strict
isolation was highly unlikely (log-likelihood=−472,672).
The inclusion of gene flow markedly improved the like-
lihood estimation, as exemplified by the log-likelihood of a
model with continuous, symmetrical gene flow was
−86,672. Exploration of more sophisticated models with
asymmetrical gene flow indicated that the most likely model
(log-likelihood=−31,804) entails a scenario of secondary
contact with gene flow mainly from the Tundra into the
Taiga Bean Goose (Fig. 4a, b, Supplementary Table S4).
Including population expansions for one of both taxa, did
not improve the likelihood scores (Supplementary Fig. S4,
Supplementary Table S4). Transforming the coalescent

units (Fig. 4c, Supplementary Table S5) into absolute time
showed that the taxa diverged ~2.66 million years ago (95%
CI: 2.47–2.81 million years) and that secondary contact
occurred around 58,285 years ago (95% CI: 48,658–67,918
years). Effective population sizes after the initial split were
102,508 (95% CI: 110,954–130,061) and 62,855 (95%
CI: 56,102–69,608) for the Taiga Bean Goose and the
Tundra Bean Goose, respectively.

Discussion

The evolutionary history of the Bean Geese

Our genomic analyses indicated that the Taiga Bean Goose
and the Tundra Bean Goose can be genetically separated
despite overlapping values in most morphological traits and
gene flow (Fig. 1). Moreover, the demographic modeling
revealed that the taxa diverged ca. 2.66 million years ago
(Fig. 4), in line with previous estimates (Ruokonen et al.
2000; Ottenburghs et al. 2016b). This divergence time

Fig. 3 The genomic landscape of Taiga and Tundra Bean Goose,
with sequences aligned to chicken chromosomes, for relative
divergence (FST), absolute divergence (dXY) and nucleotide diver-
sity (π). The colors in the nucleotide diversity tracks correspond to the

Taiga (blue) and the Tundra Bean Goose (red). Only the first three
chromosomes and the Z-chromosome are depicted, a complete picture
is provided in Supplementary Fig. S3. The highlighted areas (gray
boxes) show examples of differentiated islands.
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coincides with a fast global cooling trend that resulted in a
circumpolar tundra belt and expansion of temperate grass-
lands (Zachos et al. 2001), the ideal habitats for geese to
thrive (Owen 1980). After a period of allopatry, the Taiga
and the Tundra Bean Goose established secondary contact
about 60,000 years ago which culminated in bidirectional
gene flow, though mostly from the Tundra into the Taiga
Bean Goose.

The period of introgression occurred during the Weich-
selian Glaciation (between 75,000 and 11,000 years ago)
when a cooling trend introduced tundra vegetation in the
Northern hemisphere (Mangerud et al. 2011; Otvos 2015).
During this period, the geese probably resided in different
refugia: the Taiga Bean Goose was driven to southwestern
Europe (specifically Spain) whereas the Tundra Bean Goose
occurred on the tundra in western Siberia (Ploeger 1968).
The warm interstadials during the Weichselian cooling
period might have brought these populations in secondary
contact. On the basis of the current distributions, we can
assume that the Taiga Bean Goose moved northwards into
the range of the Tundra Bean Goose. Initially, the moving
Taiga Bean Goose might have been outnumbered by the
Tundra Bean Goose in certain areas, leading to hybridiza-
tion. As the range shift proceeded, the Tundra Bean Goose
and previously produced hybrids were probably

incorporated into the Taiga Bean Goose population, thereby
overturning the numerical imbalance. Consequently,
hybrids might have had a higher chance of backcrossing
with the Taiga Bean Goose, resulting in the observed pat-
tern of asymmetric gene flow from Tundra into Taiga Bean
Goose (Currat et al. 2008). These findings support the
widespread occurrence of introgressive hybridization
between bird species in general (Rheindt and Edwards
2011; Ottenburghs et al. 2017b), and geese in particular
(Ottenburghs et al. 2017a).

Islands of differentiation

Although it is possible to discriminate between the Taiga
and the Tundra Bean Goose using genetic data (Fig. 1), it
does not automatically follow that the taxa are genetically
distinct. Indeed, PCAs tend to overemphasize differences
(Björklund 2019) and ADMIXTURE-analyses are sensitive
to filtering criteria applied to the SNPs (Lawson et al. 2018).
These biases were also apparent in our analyses. Regardless
of the filtering thresholds, PCAs clearly discriminated
between both taxa. In the ADMIXTURE-analyses, on the
other hand, more stringent filtering criteria uncovered
varying levels of shared ancestry between the Taiga and the
Tundra Bean Goose (Supplementary Fig. S2). These
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findings indicate the potential issues of solely relying on
PCAs and genetic ancestry analyses when assessing the
genetic make-up of populations. Therefore, it is important to
investigate genetic patterns in more detail, for example by
exploring the genomic landscape of differentiation.

In line with the ADMIXTURE-analyses, the genetic
divergence between the taxa seems to be driven by few
genomic regions that are scattered throughout the genome,
so-called islands of differentiation (Figs. 2 and 3). This
pattern has been observed in other bird species, such as
crows (Poelstra et al. 2014), woodpeckers (Grossen et al.
2016), warblers (Toews et al. 2016; Irwin et al. 2018),
flycatchers (Ellegren et al. 2012; Burri et al. 2015), thrushes
(Ruegg et al. 2014; Delmore et al. 2015), stonechats (Van
Doren et al. 2017), and nightingales (Mořkovský et al.
2018). In line with previous studies, we found no significant
difference in the level of genetic differentiation between
islands on autosomes and on the Z-chromosome (e.g.,
Ellegren et al. 2012; Bay and Ruegg 2017; Mořkovský et al.
2018). Some patterns suggest that some of the islands of
differentiation uncovered in this study might contribute to
reproductive isolation, whereas the remainder of the gen-
ome can freely flow between the species. The positive
correlation between FST and dXY indicated increased genetic
divergence in particular genomic regions, whereas the rest
of the genome showed divergence levels close to the
genome-wide average (Fig. 2e). In addition, the demo-
graphic model uncovered high levels of recent gene flow
between the Taiga and the Tundra Bean Goose (Fig. 4). The
islands of differentiation contained some interesting candi-
date genes, such as KCNU1, which is involved in sperma-
togenesis and might thus play a role in prezygotic post-
mating isolation (Buffone et al. 2012). However, more
detailed analyses are needed to validate these candidate
genes (see Supplementary Table S6 for a list of candidate
genes).

Several patterns indicated that the genomic landscape of
the Bean Geese was at least in part shaped by linked
selection. The negative correlation between FST and
nucleotide diversity suggests that selection reduced genetic
diversity in certain genomic regions (Fig. 2f). Negative
values of Tajima’s D across the majority of genomic win-
dows (Fig. 2d) point to purifying selection or population
expansion (Tajima 1989). Also, some of the differentiation
islands did not show elevated dXY values, indicating linked
selection (Fig. 3). Few of the high FST islands were
accompanied by a decrease in absolute divergence dXY
(Fig. 3). Instead of extant linked selection that does not
cause a drop in dXY, this result can be explained by recur-
rent selection (i.e. selection in a common ancestor and in the
daughter species, Cruickshank and Hahn 2014; Irwin et al.
2018). Clearly, more detailed analyses are needed to
determine the relative contributions of reproductive

isolation and linked selection in shaping the genomic
landscape of the Bean Geese. Such analyses include quan-
tifying the relationship between levels of diversity and local
recombination rate, and comparing the genomic landscapes
of related goose species (Burri et al. 2015; Ravinet et al.
2017; Stankowski et al. 2019). The islands of differentiation
may evolve at the same genomic regions at independent
lineages even across broad taxonomical range due to linked
selection at conserved genetic elements such as areas of low
recombination (Burri et al. 2015; Dutoit et al. 2017;
Delmore et al. 2018).

Taxonomic recommendations

The degree and character of genomic differences between
the Taiga and the Tundra Bean Goose raise the question
whether they should be considered separate species. Spe-
cifically, do a few differentiated regions in the genome
provide enough evidence to consider them as distinct spe-
cies? As a single criterion, genomic differentiation might be
considered too low to justify a species rank. But, in com-
bination with other species criteria, such as morphology,
behavior and ecology, genomics could provide an extra line
of evidence in species classification (Ottenburghs 2019).
Indeed, avian taxonomy has become more pluralistic
(Sangster 2018), combining different species criteria to
justify taxonomic decisions (Alström et al. 2008; Gohli
et al. 2015; Oswald et al. 2016).

Furthermore, linking islands of differentiation to other
species criteria, such as morphology or reproductive isola-
tion, can strengthen a taxonomic decision. This is nicely
illustrated by the genomic analyses of Hooded Crow
(Corvus cornix) and Carrion Crow (C. corone), which
uncovered a single differentiated genomic region that har-
bored several genes involved in pigmentation and visual
perception (Poelstra et al. 2014). These genetic variants
have been shown to underlie the different plumage patterns
(black or gray-coated) in these species (Wu et al. 2019;
Knief et al. 2019). In addition, several behavioral studies
uncovered assortative mating according to plumage phe-
notypes (Saino and Villa 1992; Risch and Andersen 1998;
Haas et al. 2010). Such detailed investigations have not
been performed for the Bean Goose complex. The genomic
islands of differentiation uncovered in this study might be
associated with morphological and behavioral differences
between the Taiga and the Tundra Bean Goose, but this
remains to be determined by denser sampling across the
range of these taxa and experimental work on their social
behavior.

On the basis of the evidence from different species cri-
teria (e.g., genetic differentiation, reproductive isolation and
morphology), one can thus assess the taxonomic status of
particular taxa (Ottenburghs 2019). The first criterion to

80 J. Ottenburghs et al.



consider is the level of reproductive isolation between taxa.
If reproductive isolation is complete, the two taxa should be
considered separate species. If reproductive isolation is
incomplete, the level of genomic differentiation and diag-
nosability (e.g., differences in behavior or morphology) can
be taken into account. Here, different scenarios are possible.
For example, a high level of genomic differentiation in
combination with several diagnostic features suggests a
species status, whereas a low level of genomic differentia-
tion in combination with no diagnostic features indicates
that the taxa should be treated as subspecies. A special
situation concerns the combination of low genomic differ-
entiation and several diagnostic features. To reach a taxo-
nomic decision, genomic islands of differentiation can be
taken into account. If the diagnostic features can be linked
to particular genomic islands of differentiation (thus pro-
viding a genetic basis for these features), the taxa can be
considered distinct species. If not, a subspecies status is
more appropriate.

To visualize this taxonomic decision process, we con-
structed a decision tree which we illustrate with the infor-
mation on the Taiga and the Tundra Bean Goose (Fig. 5).
First, reproductive isolation between the Taiga and the
Tundra Bean Goose is incomplete: both taxa are known to
hybridize (Ottenburghs et al. 2016a; Honka et al. 2017) and
this study uncovered high levels of recent introgression.
Second, although this study shows that they are genetically
distinct, the degree of genetic differentiation is very low
(genome-wide FST= 0.033). This level of genome-wide

differentiation is lower compared to other bird systems that
are considered subspecies, such as Catharus thrushes (FST

= 0.1; Delmore et al. 2015) and some members of the
Yellow-rumped Warbler (Setophaga coronata) complex
(FST= 0.06; Irwin et al. 2018). One notable exception
concerns the Golden-winged (Vermivora chrysoptera) and
Blue-winged Warblers (Vermivora cyanoptera) that, despite
a genome-wide FST of only 0.0045, are considered distinct
species (Toews et al. 2016). Third, there are no clear
diagnostic features to discriminate between the Taiga and
the Tundra Bean Goose (de Jong 2019). Moreover, there is
considerable morphological variation within both taxa
(Burgers et al. 1991). Possibly, there is clinal variation in
certain traits, such as beak size, across the range of the Bean
Goose complex, similar to the Greater White-fronted Goose
(A. albifrons, Ely et al. 2005). However, the morphology of
the eastern Bean Goose taxa (A. s. serrirostris and A. f.
middendorfii) will need to be assessed to obtain a complete
picture of morphological variation within the Bean Goose
complex. On the basis of the low genetic differentiation,
considerable morphological variation and incomplete
reproductive isolation, we argue that the Taiga and the
Tundra Bean Goose should be treated as subspecies.

Data archiving

The genome re-sequencing data are freely available in
EMBL‐EBI European Nucleotide Archive (http://www.ebi.
ac.uk/ena) under accession number PRJEB35788. The
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Fig. 5 Decision tree for
classification of species and
subspecies based on
reproductive isolation, genetic
differentiation and
morphology. The black arrows
indicate the route followed to
determine the taxonomic
position of the Taiga and the
Tundra Bean Goose.
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scripts and workflow for the analyses can be found on the
following Github-page: https://github.com/JenteOttie/
Goose_Genomics/tree/master/BeanGoose.
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