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Abstract
Human personality is 30–60% heritable according to twin and adoption studies. Hundreds of genetic variants are expected to
influence its complex development, but few have been identified. We used a machine learning method for genome-wide
association studies (GWAS) to uncover complex genotypic–phenotypic networks and environmental interactions. The
Temperament and Character Inventory (TCI) measured the self-regulatory components of personality critical for health (i.e.,
the character traits of self-directedness, cooperativeness, and self-transcendence). In a discovery sample of 2149 healthy
Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets)
regardless of phenotype. Second, we identified five clusters of people with distinct profiles of character traits regardless of
genotype. Third, we found 42 SNP sets that identified 727 gene loci and were significantly associated with one or more of
the character profiles. Each character profile was related to different SNP sets with distinct molecular processes and neuronal
functions. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed
the replicability of 95% of the 42 SNP sets in healthy Korean and German samples, as well as their associations with
character. The identified SNPs explained nearly all the heritability expected for character in each sample (50 to 58%). We
conclude that self-regulatory personality traits are strongly influenced by organized interactions among more than 700 genes
despite variable cultures and environments. These gene sets modulate specific molecular processes in brain for intentional
goal-setting, self-reflection, empathy, and episodic learning and memory.

Introduction

Strong evidence for substantial heritability of human per-
sonality comes from family, twin, and adoption studies [1].
However, the genetic and phenotypic architecture of human
personality is complex and has remained uncertain despite
recent advances in genomics and phenomics [2–4]. In
general, geneticists must expect the likelihood that many
genes affect each trait and each gene affects many traits
[5]. When the architecture is complex, the same genetic

networks may lead to different phenotypic outcomes
(a phenomenon called multifinality in development or
pleiotropy in genetics) [6–8]. Likewise, different genetic
networks in complex systems may lead to the same
outcome (equifinality, which is also described as hetero-
geneity) [8, 9].

Human personality is a striking example of the chal-
lenges involved in identifying the specific genes and
molecular processes that influence complex traits. Twin
studies indicate that between 30% and 60% of the pheno-
typic variance in personality, as assessed by a variety of
instruments, is genetic in origin [10–14]. However, adop-
tion studies and studies that include other family members
along with twins show that most of the heritability of per-
sonality, as assessed by a variety of instruments, is likely
to depend on complex interactions among multiple gene
loci (i.e., epistasis) or multiple alleles at a locus (i.e.,
dominance), rather than the average effects of individual
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genes [11, 13–17]. Put another way, many genes are likely
to operate in concert, not separately, to influence the her-
itability and development of personality. Nevertheless,
despite extensive past effort, genome-wide association stu-
dies (GWAS) of personality have found few significant
associations using a variety of personality instruments
[18–20]. The frequent failure to account for most of the
heritability of complex traits has been called the “missing”
[21] or “hidden” [22] heritability problem.

The Temperament and Character Inventory (TCI) mea-
sures two domains of personality hypothesized to be related
to different genetic and neuronal networks [23]. Imaging
studies show that TCI character traits are associated with
brain networks for intentional and meta-cognitive processes,
such as self-reflection, goal-setting, empathy, and episodic
learning, whereas temperament traits are related to gen-
erating and conditioning automatic behaviors, such as stress
reactions [24–28]. In this article, we focus on TCI character
traits of self-directedness (i.e., purposeful, responsible vs.
aimless, blaming), Cooperativeness (i.e., helpful, empathic
vs. hostile, self-centered), and self-transcendence (i.e.,
altruistic, spiritual vs. individualistic, skeptical). These are
the self-regulatory components of personality that deter-
mine the degree to which a person's adaptive functioning is
healthy or unhealthy [29]. In related articles, we examine
temperament traits and their relations with character in the
same samples.

We have chosen to apply strictly data-driven machine
learning methods in a person-centered approach to GWAS
to uncover the complex genotypic and phenotypic archi-
tecture of personality [6, 30, 31] (Supplementary Fig-
ure S1). We postulate that personality heritability is not
missing, but is distributed in multiple networks of inter-
acting genetic and environmental variables that influence
different people [6, 31–33].

Subjects and methods

Description of the samples

Our discovery sample was the Young Finns Study, an
epidemiological study of 2149 healthy Finnish children
followed regularly from 1980 (ages, 3–18 years) to 2012
(ages, 35–50 years) [34]. Childhood environments were
directly assessed with the rearing parents in 1980 and 1983
[35–39]. Adult environments and life events were assessed
with subjects in 2001 [40, 41]. All subjects (56% women)
had thorough standardized genotypic and phenotypic
assessments, including administration of the TCI in 1997,
2001, 2007, and 2012 [34, 42].

We replicated the results in two independent samples of
healthy adults from Germany [43, 44] and Korea [45, 46],

in which comparable genotypic and phenotypic features
were available (see Supplement). The Korean study
involved 1052 unrelated individuals extracted from a
national register (aged 28–81, 57% women). The German
study involved 902 subjects (aged 20–74, 49% women)
randomly selected from Munich city registry and screened
to exclude anyone with a history of psychiatric illness in
themselves or their first-degree relatives.

Personality assessment

All subjects completed the TCI to assess seven heritable
dimensions of personality [23, 47]. The TCI measures
four dimensions of temperament and three dimensions
of character (self-directedness, cooperativeness, and self-
transcendence) with strong reliability, as described in Sup-
plementary Section 1 and Supplementary Table S1 [23, 47].
The 13 subscales of character from the TCI were used as
the primary data about character in all three samples
(Supplementary Section 2). Character profiles for each
person were based on median splits of each subscale to
distinguish high and low scorers [48].

Personality health indices

People at risk of unhealthy personality were identified as the
bottom decile of the sum of TCI self-directedness and
cooperativeness [48]. Prior work shows this criterion indi-
cates ill-being or personality disorder (i.e., poor physical,
mental, and social functioning) [49, 50]. In contrast, people
with healthy personalities were identified as the top decile
of the product of all three TCI character traits. Prior work
shows that this criterion indicates well-being or flourishing
(i.e., superior physical, mental, and social functioning)
[29, 48, 51]. These indices provided consistent measures of
the health status of subjects in all three samples. The health
value of a set (i.e., group of people) is the average value of
its members.

We also identified an empirical index of character
functioning by clustering the 13 character subscales of the
TCI (Supplementary Section 3 and Table S2). The empirical
index of character provided a single comprehensive mea-
sure of character functioning that could be associated a
posteriori with each SNP set based on semi-supervised
learning [52] and used in SNP-set Kernel Association Test
(SKAT) [32, 33] and heritability analyses. It was highly
correlated with the other health indicators (p < E-20,
RMSE 0.03).

Genotyping

The Finnish sample was genotyped by using Illumina
Human670-Quad Custom, (i.e., Illumina 670k custom)
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arrays [53]. The Korean sample used Affymetrix Genome-
Wide Human SNP Array 6.0 and Illumina HumanCore [45].
The German sample used Affymetrix Genome-Wide
Human SNP Array 6.0, Illumina OMNI Express and the
300 Array, prephased and imputed with SHAPEIT2 and
IMPUTE2. Some German individuals had also been geno-
typed on Illumina Omni1-Quad. Quality control was per-
formed for all samples as in prior work [6] (Supplementary
Section 3).

After quality checks, a subset of SNPs were preselected
with the PLINK software suite [54] to reduce the large
search space using a generously inclusive threshold
(p-value <0.01 without Bonferroni correction) for possible
association with character, taking gender and ethnicity into
account as covariates of the individual SNPs. Preselecting
SNPs identified SNPs that have weak associations with
character that are not individually significant genome wide
after Bonferroni correction, but provided presumptive can-
didates for epistatic interactions in a SNP set. The pre-
selection also identified SNPs with a strong additive effect
individually, thereby providing a manageably sized initial
pool of SNPs as candidates for both the additive and non-
additive components of the genetic architecture of character.
We accounted for ethnicity in each sample by using the first
three principal components for ancestral stratification of
SNP genotypes (Supplementary Section 3) [55].

Computational procedures

The cluster analyses used the validated Generalized Fac-
torization Method, which utilizes deep non-negative matrix
factorization (NMF) to uncover naturally occurring (i.e.,
unsupervised) associations between patterns across different
types of data, including genetics [56–59] and neuroimages
[30, 60]. The clustering was entirely data driven without
restrictive assumptions about the number or content of the
clusters [31]. For example, clusters may have different
features, and one subject can belong to more than one
cluster [6, 30, 31, 56, 61]. The recurrent application of the
clustering process is summarized and schematically related
to unsupervised deep NMF learning in Supplementary
Figure S1 [62]. The advantages of this clustering approach
over alternative analyses of single or multiple markers are
described in Supplementary Section 4.

Our web server application for phenotype–genotype
many-to-many relations analysis (PGMRA) in GWAS is
published [31] and online at http://phop.ugr.es/fenogeno.
The PGMRA method and algorithm are also summarized in
Supplementary Sections 5 and 6, which includes a semi-
supervised classifier of phenotypes from genotypes.
PGMRA properly accounts for linkage disequilibrium (LD)
efficiently (i.e., without loss of information about complex
genotypic–phenotypic relations) (Supplementary Section 4).

Statistical analysis correcting for multiple comparisons, as
well as gender and ethnicity as covariates of the SNP sets,
was performed by the SKAT [32, 33], also accessible via
PGMRA. Heritability was estimated from a trimmed
regression of SNPs on the empirical index of character
controlling for outliers and environmental variables [63, 64]
(also see Supplementary Section 7).

Replicability of results was evaluated in the three inde-
pendent samples for SNP sets, phenotypic sets, and geno-
typic–phenotypic relations using multi-objective
optimization techniques [6], as detailed in Supplementary
Section 8. We also evaluated how well the individual
genotypic sets were able to predict the classification of the
phenotypes in each sample using the PGMRA classifier
(Supplementary Section 9). Further details are available in
Supplementary Information and elsewhere [56–59].

Results

Identifying SNP sets as candidates for causal
variability

We exhaustively identified 902 non-identical but possibly
overlapping SNP sets in the Finnish sample using PGMRA
without knowledge of the phenotype. The SNP sets were
comprised of different numbers of SNPs and/or subjects,
regardless of their phenotypic status. The SNPs were
mapped to diverse functional classes of genetic variants that
may be located on different chromosomes, frequently even
within a single SNP set (Figs. 1a, 2a–d). SNP sets are
organized as networks of multilocus genotypes (Fig. 1a, b;
Supplementary Figure S2, Supplementary Table S3). They
were labeled by a genotypic identification ‘G’, followed by
two numbers: the first indicates the maximum number of
clusters and the second indicates the order of selection by
the algorithm. SNP sets were associated with different
health risks (Table 1, Supplementary Table S2).

Identifying clusters of subjects with distinct
character profiles

We identified 342 non-identical but possibly overlapping
character sets using the 13 character subscales without
knowledge of the genotype. Character sets were labeled by
a phenotypic identification “C” to distinguish them from the
SNP sets. These fine-grained character sets were nested
within five character supersets that were identified by
recurrently applying PGMRA to minimize the cophenetic
correlation coefficient (Table 2) [62]. In other words, five
groups of people had highly distinct character profiles.

The people in three of the five character profiles had
healthy personalities, which we named resourceful,
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organized, and creative to be consistent with traditional
labels for TCI profiles (Table 2). For example, people with
the "organized" character profile were high in most sub-
scales of self-directedness and cooperativeness, but were

low in all subscales of self-transcendence (i.e., they were
controlling, individualistic, and skeptical). People with the
"creative" profile were high in all aspects of character,
whereas the "resourceful" were only self-directed.
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In addition, there were two profiles of people with
unhealthy personalities. The people with a "dependent"
character profile were highly forgiving when abused (CO4),
conscientiously considerate of others (CO5), self-
deprecating (SD4), and otherwise low in self-directedness
and self-transcendence. The people with an "apathetic"
character were low in all aspects of character development
(Table 2).

Association of SNP sets with character

We tested the association of SNP sets with character. The
empirical index of character, a single quantitative measure

of character functioning, was more strongly associated with
SNP sets than with the average effects of their constituent
SNPs according to SKAT (Table 1). Forty-two SNP sets
had significant associations with character (p < 1E-05). For
example, the SNP set G_11_4 has a p-value of 1.22 E-19,
whereas the best and average SNPs within this set have 9.00
E-05 and 3.29 E-02 p-values, respectively (Table 1). SKAT
[32] and PLINK [54] methods estimated similar p-values
for the individual SNPs (R2= 0.99, F statistics, p < 3.8 E-
46), showing that SKAT did not inflate results.

Forty-two SNP sets significantly associated with
character are described in Table 1. We assigned names to
the SNP sets based on prominent molecular processes and
pathways that distinguished them (Supplementary
Table S4). The character-related SNP sets were com-
prised of networks of SNPs that mapped 727 genes,
nearly all of which are known to influence individual
differences in brain functions, particularly regulation of
neurodevelopment, neuroplasticity, neuroprotection,
connectivity, energy metabolism, stress reactivity, resi-
lience, longevity, learning, and memory (Supplementary
Tables S5, S6).

Complex genotypic–phenotypic relationships in
personality profiles

We found that 55 of the 342 character sets were sig-
nificantly associated with particular SNP sets (hypergeo-
metric statistics, 1E-11 < p < 1E-03, Table 3). The
genotypic–phenotypic relations were complex, demon-
strating pleiotropy and heterogeneity. For example, G_5_1
involved neuroplasticity and was frequently associated with
dependent character sets, but sometimes with apathetic
or creative profiles (Table 3). The 55 character sets were
associated with the 42 SNP sets in 128 relationships that
were significant by a permutation test (Table 3, empirical
p < 4.7 E-03).

SNP sets (Fig. 1b, Supplementary Figure 2A) often had
similar character profiles associated with particular mole-
cular processes (Table 3, Supplementary Tables S4, S7).
For example, the organized profile was strongly associated
with many SNP sets involving the regulation of inositol–
calcium signaling for obtaining food and other goals (e.g.,
G_8_8, G_11_4) and for neuroprotection against injury
(G_12_8). SNP sets regulating episodic learning and
hippocampal neurogenesis (e.g., G_7_3, G_12_1) were
associated with a creative profile.

Relations among SNP sets to one another and to
molecular processes

We found 12 single and disjoint nodes, and at least three
subnetworks composed of highly connected nodes, shown

Fig. 1 a Two examples of SNP sets are represented as heatmap sub-
matrices or biclusters. SNP sets were identified by distinct patterns of
molecular features of SNPs in subgroups of subjects. Allele values are
indicated as BB (dark blue), AB (intermediate blue), AA (light blue),
and missing (black). SNP sets were labeled for specificity by a pair of
numbers representing the maximum number of clusters from which the
bicluster was selected (e.g., 33 clusters may produce more specific
than 21) and the order in which they were selected by the method (e.g.,
4th bicluster or factor selected by FNMF when the maximum number
of clusters was 21) and usually have a prefix G for genotype or P for
phenotype. Only a subset of optimal and cohesive sets are selected
across all number of clusters (See Supplementary Methods). The SNPs
within each SNP set can map to different chromosomes (e.g., 6 and 8)
and exhibit distinct molecular consequences (see Supplementary
Table S3). The pie chart shows the percentage of SNPs within a SNP
set that belong to each type of consequence. b Dissection of a GWAS
in a Finnish population to identify the genotypic and phenotypic
architecture of personality measured by the TCI. The genotypic net-
work is depicted as nodes (SNP sets) linked by shared SNPs (blue
lines) and/or subjects (red lines) (see also Supplementary Figure S3A
for additional subnetworks). Each SNP set maps to one or more genes
(see Supplementary Table S6 for full list of genes associated with each
SNP set). SNP sets associated with each of the five general character
profiles are distinguished by color-coding as shown in the legend (see
Table 3). c, d Comparison of level of ill-being (c where high values
indicate ill-being) and for level of well-being (d where high values
indicate well-being) in groups of subjects with each of the five char-
acter profiles specified by both phenotypic and genotypic information
(evaluated by ANOVA). (Compare with either genetic or phenotypic
assessment alone in Supplementary Figure S6). e Variation in health
status of SNP sets: well (blue, see d), ill (orange, see c), intermediate
(gray). f 12 genotypic-phenotypic pipelines connect different sets of
genes to the same character dimension (see also Supplementary
Tables S9–S12). Red lines indicate direct connections, whereas blue
lines and “&” indicate composite connections. g Surface showing the
pattern of health status of the subjects in this study based on SNP set
information only (i.e., interpolation from Table 1). The probability of
well-being in the z-axis varies from high (red for high well-being) to
low (green). The order of the SNP sets is based on shared subjects (x-
axis) and on shared SNPs (y-axis) measured by hypergeometric sta-
tistics, so SNP sets sharing more SNPs and/or subjects are nearby (see
ill health surface in Supplementary Figure S4). h Surface showing the
pattern of health status of subjects based on both genotypic informa-
tion (SNP sets) and phenotypic information (character sets) (as in
Table 3). The probability of well-being in the z-axis varies from high
(red, high well-being) to low (green). The sharing of subjects is shown
for both SNP sets (x-axis) and character sets (y-axis) (see ill health
surface in Supplementary Figure S5)
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in Fig. 1b and Supplementary Figure S3A. These networks
were relatively disjoint (i.e., sharing few SNPs and subjects;
see Supplementary Information 9. Identification of Sub-

networks), suggesting that these are distinct antecedents of
personality. These nearly disjoint networks vary in size and
complexity: one subnetwork connected eight SNP sets
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(Supplementary Figure S3A), whereas others had only a
single SNP set.

One network contained SNP sets primarily connected by
shared SNPs, but not subjects (e.g., G_10_1 learning/memory
and G_7_7 olfaction, Fig. 1b), as expected when the same
SNPs had different allele values. This network was associated
with dependent and organized personality profiles (Fig. 1b).

Both shared subjects and SNPs connected the other two
networks (Fig. 1b), as occurs when one network is a subset of
another. The first network was primarily composed of orga-
nized (e.g., components of inositol signaling by G_11_4,
G_8_8, G_3_1) and apathetic (e.g., G_21_3 cellular senes-
cence, G_7_2 GPCR dysregulation) profiles. The second
network displayed creative (e.g., G_3_2, G_7_3, G_9_8) and
dependent (e.g., G_38_8, G_5_1) profiles.

Finally, some SNP sets within a network do not share
SNPs, but independently specify almost the same indivi-
duals (e.g., G_8_8 inositol/chemokine signaling, G_7_2
GPCR dysregulation, Fig. 1b), as expected when distinct
subsets of genotypic features influence a common pathway
or consequence.

Heterogenic pathways influence the same
character trait

The genes associated with each of the five character profiles
are largely different. In all, 68% of the 727 genes associated
with character were unique to a single character profile:
208 with organized, 89 with creative, 70 with dependent, and
130 with apathetic (Supplementary Table S8). Consequently,
there were multiple groups of genes that lead to each indi-
vidual character trait, as depicted in Fig. 1f. For example, high
self-directedness occurs in individuals with the resourceful,
organized, and creative profiles, even though these profiles
have different genetic backgrounds. Put another way, indivi-
dual character traits were genetically more heterogeneous
than the multidimensional character profiles.

We refer to the multiple genotypic–phenotypic networks
that contribute to individual traits as a pipeline, as outlined
in Fig. 1f. Detailed descriptions of the specific genes and
molecular processes we found in the pipelines for each of
the three character traits are presented in Supplementary
Tables S9–S12.

Complex genotypic–phenotypic relationships
influence health status

The combination of genotypic and phenotypic information
provided more information than either alone for both well-
being (Fig. 1g vs. Fig. 1h) and ill-being (Supplementary
Figures S4 vs. S5). When health status was based on the
joint relationship of SNP sets and character sets, all five
character profiles were well distinguished in terms of the
probabilities of ill-being (p < 3.89E-26, ANOVA statistics,
Fig. 1c) and well-being (p < 3.68E-65, ANOVA, Fig. 1d).
In contrast, when health status was based on character
scores only, the probability of ill-being was greater in only
two profiles and that of well-being was greater in only one
profile (Supplementary Figure S6).

We identified candidate regulatory genes that we called
switch genes because of their relationship to changes in
health status among people with the same character profile
(Fig. 1e). For example, all apathetic SNP sets were asso-
ciated with ill-being except G_9_3, which was associated
with well-being. In contrast, the creative SNP sets were
associated with well-being except for G_7_7, which was
associated with ill-being. The 150 switch genes included
50% protein coding genes, 18% RNA genes, 15% pseu-
dogenes, 3% transcription factors, and 4% others (Supple-
mentary Table S13).

Overall about 67% of the 727 genes associated with
character sets may be involved in regulatory processes:
these included transcriptional regulators (10%), lncRNAs
(24%), other RNA genes (6%), and targets of microRNAs
(27%), as identified in the TRANSFAC® release 2017.1
database (Supplementary Table S14). We identified two
microRNAs (MIR431, MIR1762) in association with
character, and they target 74 and 119 of the 727 genes we
found associated with character in TRANSFAC, respec-
tively. In particular, lnc RNAs were more commonly
associated with character only then with temperament and
character, whereas protein-coding genes were more com-
monly associated with both temperament and character,
as shown in Fig. 2a, b.

Replication of results in two independent samples

We tested the replicability of our findings in the Finnish
study by carrying out the same analyses in the German and
Korean samples. In all, 95% of the 42 SNP sets associated

Fig. 2 a, b Types of genetic variants mapped by SNP sets associated
with character: a Specific molecular consequences (Supplementary
Table S5) and b their subtypes. Genes related only to character sets
(red) were less often protein coding and more often RNA genes than
those also associated with temperament sets (blue color). c Cell dis-
playing the molecular pathways containing genes associated only with
the organized profile. The uncovered genes influence the phosphatidyl
inositol/calcium second-messenger signaling system that regulates the
seeking of food and other goals in response to external environmental
signals (see also Supplementary Tables S4, S7). d Multiple SNPs
within a SNP set can affect a single or multiple genes in many ways
(Supplementary Table S3). Within the MTA3 gene, SNPs in the SNP
set G_12_1 may affect both coding and regulatory regions (thereby
inhibiting transcription), whereas SNPs from SNP set 40_26 are
mostly located in intronic regions (thereby blocking or decreasing
protein production). The SNP sets are associated with profiles exhi-
biting distinct character features (creative vs. apathetic)
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with character sets in the Finnish sample were identified in
one or both of the replication samples: 36 were identified in
both the Korean and German samples, three in the Korean
sample only, and one in the German sample only (Supple-
mentary Table S15). In addition, 96% of the 55 character
sets associated with SNP sets in the Finnish sample were
replicated in one or both of the replication samples: 46 in
both, six in Korean sample only, and one in the German

sample only (Table S16). The genotypic–phenotypic rela-
tions between SNP and character sets identified in the
Finnish sample closely matched those observed in the
Korean study (94%) and in the German (84%) study
(Table S17). The replication of the 25 character sets asso-
ciated with ill-being in the Finnish sample was reduced in
the German sample (72%) compared with the Korean
sample (84%)(ANOVA, p= 0.01), as expected because the

Table 1 Description of 42 SNP sets associated with character sets (p < 1E-05)

Finnish sample Probability of health aGenes

SNP sets SNP-set name % Coding SKAT p-
value

Best SNP Average SNPs aSubjects aSNPs Well-being Ill-being

G_3_1 Inositol-calcium
signaling*

62 2.88E-102 3.01E-05 2.64E-01 311 2163 0.06 0.1 >300

G_8_8 Inositol/chemokine
pathways

67 2.21E-55 8.55E-05 1.99E-01 224 611 0.08 0.07 291

G_7_2 GPCR dysregulation 62 2.07E-31 9.00E-05 2.44E-01 211 303 0.09 0.23 142

G_7_3 Neurogenesis 63 1.67E-20 1.07E-04 1.85E-01 133 364 0.17 0.36 136

G_11_4 Inositol signaling 55 1.22E-19 9.00E-05 3.29E-02 141 172 0.07 0.04 51

G_12_8 Neuroprotection 62 1.49E-16 2.53E-04 3.39E-01 173 285 0.09 0.03 111

G_7_7 Olfaction 56 1.32E-11 3.27E-05 2.25E-01 145 193 0.03 0.1 55

G_36_29 Electron transport 50 5.37E-09 4.27E-04 3.37E-01 25 185 0.08 0.48 76

G_31_8 Neurotrophin 55 1.15E-08 2.90E-05 3.13E-01 54 183 0.09 0.54 64

G_28_15 Histone methylation 44 2.77E-08 3.76E-05 2.23E-01 101 123 0.08 0.38 34

G_9_8 Neuroregulation 57 3.82E-08 1.11E-04 3.48E-01 209 230 0.17 0.12 77

G_24_6 GFI1-neurite outgrowth 36 5.22E-08 2.65E-04 7.47E-02 72 63 0.1 0.08 14

G_19_5 DARPP320-
neuroplasticity

30 8.31E-08 1.23E-04 2.13E-01 86 59 0.16 0.22 10

G_33_15 ERK-neurodevelopment 53 1.60E-07 4.47E-04 8.47E-02 26 67 0.27 0.23 19

G_23_2 Biogenic amine synthesis 50 2.24E-07 1.39E-04 9.46E-02 42 56 0.05 0.29 8

G_3_2 PAK-neuroprotection 63 3.08E-07 1.70E-05 1.80E-01 133 197 0.18 0.24 35

G_22_6 Blood–brain barrier 59 3.37E-07 2.53E-04 2.35E-01 37 93 0.08 0.16 32

G_34_13 CREB-episodic learning 54 3.88E-07 2.38E-04 1.28E-01 41 49 0.05 0.29 13

G_40_26 Dopamine-feedback 65 6.08E-07 3.88E-04 2.61E-01 39 98 0.08 0.36 17

G_21_3 Cellular senescence 62 1.12E-06 1.85E-04 3.55E-01 60 117 0.1 0.23 34

G_20_2 Enhanced memory 79 1.59E-06 2.78E-04 2.34E-01 25 80 0.24 0.12 19

G_28_11 Sensory transduction 44 2.07E-06 8.29E-04 2.71E-01 32 81 0.22 0.06 9

G_12_1 Episodic learning 61 5.06E-06 9.00E-05 3.41E-01 146 189 0.2 0.06 66

G_41_33 GPCR neuroplasticity 40 5.31E-06 4.91E-04 2.71E-01 56 76 0.11 0.21 15

G_9_3 Pyrimidine metabolism 50 6.03E-06 4.54E-05 2.55E-02 164 35 0.12 0.04 6

G_26_14 Glucose transport 59 6.98E-06 1.08E-04 2.20E-01 46 75 0.09 0.24 27

G_20_3 Fatty acid oxidation 48 8.03E-06 2.07E-04 3.04E-01 36 82 0.03 0.33 21

G_23_19 Org2-RNA 0 1.17E-05 3.76E-05 9.37E-04 87 32 0.08 0.03 4

G_17_14 Dep-RNA 0 1.17E-05 3.76E-05 9.37E-04 47 32 0.09 0.15 4

G_27_25 Org3-RNA 0 1.17E-05 3.76E-05 9.37E-04 54 32 0.11 0.07 4

G_41_40 Apath-RNA 0 1.17E-05 3.76E-05 9.37E-04 34 32 0.09 0.03 4

G_38_10 Org5-RNA 0 1.17E-05 3.76E-05 9.37E-04 27 32 0.15 0.19 4

G_33_19 Res-RNA 0 1.17E-05 3.76E-05 9.37E-04 43 32 0.09 0.12 4

G_21_4 Org1-RNA 0 1.28E-05 3.76E-05 9.41E-02 68 43 0.07 0.07 4

G_10_1 Learning/memory 47 1.29E-05 3.27E-05 7.44E-02 131 48 0.07 0.06 15

G_35_12 Org4-RNA 0 1.33E-05 3.76E-05 9.32E-04 45 31 0.16 0.09 3

G_35_4 O-linked glycosylation 57 1.39E-05 3.74E-04 2.83E-01 42 37 0.05 0.24 7

G_5_1 CDK neuroplasticity 100 1.78E-05 1.70E-05 5.60E-02 100 91 0.17 0.4 1

G_19_9 Aurora-B 38 1.91E-05 2.65E-04 1.25E-01 20 46 0.1 0.4 8

G_36_27 Aging regulation 25 1.96E-05 8.29E-04 1.60E-01 27 57 0.33 0.22 4

G_16_9 Olfactory signaling 58 2.00E-05 2.31E-04 1.79E-01 64 36 0.08 0.17 12

G_33_11 Self-control 50 3.67E-05 2.65E-04 9.39E-02 43 32 0.26 0.07 15

The SNP sets are named based on molecular pathways and neuronal functions of the genes that distinguish the sets from one another (see
Supplementary Table S4). Percentage coding indicates the percentage of protein coding genes. Strengths of association are compared for the SNP
set, the best SNP, and average SNP based on SKAT p-values. The number of subjects and SNPs comprising each SNP set is specified. The
probabilities of the well-being and ill-being are given for subjects in each SNP set (see also Supplementary Table S2)
aGenes indicates the genes mapped by the SNP set (Figure S6), where genes can be mapped by more than one SNP set
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Germans had been screened to exclude psychopathology,
including personality disorders, in themselves or their
first-degree relatives (Supplementary Figure S7). The
strength of the identity of replicated sets was calculated
using hypergeometric statistics and multi-objective optimi-
zation techniques (see Pareto values in Supplementary
Tables S18, S19).

We also surveyed prior literature reporting associations
with TCI character-related keywords systematically from
PubMed, and identified genes that had been reported to
be associated with one or more of the TCI character traits
in one or more investigations (Supplementary Tables S20,
S21). We found that 116 of our detected genes were
related to genes, family of proteins, or pathways of genes
previously associated with TCI traits (Supplementary
Table S20). Among the genes in character-related SNP
sets, we also detected 74% of the 111 genes that had
been previously associated with TCI traits, and 75% of
the 63 genes that had previously been reported in associa-
tion with TCI character traits (Supplementary Table S21).
Considering all genes previously related to the TCI (Sup-
plementary Table S21), we recovered seven genes with
the same exact name, another 34 variants from the same
family of proteins, and another 41 genes in the same
KEGG pathway previously reported.

Estimation of heritability and environmental
influences

The heritability of character controlling for outliers was
estimated as 57% in the Finns, 58% in the Germans, and
50% in the Koreans (Supplementary Table S22). In addi-
tion, 95% of the SNP sets were strongly associated with
the empirical character index (5E-11 > p-value > 5E-77). In
other words, the SNPs that comprise different SNP sets
strongly distinguished the character values of the subjects
in each set, indicating that each individual SNP set con-
tributed significantly to explain the total distributed herit-
ability (Supplementary Section 9). Consequently, when
the genotypic sets were used to classify the well-being
and ill-being of the subjects as measured by their character
values, the predicted values were highly accurate (average
areas under curve of the classifications were 0.928 and
0.932, respectively) (Supplementary Figure S9).

We also considered environmental influences in the
Finnish sample. There were direct associations of sets
of environmental influences in childhood and adulthood
with character sets (Supplementary Table S23A) and with
SNP sets (Supplementary Table S23B). The impact of these
correlations was small, so the heritability estimate was
still 56% in the Finnish sample when adjusted for gene-
environment correlation (Supplementary Table S23C). In
addition, five novel associations between SNP sets andTa

bl
e
2
(c
on

tin
ue
d)

C
ha
r
se
ts

S
up
er
se
ts

N
am

e
sd
1

sd
2

sd
3

sd
4

sd
5

co
1

co
2

co
3

co
4

co
5

st
1

st
2

st
3

L
sd
1

L
sd
2

L
sd
3

L
sd
4

L
sd
5

L
co
1

L
co
2

L
co
3

L
co
4

L
co
5

L
st
1

L
st
2

L
st
3

#S
W
el
l
B
ei
ng

Il
l
B
ei
ng

C
_1
3_
3

5
Y

Y
Y

Y
Y

4
0

0.
25

C
_1
4_
3

5
Y

32
0.
06

0.
38

C
_1
1_
10

5
Y

Y
Y

Y
Y

Y
Y

Y
38

0.
03

0.
5

C
_1
5_
1

5
Y

Y
Y

21
0.
14

0.
52

C
_7
_3

5
Y

Y
15

0
1

C
_8
_6

5
Y

Y
Y

7
0

1

C
_9
_3

5
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

7
0

1

C
_1
5_
15

5
Y

Y
Y

33
0

0.
3

C
_1
1_
6

5
Y

Y
28

0
0.
71

C
_1
2_
4

5
Y

Y
Y

Y
Y

Y
34

0.
03

0.
53

C
on

se
ns
us

se
ts

sd
1

sd
2

sd
3

sd
4

sd
5

co
1

co
2

co
3

co
4

co
5

st
1

st
2

st
3

L
sd
1

L
sd
2

L
sd
3

L
sd
4

L
sd
5

L
co
1

L
co
2

L
co
3

L
co
4

L
co
5

L
st
1

L
st
2

L
st
3

R
es
ou
rc
ef
ul

Y
Y

Y

O
rg
an
iz
ed

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

C
re
at
iv
e

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

D
ep
en
de
nt

Y
Y

Y
Y

Y
Y

Y
Y

Y

A
pa
th
et
ic

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

T
C
I
su
bs
ca
le
s
ar
e
in
di
ca
te
d
se
lf
-d
ir
ec
te
dn

es
s
(s
d1

–
sd
5)
,
co
op

er
at
iv
en
es
s
(c
o1

–
co
5)
,
an
d
se
lf
-t
ra
ns
ce
nd

en
ce

(s
t1
–
st
3)
.
S
ub

sc
al
e
va
lu
es

w
er
e
di
vi
de
d
by

m
ed
ia
n
sp
lit

in
to

hi
gh

an
d
lo
w

sc
or
es

(d
is
tin

gu
is
he
d
by

L
be
fo
re

th
e
lo
w
sc
or
es
).
T
he

nu
m
be
r
of

su
bj
ec
ts
in

ea
ch

ch
ar
ac
te
r
se
ti
s
sp
ec
ifi
ed

(#
S
).
T
he

pr
ob

ab
ili
tie
s
of

w
el
l-
be
in
g
an
d
ill
-b
ei
ng

ar
e
sh
ow

n
fo
r
su
bj
ec
ts
in

ea
ch

ch
ar
ac
te
r
se
t

(s
ee

al
so

S
up

pl
em

en
ta
ry

T
ab
le

S
2)

2304 I. Zwir et al.



Table 3 The strength of the genotypic–phenotypic relationships among SNP and character sets and their corresponding health measurements

Character sets Character
consensus sets

SNP sets SNP-set names Hypergeo-
metric C-G

Health measurements of subjects

Char sets SNP sets Both Sets Jointly

Well-
being

Ill-being Well-
being

Ill-being Well-
being

Ill-being

C_14_8 Resourceful G_12_8 Neuroprotection 1.29E-03 0.01 0.01 0.09 0.03 0.09 0.03

C_10_7 Resourceful G_12_8 Neuroprotection 2.79E-03 0.41 0 0.09 0.03 0.41 0.03

C_10_7 Resourceful G_33_11 Self-control 3.68E-03 0.41 0 0.26 0.07 0.41 0.07

C_10_6i Resourceful G_33_19 Res-RNA 4.33E-03 0.03 0.38 0.09 0.12 0.09 0.38

C_14_8 Resourceful G_11_4 Inositol signaling 4.86E-03 0.01 0.01 0.07 0.04 0.07 0.04

C_4_4 Organized G_11_4 Inositol signaling 1.26E-11 0.01 0 0.07 0.04 0.07 0.04

C_3_1 Organized G_11_4 Inositol signaling 7.18E-09 0 0 0.07 0.04 0.07 0.04

C_5_1 Organized G_11_4 Inositol signaling 2.19E-06 0.05 0 0.07 0.04 0.07 0.04

C_4_4 Organized G_12_8 Neuroprotection 9.79E-06 0.01 0 0.09 0.03 0.09 0.03

C_3_1 Organized G_12_8 Neuroprotection 1.38E-05 0 0 0.09 0.03 0.09 0.03

C_8_7 Organized G_11_4 Inositol signaling 2.78E-05 0.04 0 0.07 0.04 0.07 0.04

C_4_4 Organized G_10_1 Learning/memory 4.79E-05 0.01 0 0.07 0.06 0.07 0.06

C_3_1 Organized G_10_1 Learning/memory 9.45E-05 0 0 0.07 0.06 0.07 0.06

C_3_1 Organized G_21_4 Org1-RNA 1.70E-04 0 0 0.07 0.07 0.07 0.07

C_4_4 Organized G_8_8 Global inositol/
chemokine pathways

1.86E-04 0.01 0 0.08 0.07 0.08 0.07

C_14_13 Organized G_24_6 Neurogenesis 1.86E-04 0.09 0 0.1 0.08 0.1 0.08

C_4_4 Organized G_3_1 Inositol calcium
signaling

3.38E-04 0.01 0 0.06 0.1 0.06 0.1

C_9_8 Organized G_12_8 Neuroprotection 4.62E-04 0.12 0 0.09 0.03 0.12 0.03

C_3_1 Organized G_3_1 Inositol calcium
signaling

7.05E-04 0 0 0.06 0.1 0.06 0.1

C_7_7 Organized G_11_4 Inositol signaling 7.17E-04 0.07 0 0.07 0.04 0.07 0.04

C_5_1 Organized G_12_8 Neuroprotection 7.58E-04 0.05 0 0.09 0.03 0.09 0.03

C_14_13 Organized G_12_8 Neuroprotection 8.50E-04 0.09 0 0.09 0.03 0.09 0.03

C_14_13 Organized G_23_19 Org2-RNA 1.00E-03 0.09 0 0.08 0.03 0.09 0.03

C_5_1 Organized G_10_1 Learning/memory 1.09E-03 0.05 0 0.07 0.06 0.07 0.06

C_3_1 Organized G_8_8 Global inositol/
chemokine pathways

1.12E-03 0 0 0.08 0.07 0.08 0.07

C_7_7 Organized G_17_14 Dep-RNA 1.32E-03 0.07 0 0.09 0.15 0.09 0.15

C_15_1i Organized G_36_29 Electron transport 1.66E-03 0 0.79 0.08 0.48 0.08 0.79

C_5_1 Organized G_8_8 Global inositol/
chemokine pathways

2.07E-03 0.05 0 0.08 0.07 0.08 0.07

C_14_13 Organized G_11_4 Inositol signaling 2.33E-03 0.09 0 0.07 0.04 0.09 0.04

C_9_1i Organized G_38_10 Org5-RNA 2.34E-03 0 0.02 0.15 0.19 0.15 0.19

C_7_5i Organized G_35_12 Org4-RNA 2.43E-03 0.5 0.06 0.16 0.09 0.5 0.09

C_7_7 Organized G_12_8 Neuroprotection 2.50E-03 0.07 0 0.09 0.03 0.09 0.03

C_5_1 Organized G_17_14 Dep-RNA 3.00E-03 0.05 0 0.09 0.15 0.09 0.15

C_6_5 Organized G_11_4 Inositol signaling 3.04E-03 0.07 0 0.07 0.04 0.07 0.04

C_12_9 Organized G_7_3 Neurogenesis 3.13E-03 0.54 0 0.17 0.36 0.54 0.36

C_8_7 Organized G_10_1 Learning/memory 3.54E-03 0.04 0 0.07 0.06 0.07 0.06

C_4_4 Organized G_24_6 Neurogenesis 3.63E-03 0.01 0 0.1 0.08 0.1 0.08

C_14_9 Organized G_31_8 Neurotrophin 3.65E-03 0.02 0.29 0.09 0.54 0.09 0.54

C_14_9 Organized G_7_3 Neurogenesis 3.66E-03 0.02 0.29 0.17 0.36 0.17 0.36

C_9_6 Organized G_27_25 Org3-RNA 3.84E-03 0.11 0.02 0.11 0.07 0.11 0.07
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Table 3 (continued)

Character sets Character
consensus sets

SNP sets SNP-set names Hypergeo-
metric C-G

Health measurements of subjects

Char sets SNP sets Both Sets Jointly

Well-
being

Ill-being Well-
being

Ill-being Well-
being

Ill-being

C_8_7 Organized G_8_8 Global inositol/
chemokine pathways

3.99E-03 0.04 0 0.08 0.07 0.08 0.07

C_12_9 Organized G_9_8 Neuroregulation 4.96E-03 0.54 0 0.17 0.12 0.54 0.12

C_3_3 Creative G_7_3 Neurogenesis 1.22E-06 0.92 0 0.17 0.36 0.92 0.36

C_3_3 Creative G_5_1 CDK neuroplasticity 2.00E-06 0.92 0 0.17 0.4 0.92 0.4

C_15_5 Creative G_3_2 PAK-neuroprotection 6.63E-06 0.72 0.03 0.18 0.24 0.72 0.24

C_4_3 Creative G_20_2 Enhanced memory 1.13E-05 0.97 0 0.24 0.12 0.97 0.12

C_14_1 Creative G_7_3 Neurogenesis 2.80E-05 0.25 0.11 0.17 0.36 0.25 0.36

C_11_3 Creative G_33_15 ERK-neurodevelopment 3.99E-05 0.97 0.03 0.27 0.23 0.97 0.23

C_8_8 Creative G_20_2 Enhanced memory 6.49E-05 1 0 0.24 0.12 1 0.12

C_3_3 Creative G_20_2 Enhanced memory 9.26E-05 0.92 0 0.24 0.12 0.92 0.12

C_5_5 Creative G_20_2 Enhanced memory 1.41E-04 1 0 0.24 0.12 1 0.12

C_4_3 Creative G_33_15 ERK-neurodevelopment 1.65E-04 0.97 0 0.27 0.23 0.97 0.23

C_5_5 Creative G_33_15 ERK-neurodevelopment 1.78E-04 1 0 0.27 0.23 1 0.23

C_12_7 Creative G_33_15 ERK-neurodevelopment 3.21E-04 0.9 0.04 0.27 0.23 0.9 0.23

C_4_3 Creative G_7_3 Neurogenesis 3.65E-04 0.97 0 0.17 0.36 0.97 0.36

C_5_5 Creative G_7_3 Neurogenesis 4.21E-04 1 0 0.17 0.36 1 0.36

C_6_1 Creative G_33_15 ERK-neurodevelopment 5.02E-04 1 0 0.27 0.23 1 0.23

C_5_5 Creative G_19_5 DARPP320-
Neuroplasticity

5.30E-04 1 0 0.16 0.22 1 0.22

C_3_3 Creative G_19_5 DARPP320-
neuroplasticity

7.66E-04 0.92 0 0.16 0.22 0.92 0.22

C_3_3 Creative G_33_15 ERK-neurodevelopment 8.46E-04 0.92 0 0.27 0.23 0.92 0.23

C_4_3 Creative G_12_1 Episodic learning 9.12E-04 0.97 0 0.2 0.06 0.97 0.06

C_7_2 Creative G_33_15 ERK-Neurodevelopment 9.82E-04 0.98 0 0.27 0.23 0.98 0.23

C_7_2 Creative G_36_27 Aging regulation 1.18E-03 0.98 0 0.33 0.22 0.98 0.22

C_13_1 Creative G_20_2 Enhanced memory 1.23E-03 0.9 0.02 0.24 0.12 0.9 0.12

C_13_1 Creative G_33_15 ERK-neurodevelopment 1.44E-03 0.9 0.02 0.27 0.23 0.9 0.23

C_3_3 Creative G_12_1 Episodic learning 1.59E-03 0.92 0 0.2 0.06 0.92 0.06

C_12_7 Creative G_12_1 Episodic learning 2.21E-03 0.9 0.04 0.2 0.06 0.9 0.06

C_3_3 Creative G_9_8 Neuroregulation 2.27E-03 0.92 0 0.17 0.12 0.92 0.12

C_3_3 Creative G_28_11 Sensory transduction 3.14E-03 0.92 0 0.22 0.06 0.92 0.06

C_13_1 Creative G_28_11 Sensory transduction 3.17E-03 0.9 0.02 0.22 0.06 0.9 0.06

C_4_3 Creative G_9_8 Neuroregulation 3.32E-03 0.97 0 0.17 0.12 0.97 0.12

C_5_5 Creative G_12_1 Episodic learning 3.32E-03 1 0 0.2 0.06 1 0.06

C_9_2i Creative G_34_13 CREB-Episodic learning 4.05E-03 0.05 0.2 0.05 0.29 0.05 0.29

C_12_7 Creative G_7_3 Neurogenesis 4.10E-03 0.9 0.04 0.17 0.36 0.9 0.36

C_12_7 Creative G_19_5 DARPP320-
Neuroplasticity

4.22E-03 0.9 0.04 0.16 0.22 0.9 0.22

C_11_3 Creative G_9_8 Neuroregulation 4.24E-03 0.97 0.03 0.17 0.12 0.97 0.12

C_15_7 Dependent G_11_4 Inositol signaling 1.80E-06 0.03 0.02 0.07 0.04 0.07 0.04

C_12_6 Dependent G_31_8 Neurotrophin 8.93E-06 0.09 0.41 0.09 0.54 0.09 0.54

C_12_6 Dependent G_41_33 GPCR neuroplasticity 1.18E-05 0.09 0.41 0.11 0.21 0.11 0.41

C_15_13 Dependent G_31_8 Neurotrophin 6.14E-05 0 0.79 0.09 0.54 0.09 0.79
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Table 3 (continued)

Character sets Character
consensus sets

SNP sets SNP-set names Hypergeo-
metric C-G

Health measurements of subjects

Char sets SNP sets Both Sets Jointly

Well-
being

Ill-being Well-
being

Ill-being Well-
being

Ill-being

C_4_2 Dependent G_28_15 Histone methylation 6.90E-05 0 0.45 0.08 0.38 0.08 0.45

C_9_5 Dependent G_7_2 GPCR dysregulation 1.01E-04 0 0.26 0.09 0.23 0.09 0.26

C_15_7 Dependent G_8_8 Global inositol/
chemokine pathways

2.03E-04 0.03 0.02 0.08 0.07 0.08 0.07

C_15_13 Dependent G_28_15 Histone methylation 2.92E-04 0 0.79 0.08 0.38 0.08 0.79

C_4_2 Dependent G_5_1 CDK neuroplasticity 3.98E-04 0 0.45 0.17 0.4 0.17 0.45

C_14_5 Dependent G_7_7 Olfaction 8.92E-04 0 0.29 0.03 0.1 0.03 0.29

C_15_7 Dependent G_17_14 Dep-RNA 1.01E-03 0.03 0.02 0.09 0.15 0.09 0.15

C_6_3 Dependent G_17_14 Dep-RNA 1.09E-03 0 0.32 0.09 0.15 0.09 0.32

C_12_6 Dependent G_7_3 Neurogenesis 1.21E-03 0.09 0.41 0.17 0.36 0.17 0.41

C_5_3 Dependent G_5_1 CDK neuroplasticity 1.43E-03 0.02 0.29 0.17 0.4 0.17 0.4

C_15_13 Dependent G_5_1 CDK neuroplasticity 1.83E-03 0 0.79 0.17 0.4 0.17 0.79

C_5_3 Dependent G_7_3 Neurogenesis 2.32E-03 0.02 0.29 0.17 0.36 0.17 0.36

C_9_5 Dependent G_5_1 CDK neuroplasticity 2.63E-03 0 0.26 0.17 0.4 0.17 0.4

C_4_2 Dependent G_7_3 Neurogenesis 2.66E-03 0 0.45 0.17 0.36 0.17 0.45

C_6_3 Dependent G_7_7 Olfaction 2.73E-03 0 0.32 0.03 0.1 0.03 0.32

C_4_2 Dependent G_31_8 Neurotrophin 2.93E-03 0 0.45 0.09 0.54 0.09 0.54

C_6_3 Dependent G_22_6 Blood-brain barrier 3.40E-03 0 0.32 0.08 0.16 0.08 0.32

C_4_2 Dependent G_41_33 GPCR neuroplasticity 3.44E-03 0 0.45 0.11 0.21 0.11 0.45

C_7_4 Dependent G_5_1 CDK neuroplasticity 3.56E-03 0 0.74 0.17 0.4 0.17 0.74

C_14_5 Dependent G_28_15 Histone methylation 3.73E-03 0 0.29 0.08 0.38 0.08 0.38

C_3_2 Apathetic G_5_1 CDK neuroplasticity 6.13E-10 0 1 0.17 0.4 0.17 1

C_3_2 Apathetic G_7_3 Neurogenesis 4.61E-08 0 1 0.17 0.36 0.17 1

C_3_2 Apathetic G_28_15 Histone methylation 2.32E-05 0 1 0.08 0.38 0.08 1

C_9_3i Apathetic G_26_14 Glucose transport 3.12E-04 0 1 0.09 0.24 0.09 1

C_3_2 Apathetic G_7_2 GPCR dysregulation 4.18E-04 0 1 0.09 0.23 0.09 1

C_10_2 Apathetic G_11_4 Inositol signaling 4.25E-04 0.01 0 0.07 0.04 0.07 0.04

C_12_4i Apathetic G_35_4 O-linked glycosylation 4.30E-04 0.03 0.53 0.05 0.24 0.05 0.53

C_11_4 Apathetic G_16_9 Olfactory signaling 5.78E-04 0 0.28 0.08 0.17 0.08 0.28

C_7_3i Apathetic G_36_29 Electron transport 5.96E-04 0 1 0.08 0.48 0.08 1

C_10_8 Apathetic G_5_1 CDK neuroplasticity 6.43E-04 0 0.79 0.17 0.4 0.17 0.79

C_14_7i Apathetic G_36_29 Electron transport 7.85E-04 0 1 0.08 0.48 0.08 1

C_11_10i Apathetic G_36_29 Electron transport 8.39E-04 0.03 0.5 0.08 0.48 0.08 0.5

C_11_6i Apathetic G_20_3 Fatty acid oxidation 1.06E-03 0 0.71 0.03 0.33 0.03 0.71

C_10_8 Apathetic G_31_8 Neurotrophin 1.21E-03 0 0.79 0.09 0.54 0.09 0.79

C_15_15i Apathetic G_41_40 Apha-RNA 1.61E-03 0 0.3 0.09 0.03 0.09 0.3

C_14_11 Apathetic G_28_15 Histone methylation 2.13E-03 0 0.47 0.08 0.38 0.08 0.47

C_3_2 Apathetic G_40_26 Dopamine-feedback 2.41E-03 0 1 0.08 0.36 0.08 1

C_10_2 Apathetic G_9_3 Pyrimidine metabolism 2.60E-03 0.01 0 0.12 0.04 0.12 0.04

C_13_3i Apathetic G_26_14 Glucose transport 2.67E-03 0 0.25 0.09 0.24 0.09 0.25

C_8_6i Apathetic G_36_29 Electron transport 2.69E-03 0 1 0.08 0.48 0.08 1

C_10_8 Apathetic G_19_9 Aurora-B 3.25E-03 0 0.79 0.1 0.4 0.1 0.79

C_10_8 Apathetic G_7_3 Neurogenesis 3.47E-03 0 0.79 0.17 0.36 0.17 0.79

C_10_8 Apathetic G_23_2 Biogenic synthesis 3.56E-03 0 0.79 0.05 0.29 0.05 0.79
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character sets emerged when environmental influences
were used as mediators: years of education in childhood
and stressful life events in adulthood had significant
effects on organized and dependent character profiles
(Supplementary Table S23D, p < 2.9 to 8.4 E-03).

Discussion

This is the first data-driven study to examine the genotypic–
phenotypic architecture of human character traits, which
are the self-regulatory components of personality that
modulate physical, mental, and social well-being [48, 65].
As such, it represents a pioneering effort to describe the
psychobiology of character as a complex network of gen-
otypes with specific molecular processes and neuronal
functions that regulate personality development. We
explained 50–58% of the heritability of human character
and replicated our results in independent samples, thereby
accounting for nearly all the heritability expected from
twin studies.

Complexity of genotypic–phenotypic pipelines

We observed that 68% of the 727 genes for character were
unique to a single character profile and were regulated
by distinct molecular processes and neuronal functions.
Such minimal overlap in genes and molecular mechanisms
between personality profiles is very surprising from a trait
perspective. For example, both the organized and creative
character profiles are high in self-directedness and coop-
erativeness, and differ only in self-transcendence. The
resourceful profile differs from the apathetic profile only
in being high in self-directedness. Thus, we hypothesize
that people can become highly self-directed by multiple
mechanisms: a creative or intuitive route involving enhan-
cing self-awareness in episodic memory, an organized

or analytical route involving executive control of what
is known from past experience, and/or taking initiative by
learned resourcefulness.

Likewise, there are three or more routes via distinct
genetic pipelines to cooperativeness and/or self-
transcendence. Consequently, individual personality traits
are genetically heterogeneous and their development
depends on multiple mechanisms that can only be dis-
tinguished by consideration of the whole person. Individual
traits may still be important for study of development or
treatment, but they do not appear to be the fundamental
building blocks of personality.

Regulatory processes and functions associated with
character

We observed that 67% of the 727 character genes were
involved in regulatory systems. In particular, lncRNAs
were more common in association with character only
than with both temperament and character (Fig. 2a, b). The
identified genes are reported to influence neuroplasticity,
energy metabolism, and the regulation of adaptations to
a wide variety of biological, psychological, and social
stressors through processes for intentional goal-seeking,
self-control, empathy, and episodic memory (Table 1).
These genetic findings are supported by independent
neuroimaging findings that TCI character traits are asso-
ciated with brain networks for these same intentional and
meta-cognitive functions [24–27].

An interesting sign of the high predictability of varia-
bility in health status was our finding that a few genes
could dramatically alter the health status of people with
each specific SNP set, including 150 putative switch genes
across all 42 SNP sets. The dramatic effect that a few switch
genes can have on overall health status is further evidence
of the importance of epistasis for understanding personality
and its development.

Table 3 (continued)

Character sets Character
consensus sets

SNP sets SNP-set names Hypergeo-
metric C-G

Health measurements of subjects

Char sets SNP sets Both Sets Jointly

Well-
being

Ill-being Well-
being

Ill-being Well-
being

Ill-being

C_11_6i Apathetic G_36_29 Electron transport 3.88E-03 0 0.71 0.08 0.48 0.08 0.71

C_12_5 Apathetic G_7_2 GPCR dysregulation 3.99E-03 0 0.09 0.09 0.23 0.09 0.23

C_10_2 Apathetic G_10_1 Learning/memory 4.03E-03 0.01 0 0.07 0.06 0.07 0.06

C_8_3 Apathetic G_21_3 Cellular Senescence 4.17E-03 0 0.64 0.1 0.23 0.1 0.64

C_14_3i Apathetic G_26_14 Glucose transport 4.43E-03 0.06 0.38 0.09 0.24 0.09 0.38

Association is measured by Fisher's exact test (hypergeometric). Probabilities of well-being and ill-being are given for subjects in the character
sets, the SNP sets, and subjects identified in both jointly. iIndicates character sets that are more specific than their parental sets, which are also
selected
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Strengths and limitations

Our unbiased analytical PGMRA method used deep cluster
analysis to identify association between possibly interactive
sets of features instead of between individual SNPs
or character traits. The results were strongly replicated in
independent samples, demonstrating remarkable robustness.
Furthermore, the neuronal functions of the identified genes
are supported by independent research about brain networks
related to TCI character.

Our initial pool of SNPs was preselected to be the best
candidates to have additive and/or non-additive effects on
character. The threshold for possible association (p-value of
0.01 without Bonferroni correction) in our initial pool of
SNPs was more than six orders of magnitude below what is
required for genome-wide significance. We sought to
evaluate the cooperative effects of groups of SNPs with
possible non-additive gene–gene interactions and those with
strong additive effects individually (i.e., very low p-values).
Therefore, we included SNPs that were either weakly or
strongly associated with character singly, and then com-
pared their significance as a group vs. that of the best SNP
within the group. Consequently, these candidate SNPs may
have no main (additive) effect on the phenotype at all, but
when organized as SNP sets, they presented consistent
evidence of epistasis (i.e., each SNP set had stronger
associations with character than their best single con-
stituents). In addition, the SNPs we identified were suffi-
cient to account for nearly all the heritability expected from
twin studies (about 50%), which includes both additive and
non-additive effects.

Our findings are based on associations only, which pre-
cludes definite conclusions about causation. Nevertheless,
the circumstantial evidence for our causal hypotheses is
strong and merits further testing.

Conclusions and recommendations for future
research

We were able to characterize and replicate the complexity
of the genotypic–phenotypic risk architecture of self-
regulatory character traits in three large samples. Our
findings demonstrate that data-driven analysis of the
architecture of genotypic–phenotypic relationships
enables investigators to overcome the hidden heritability
problem (i.e., the consistent inability to account for most
of the heritability of complex traits when only the average
effects of genes are considered). We conclude that self-
regulatory personality traits are strongly influenced by
organized interactions among more than 700 genes,
despite variable cultures and environments. We recom-
mend studies that dissect detailed phenomic and genomic
data, including brain images and physiological

measurements, and integrate these in a multi-faceted view
of each person. We also recommend an extended replic-
ability analysis, in which a marker can be replicated at
different multi-omic levels, such as genes, family of
proteins, or pathways. The precision of our person-
centered approach now allows such in-depth analysis
and replication, even for complex traits in moderate-sized
samples.
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