Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cadmium exposure and risk of adverse pregnancy and birth outcomes: a systematic review and dose–response meta-analysis of cohort and cohort-based case–control studies

Abstract

Background

There are several inconsistencies in the epidemiological literature on the strength of the association between cadmium exposure and adverse pregnancy and birth outcomes, and the threshold dose of adverse effect.

Objectives

We therefore conducted a systematic review and dose–response meta-analysis to evaluate the available evidence to influence clinical decision making and better tailor public health interventions.

Methods

PubMed and Scopus databases were searched up to January, 2019. Eighteen prospective studies satisfied the inclusion criteria. Random effects model was used to compute summary-effect estimates.

Results

Cadmium exposure resulted in 42.11 g (95% confidence interval [CI]: −69.03, −15.18) reduction in birth weight, and 0.105 cm (95% CI: −0.181, −0.029) reduction in head circumference per 1 µg/l increment in blood/urine cadmium levels. Cadmium exposure also resulted in 21% (RR = 1.21; 95% CI: 1.02, 1.43), 32% (RR = 1.32; 95% CI: 1.05, 1.67) and 10% (RR = 1.10; 95% CI: 0.96, 1.27) increased risk of low birth weight (LBW), preterm birth (PTB), and small-for-gestational age (SGA), respectively. Risk for all outcomes decreased with decreasing exposure. In fixed effects dose–response meta-regression analyses, we found no evidence of association of cadmium exposure with LBW and SGA. For PTB, a 1 µg/l increment in cadmium exposure corresponded to 0.5% (OR = 1.005, 95% CI: 1.003, 1.007) increase in PTB risk.

Conclusions

Cadmium exposure was associated with risk of adverse birth outcomes. Regarding PTB, the formal dose–response meta-analyses suggests a causal association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plot showing the association of cadmium exposure with birth anthropometric measures.
Fig. 3: Forest plot showing the association of cadmium exposure with adverse birth outcomes.
Fig. 4
Fig. 5: Funnel plot for the association of cadmium exposure with birth anthropometric measures.
Fig. 6: Funnel plot for the association of cadmium exposure with adverse birth outcomes.
Fig. 7: Filled funnel plot for the association between cadmium exposure, and head circumference and adverse birth outcomes.

Similar content being viewed by others

Code availability

All the Stata codes and syntax for performing the analyses and generating the results are available upon request from the corresponding author.

References

  1. DHHS/ATSDR (Department of Health and Human Services, Agency for Toxic Substances and Disease Registry). Toxicological profile for Cadmium. 2012. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15.

  2. IPCS (International Programme on Chemical Safety) Geneva, World Health Organization. Environmental Health Criteria for Cadmium. 1992. http://www.inchem.org/documents/ehc/ehc/ehc134.htm.

  3. IPCS (International Programme on Chemical Safety). Cadmium, cadmium chloride, cadmium oxide, cadmium sulphide, cadmium acetate, cadmium sulphate. Geneva, World Health Organization, International Programme on Chemical Safety. International Chemical Safety Cards 0020, 0116, 0117, 0404, 1075 and 1318. 2005–2007. http://www.who.int/ipcs/publications/icsc/en/index.html.

  4. IARC (International Agency for Research on Cancer). Summaries & evaluations: Cadmium and cadmium compounds (Group 1). (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans), Lyon: International Agency for Research on Cancer, p. 119, vol. 58. 1993. http://www.inchem.org/documents/iarc/vol58/mono58-2.html.

  5. IARC (International Agency for Research on Cancer). In preparation. A review of human carcinogens. C: Metals, arsenic, dusts, and fibres. Lyon: International Agency for Research on Cancer (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 100) [summary in Straif K et al. (2009). A review of human carcinogens—Part C: Metals, arsenic, dusts, and fibres. The Lancet Oncology. 2009;10:453–4. http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(09)70134-2/fulltext.]

  6. Piasek M, Laskey JW. Effects of in vitro cadmium exposure on ovarian steroidogenesis in rats. J Appl Toxicol. 1999;19:211–7.

    Article  CAS  PubMed  Google Scholar 

  7. Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med. 2004;229:383–92.

    Article  CAS  Google Scholar 

  8. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med. 2003;9:1081.

    Article  CAS  PubMed  Google Scholar 

  9. Frery N, Nessmann C, Girard F, Lafond J, Moreau T, Blot P, et al. Environmental exposure to cadmium and human birthweight. Toxicology. 1993;79:109–18.

    Article  CAS  PubMed  Google Scholar 

  10. Gerhard I, Monga B, Waldbrenner A, Runnebaum B. Heavy metals and fertility. J Toxicol Environ Health Part A. 1998;54:593–611.

    Article  CAS  Google Scholar 

  11. Ronco AM, Arguello G, Muñoz L, Gras N, Llanos M. Metals content in placentas from moderate cigarette consumers: correlation with newborn birth weight. Biometals. 2005;18:233–41.

    Article  CAS  PubMed  Google Scholar 

  12. Shiverick KT, Salafia C. Cigarette smoking and pregnancy I: ovarian, uterine and placental effects. Placenta. 1999;20:265–72.

    Article  CAS  PubMed  Google Scholar 

  13. Pollack AZ, Ranasinghe S, Sjaarda LA, Mumford SL. Cadmium and reproductive health in women: a systematic review of the epidemiologic evidence. Curr Environ Health Rep. 2014;1:172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  PubMed  Google Scholar 

  15. Dekkers OM, Vandenbroucke JP, Cevallos M, Renehan AG, Altman DG, Egger M. COSMOS-E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med. 2019;16:e1002742.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175:66–73.

    Article  PubMed  Google Scholar 

  17. Kippler M, Tofail F, Gardner RM. Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study. Child Health. 2012;284:284–9.

    Google Scholar 

  18. Huang K, Li H, Zhang B, Zheng T, Li Y, Zhou A, et al. Prenatal cadmium exposure and preterm low birth weight in China. 2017. J Expo Sci Environ Epidemiol. 2016;27:491–6.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng L, Zhang B, Zheng T, Hu J, Zhou A, Bassig BA, et al. Critical windows of prenatal exposure to cadmium and size at birth. Int J Environ Res Public Health. 2017;14:58.

    Article  PubMed Central  CAS  Google Scholar 

  20. Guo J, Wu C, Qi X, Jiang S, Liu Q, Zhang J, et al. Adverse associations between maternal and neonatal cadmium exposure and birth outcomes. Sci Total Environ. 2016;575:581–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Liu L, Hu YF, Hao JH, Chen YH, Su PY, et al. Association of maternal serum cadmium level during pregnancy with risk of preterm birth in a Chinese population. Environ Pollut. 2016;216:851–7.

    Article  CAS  PubMed  Google Scholar 

  22. Xu X, Chiung YM, Lu F, Qiu S, Ji M, Huo X. Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. Reprod Toxicol. 2015;52:62–70.

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Huo W, Zhang B, Zheng T, Li Y, Pan X, et al. Maternal urinary cadmium concentrations in relation to preterm birth in the Healthy Baby Cohort Study in China. Environ Int. 2016;94:300–6.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Xu X, Chen A, Davuljigari CB, Zheng X, Kim SS, et al. Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod Toxicol. 2018;75:49–55.

    Article  CAS  PubMed  Google Scholar 

  25. Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y. Maternal exposure to low-level heavy metals during pregnancy and birth size. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2010;45:1468–74.

    Article  CAS  PubMed  Google Scholar 

  26. Tsuji M, Shibata E, Morokuma S, Tanaka R, Senju A, Araki S, et al. The association between whole blood concentrations of heavy metals in pregnant women and premature births: The Japan Environment and Children’s Study (JECS). Environ Res. 2018;166:562–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wai KM, Mar O, Kosaka S, Umemura M, Watanabe C. Prenatal heavy metal exposure and adverse birth outcomes in Myanmar: a birth-cohort study. Int J Environ Res Public Health. 2017;14:1339.

    Article  PubMed Central  CAS  Google Scholar 

  28. Govarts E, Remy S, Bruckers L, Den Hond E, Sioen I, Nelen V, et al. Combined effects of prenatal exposures to environmental chemicals on birth weight. Int J Environ Res Public Health. 2016;13:495.

    Article  PubMed Central  CAS  Google Scholar 

  29. Menai M, Heude B, Slama R, Forhan A, Sahuquillo J, Charles MA, et al. Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: the EDEN mother-child cohort study. Reprod Toxicol. 2012;34:622–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sabra S, Malmqvist E, Saborit A, Gratacós E, Gomez Roig MD. Heavy metals exposure levels and their correlation with different clinical forms of fetal growth restriction. PLoS ONE. 2017;12:1–19.

    Article  CAS  Google Scholar 

  31. Taylor CM, Golding J, Emond AM. Moderate prenatal cadmium exposure and adverse birth outcomes: a role for sex-specific differences? Paediatr Perinat Epidemiol. 2016;30:603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johnston JE, Valentiner E, Maxson P, Miranda ML, Fry RC. Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PLoS ONE. 2014;9:e109661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Thomas S, Arbuckle TE, Fisher M, Fraser WD, Ettinger A, King W. Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: the MIREC study. Environ Res. 2015;140:430–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ikeh-Tawari E, Anetor J, Charles-Davies M. Cadmium level in pregnancy, influence on neonatal birth weight and possible amelioration by some essential trace elements. Toxicol Int. 2013;20:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gull A, Dar AA, Sharma M. Effects of heavy metals on the health of pregnant women and fetus: a review. Int J Theor Appl Sci. 2018;10:1–9.

    CAS  Google Scholar 

  36. Esteban-Vasallo MD, Aragones N, Pollan M, López-Abente G, Perez-Gomez B. Mercury, cadmium, and lead levels in human placenta: a systematic review. Environ Health Perspect. 2012;120:1369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh L, Anand M, Singh S, Taneja A. Environmental toxic metals in placenta and their effects on preterm delivery-current opinion. Drug Chem Toxicol. 2020;43:531–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hu J, Xia W, Pan X, Zheng T, Zhang B, Zhou A, et al. Association of adverse birth outcomes with prenatal exposure to vanadium: a population-based cohort study. Lancet Planet Health. 2017;1:e230–41.

    Article  PubMed  Google Scholar 

  39. Taylor CM, Golding J, Emond AM. Lead, cadmium and mercury levels in pregnancy: the need for international consensus on levels of concern. J Dev Orig Health Dis. 2014;5:16–30.

    Article  CAS  PubMed  Google Scholar 

  40. Thompson J, Bannigan J. Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol. 2008;25:304–15.

    Article  CAS  PubMed  Google Scholar 

  41. Fang MZ, Mar WC, Cho MH. Cadmium-induced alterations of connexin expression in the promotion stage of in vitro two-stage transformation. Toxicology. 2001;161:117–27.

    Article  CAS  PubMed  Google Scholar 

  42. Jacobo-Estrada T, Santoyo-Sánchez M, Thévenod F, Barbier O. Cadmium handling, toxicity and molecular targets involved during pregnancy: Lessons from experimental models. Int J Mol Sci. 2017;18:1590.

    Article  PubMed Central  CAS  Google Scholar 

  43. Jarup L, Berglund M, Elinder CG, Nordbeg G, Vahter M. Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health. 2001;27:161–213.

    Google Scholar 

  44. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sakamoto M, Yasutake A, Domingo JL, Chan HM, Kubota M, Murata K. Relationships between trace element concentrations in chorionic tissue of placenta and umbilical cord tissue: potential use as indicators for prenatal exposure. Environ Int. 2013;60:106–11.

    Article  CAS  PubMed  Google Scholar 

  46. Storm T, Christensen EI, Christensen JN, Kjaergaard T, Uldbjerg N, Larsen A, et al. Megalin is predominantly observed in vesicular structures in first and third trimester cytotrophoblasts of the human placenta. J Histochem Cytochem. 2016;64:769–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Xu Z, Lin F, Wang F, Ye D, Huang Y. Increased oxidative DNA damage in placenta contributes to cadmium-induced preeclamptic conditions in rat. Biol Trace Elem Res. 2016;170:119–27.

    Article  CAS  PubMed  Google Scholar 

  48. Ronco AM, Urrutia M, Montenegro M, Llanos MN. Cadmium exposure during pregnancy reduces birth weight and increases maternal and foetal glucocorticoids. Toxicol Lett. 2009;188:186–91.

    Article  CAS  PubMed  Google Scholar 

  49. Wang F, Zhang Q, Zhang X, Luo S, Ye D, Guo Y, et al. Preeclampsia induced by cadmium in rats is related to abnormal local glucocorticoid synthesis in placenta. Repro Biol Endocrinol. 2014;12:77.

    Article  CAS  Google Scholar 

  50. Abalos E, Cuesta C, Carroli G, Qureshi Z, Widmer M, Vogel JP, et al. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG. 2014;121:14–24.

    Article  PubMed  Google Scholar 

  51. Lafuente A, Márquez N, Pérez-Lorenzo M, Pazo D, Esquifino AI. Pubertal and postpubertal cadmium exposure differentially affects the hypothalamic-pituitary-testicular axis function in the rat. Food Chem Toxicol. 2000;38:913–23.

    Article  CAS  PubMed  Google Scholar 

  52. Amadi CN, Igweze ZN, Orisakwe OE. Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertil Soc J. 2017;22:91–100.

    Article  Google Scholar 

  53. Rzymski P, Tomczyk K, Rzymski P, Poniedziałek B, Opala T, Wilczak M. Impact of heavy metals on the female reproductive system. Ann Agric Environ Med. 2015;22:259–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kofi Amegah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amegah, A.K., Sewor, C. & Jaakkola, J.J.K. Cadmium exposure and risk of adverse pregnancy and birth outcomes: a systematic review and dose–response meta-analysis of cohort and cohort-based case–control studies. J Expo Sci Environ Epidemiol 31, 299–317 (2021). https://doi.org/10.1038/s41370-021-00289-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-021-00289-6

Keywords

This article is cited by

Search

Quick links