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Preface
Information about the extra- or intracellular environment is often captured as biochemical signals
propagating through regulatory networks. These signals eventually drive phenotypic changes,
typically by altering gene expression programs in the cell. Reconstruction of transcriptional
regulatory networks has given a compelling picture of bacterial physiology, but transcriptional
network maps alone often fail to describe phenotypes. In many cases, the dynamical performance
of transcriptional regulatory networks depends on post-transcriptional or post-translational
regulation and pleiotropic effects. Cellular response dynamics are ultimately determined by
interactions between transcriptional and non-transcriptional networks with dramatic implications
for physiology and evolution. Here, we provide an overview of non-transcriptional interactions
that can affect the performance of natural and synthetic bacterial regulatory networks.

Introduction
Regulatory networks determine how cells adapt to the extra- or intracellular environment. In
a typical network, a sensor detects a physical or chemical stimulus and transmits that
information into the network as a biochemical signal. Networks are composed of a series of
interconnected nodes, or signal-processing molecules (Figure 1A). Each node receives an
input signal from an upstream node and sends an output signal to a downstream node in
response.

Signals often flow through hierarchically structured transcriptional networks where each
node is a transcription factor1, 2,. The final output of the network is a set of induced or
repressed genes that determine the phenotype of the cell in response to information flowing
through the network. Within these networks are many smaller modules with some
overrepresented structural motifs such as feedback or feedforward loops that may carry
specific physiological functions3,4. Despite thorough studies on the properties of
transcriptional regulatory motifs5-8, connectivity maps of transcriptional networks alone are
often insufficient to explain the dynamical response of a cell to a given stimulus. A wide
range of non-transcriptional interactions—post-transcriptional, post-translational, and
pleiotropic processes—significantly affect the functionality of transcriptional networks.
Indeed, non-transcriptional signal processing can result in a complex network diagram even
when only one or a handful of genes are involved. Only by viewing transcriptional networks
along with the mechanistic details of non-transcriptional processes can we arrive at a
complete understanding of cellular regulation.

Non-transcriptional processes like phosphorylation, methylation, regulated protein/mRNA
degradation and sequestration can have unexpected consequences in regulatory networks.
Consider a bacterial two-component system (Figure 1B). A bifunctional sensor with both
kinase and phosphatase activity senses an environmental stimulus and modulates the fraction
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of activated response regulator, which in turn modulates transcription of a downstream
regulon9. The transcriptional network diagram of a typical two-component system is simple
(Figure 1B, right panel): the sensor and response regulator genes are expressed from a
positively autoregulated operon10. However, an apparently minor non-transcriptional detail
—whether the response regulator undergoes a low level of non-cognate sensor kinase-
mediated phosphorylation—can drastically alter the effect of the feedback on the dynamic
response (Figure 1C)11. Such non-cognate phosphorylation can come either from crosstalk
with other sensor kinases or from phosphotransfer from small molecules. This effect
constitutes a small fraction of the total phosphorylation flux when the system is activated,
and is buffered by sensor phosphatase activity against activating the system in the absence
of signal input11. Yet this slight difference changes the dynamic behavior of the system in an
important way. With the interaction, phosphorylated response regulator levels overshoot and
settle to a steady state after signal onset, unlike the monotonic response expected in the
absence of the interaction (Figure 1C, left panel)11. This dynamic is computationally
predicted to arise from a negative feedback loop that emerges in the system11 (see also
Supplemental Box). Such overshoot kinetics can speed the induction time of downstream
genes (Figure 1C, right panel) and has profound physiological consequences. In the
Salmonella enterica, serovar Typhimurium PhoPQ signaling system, overshoot is necessary
for virulence12. Wild-type bacteria are virulent and kill mice within ten days. However,
removing the overshoot with a feedback-disabling promoter modification decreases
virulence such that Salmonella-injected mice survive indefinitely12.

Deducing relationships between physiological function, dynamical response and underlying
molecular mechanisms is key to generalizing the current handful of laboratory model
systems to new, medically important, or unculturable bacterial species. Characterization of
metabolic, protein-protein-interaction and gene regulatory networks has broadened our
understanding of their underlying structures4. Nevertheless, true understanding of the
regulatory properties of networks requires that we discover relationships between
mechanistic details and dynamics. These relationships, known as evolutionary design
principles4,13, are formulated by conducting detailed measurements of dynamics,
constructing synthetic gene networks, and using mathematical models. Defining the
principles that underlie biological regulation will not only facilitate our interpretation of
natural networks but will also improve our ability to engineer microorganisms to have robust
synthetic behaviors with widespread medical and industrial importance. In this Review we
describe the effects of non-transcriptional regulatory processes such as ultrasensitivity,
implicit and interacting feedback loops, and spatiotemporal localization of molecules on
transcriptional networks using examples from both natural and engineered bacterial systems.

The ultrasensitive genetic switch
The ability of a biochemical network to respond to an input signal can be characterized by
its signal-response curve or transfer function (Box 1). For transcriptional regulatory
networks such curves show how the expression of downstream genes change as a function
of transcription factor concentration or activation signals. For transcription factors acting as
monomers, the expected dependence resembles Michaelis-Menten kinetics: linear at low
signal concentrations and saturated at high14. Multimeric transcription factors with
cooperativity can produce sigmoidal response curves typically captured with Hill kinetics,
but the effective cooperativity (i.e. the Hill coefficient) is restricted to a low integer
number15 reflecting the number of subunits present in a complex16. On the other hand, post-
translational signal-response curves are capable of attaining much higher effective
cooperativities.
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Signal-responses with high effective cooperativities are usually referred to as
ultrasensitive17. They are characterized by a sharp transition threshold between off and on
states (Box 1). The system output will be relatively insensitive to changes in signal either
below or above the threshold, remaining unambiguously off or on. Sub-threshold signals are
absorbed like a small amount of water in a sponge while above-threshold signal is akin to a
large quantity of water saturating the sponge and spilling out. Ultrasensitivity to signals in
the intermediate range can regulate costly processes requiring a decisive response, or
program cells to ignore small or transient signals when the activation of output genes is not
advantageous.

Several different molecular mechanisms related to saturation can allow biochemical
ultrasensitivity. In the classical covalent modification mechanism, a protein can be activated
(e.g. by phosphorylation) and deactivated by two competing enzymes near saturation17.
Ultrasensitivity in covalent modification systems is important in development, especially in
eukaryotes, for creating irreversible lineage commitment18-20. Ultrasensitivity also plays a
role in bacterial systems, for example in the E. coli chemotactic response21 or in regulation
of metabolic enzyme activity22. Regulated degradation23 and stoichiometric sequestration24

(i.e. molecular titration, discussed below) can also give rise to ultrasensitivity in bacteria.

Ultrasensitivity from stoichiometric sequestration
Ultrasensitivity can arise from stoichiometric sequestration, where a protein is kept inactive
via strong binding to a specific antagonist24. In bacterial transcriptional regulation,
alternative sigma factors are often sequestered by anti-sigma factors. Free of sequestration,
the alternative sigma factor stimulates binding of RNA polymerase to condition-specific
promoters. However, if concentrations of sigma and anti-sigma are independently regulated,
the transcriptional response will be ultrasensitive to the ratio of their concentration.

For example, the global stress response regulator σE in Mycobacterium tuberculosis exhibits
ultrasensitivity due to sequestration by the anti-sigma RseA25. The fraction of active (free)
σE changes with the level of total σE in an ultrasensitive fashion. When the concentration of
RseA exceeds σE, most σE will be bound and there will be little free sigma factor (region 1
in Figure 2A). When the concentration of σE reaches that of RseA (region 2), most of σE is
still sequestered. However, once σE abundance surpasses that of RseA (region 3 in Figure
2A), free sigma factor concentration sharply increases. Once abundant, the alternative sigma
factor effectively binds the RNA polymerase core, causing a global shift in gene expression.
As a result of the ultrasensitive switch, the anti-sigma factor RseA buffers the effects of σE

changes until a critical stress threshold is reached. A directly analogous situation arises
when a constitutively transcribed small RNA (sRNA, Figure 2B) binds to a target mRNA,
preventing translation until the sRNA is saturated, determining a precise threshold for
protein production.26, 27 In both examples the existence of ultrasensitivity crucially depends
on the strength of sequestration interaction – with the increased binding (decrease in
dissociation constant) we expect an increase in the effective cooperativity (curves in Figure
2A).

Ultrasensitivity coupled to positive feedback
Positive autoregulation can further increase effective cooperativity28. The combination of
ultrasensitivity and positive feedback can thus create signal-response curves characteristic of
a bistable switch28. Bistable switches have two ultrasensitive thresholds – one for
transitioning from the “off” to “on”, and the other moving from “on” to “off”. These signal-
response curves are not only ultrasensitive but also hysteretic – the response of the network
to intermediate signal levels differs depending on history; whether the cell was previously
exposed to high or low signal concentrations (Figure 2C). With two thresholds the signal-
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response is similar to a ratchet, turning on or off irreversibly in the absence of a decisive
change in signal level. The σE/RseA pair in mycobacteria exhibits just such an effect
through a feedback loop via the MprAB two-component system (Figure 2C). Stress-
responsive MprA becomes phosphorylated to activate transcription of σE. With a sudden
sharp increase in σE, signaling via MprAB is sharply increased, creating a hysteretic
switch25. Ultrasensitivity resulting from sequestration is essential for attaining bistability24.
This bistability may enable “bet hedging” in a population of M. tuberculosis invading a host
during transition to dormancy25, 29: noise in the network disperses the signal level around
the switch point, causing subsets of the population to be active and inactive for stress-
response signaling.

Single-cell ultrasensitivity
In the tiny (femtolitre) volumes of microbial cells, stochastic effects of small numbers of
interacting molecules are unavoidable. On the level of cell populations, noise can reduce the
apparent effects of ultrasensitivity or bistability30. What looks like a discrete switch in a
single cell appears to be “averaged out” over the population. Ultrasensitivity can therefore
often be present, with important implications for cellular physiology, but be difficult to
detect at the population level. Single-cell measurements are therefore a very useful
experimental tool for detecting ultrasensitive behaviors.

Implicit feedback loops
Pleiotropic and post-translational effects can also result in unexpected and indirect
interactions between network components. For instance, feedback loops can occur because
of subtle or indirect interactions between biochemical reactions31-34 These effects can be
quantified with appropriate mathematical methods (Box 2). However, their detection
requires detailed experimental data, which is often lacking because the important
components are not known in advance. A synergistic combination of mathematical modeling
and mechanistic experimental studies can therefore elucidate non-obvious regulatory
processes in biological networks.

Growth rate modulation as an implicit feedback loop
Transcription, gene dosage, and protein dilution are affected by cellular growth rates35. If
the level of the expressed protein changes the growth rate, production and/or decay rates
also change and an implicit feedback loop arises35, 36. For example, most proteins in
bacteria are quite stable: the dominant force of decay in their concentrations is cell growth
and division. At a constant rate of exponential growth, a given protein effectively undergoes
first-order degradation. When growth slows down, protein dilution is reduced. During
prolonged stress or in stationary phase, induced proteolytic enzymes may degrade
proteins37. A stable protein, however, can undergo a sharp increase in concentration during
growth arrest. If this protein or its metabolic product, imposes a burden on growth, a
positive feedback loop in protein abundance can arise35 (Figure 3).

One predicted consequence of growth-modulated feedback is the bistable phenotype that
may be relevant for antibiotic persistence: a toxin-antitoxin system with toxin above a
certain threshold results in a slow- or non-growing subset of persister cells38, 39 as a result of
growth-inhibiting toxin production35. During cell division, parental toxin is partitioned
according to a binomial distribution into two daughter cells; one daughter cell may receive
much more parental toxin than the other (Figure 3A). Because growth rate decreases as a
function of toxin abundance, intermediate levels of toxin production may drive an otherwise
identical bacterial population to have two distinct growth rates.
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Even if growth rate feedback itself does not result in bistability, it can change critical
parameters in an otherwise non-bistable network, inducing bistability. Such a system was
recently constructed in E. coli using an autoregulating T7 RNA polymerase (Figure 3B)36.
In this system T7 RNA polymerase has a non-cooperative positive feedback effect that alone
is incapable of inducing bistability. However, the expression of T7 imposes a metabolic
burden on the cell, slowing cell growth and resulting in an implicit positive feedback loop.
Together, the two loops create a bistable switch. As with the bistable σE/MprAB system
above, noise disperses the gene expression level to the two stable states simultaneously in
the same population. This can be observed as two distinct subpopulations of cells with low
and high T7 reporter expression (Figure 3B).

Implicit feedback arising from enzymatic interactions
In addition to growth rate-dependent pleiotropic effects, implicit feedback can arise from
modulation of catalytic reactions by substrates, products or cofactors33. For example,
substrate inhibition40 can lead to a non-monotonic dose-response in enzyme catalysis,
resulting in a feedback loop that allows bistability: more substrate inhibits conversion of
substrate to product resulting in more substrate41. An implicit positive feedback loop can
also be induced if interacting proteins form a long-lived, catalytically inactive “dead-end”
complex31, 32, 42. For example, in the partner-switching network controlling the activity of
sigma factor σF in B. subtilis31, 32, formation of inactive ADP-associated SpoIIAB-AA
complex is self-enhancing: the inactive complex sequesters SpoIIAB from activity,
increasing the fraction of unphosphorylated AA to bind to ADP-associated SpoIIAB. This
feedback loop irreversibly commits the pre-spore compartment to sporulation.

Untangling coupled feedback loops
Simple model systems of single feedback loops have provided critical insight into biological
network dynamics. However, natural networks often contain a complex mesh of gene
regulation and biochemical interactions43. Even after identifying implicit feedback loops,
ultrasensitive switches, and other non-linearities, coupled feedback loops and biochemical
interactions can add another level of sophistication to physiological responses. The resulting
dynamics may depend on mechanistic details: extrinsic inputs, transcription rates, and
binding constants. A single, sufficiently complex network architecture can perform many
different dynamical functions; this multifunctionality has been linked to evolvability6 and
may thus result in selection for network complexity. Complex network architectures can also
arise from evolutionary drift with no particular selective pressure44, 45.

How do we determine the physiological relevance of a complex network architecture? One
answer is to use network component perturbations or deletions to systematically characterize
interconnections. For instance, one can break a feedback loop and compare dynamical
performance to the intact network or use steady state properties to infer feedback effects.
Experimentally, transcriptional feedback can be broken by replacing a feedback-modulated
promoter with a constitutive or inducible promoter46 or by deleting genes in the network.
Similarly, networks can be rewired in silico using mathematical models (Supplemental
Box) 11, 47. Measurements of the open-loop gain—the response of a network output to
changes in the level of inducer—can then allow determination the effective sign of feedback
(i.e. taking into account both positive and negative interactions). For some networks,
characterization of the open-loop response reveals if the network can be bistable
(Supplemental Box). However, gene deletions risk of complicating fine-tuned control of the
system and moving away from the steady state of the intact system.
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Systematic experimental perturbation of feedback
Recent studies of the glutamate-dependent acid response (AR2) in E. coli48, 49 used a
combination of feedback loop deletions and systematic network perturbations to decrypt
elements responsible for its complex dynamic response. When an E. coli culture is exposed
to low pH, the acid-responsive two-component system EvgAS becomes activated. Among
the operons in the phospho-EvgA regulon is b1500-ydeO; B1500 (a.k.a. SafA) forms a
negative feedback loop with the PhoPQ two-component system while YdeO upregulates,
directly and indirectly, glutamic acid decarboxylase operons gadE and gadB-gadC (Figure
4A-B). This subnetwork induces a fast immediate response with an overshoot, as measured
by promoter-luciferase reporter fusions (p-Lux; first 60 minutes in Figure 4C)49.
Phosphorylated PhoP also induces IraM transcription48, activating RpoS when the stress is
persistent, ultimately upregulating the gadE and gadB-gadC operons (after 60 minutes in
Figure 4C). Burton et al49 systematically compared wild-type responses to open-loop
dynamics created by deletion of phoP, ydeO, and rpoS (Figure 4C). Using these results,
accounting for non-transcriptional interactions, and reconstructing the underlying circuit
diagram gives clues into the function of the acid response network. This network employs a
biphasic dynamic with a fast initial response and a persistent, high-expression phase for
when the stress is ongoing. The first phase is mediated by negative feedback, long known
for speeding induction dynamics50. The second phase involves a feedforward loop to the
output stress response genes, known to cause signal delays in a sign-sensitive manner (here,
delaying gene expression deactivation but not activation, due the gabBC promoter acting as
an OR gate)5, 8. Interleaved architecture makes initial responses fast and decisive, while
persistent responses maintain high expression for long time periods. The result of this
complex network architecture is more effective survival in acidic environments (Figure 4C,
AR2 Phenotypes)49.

Feedback architectures for complex dynamic responses
Mounting evidence suggests that biphasic responses are a general survival strategy in
bacteria that emerges from complex feedback architecture. An important example is the
stringent response during which amino acid starvation is sensed during translation by a
ribosome-associated protein, RelA, that produces ppGpp as an activator of amino acid
biosynthesis. Biosynthesis of amino acids relieves starvation, acting as a negative feedback
loop that prevents induction of the generalized stress response51. However, if biosynthesis is
unsuccessful, sufficient ppGpp accumulates to induce the RpoS-mediated stress response
and prepare the cell for long-term survival51. Similarly, autoregulated two-component
systems in the presence of an exogenous source of response regulator phosphorylation are
predicted to exhibit either negative feedback (initial induction with fast responses) or
positive feedback (persistent stress response with high expression), depending on signal
strength (Box 3)11. Negative feedback is associated with overshoot kinetics (Figure 1), while
positive feedback confers a robustness to transient signal interruptions3, 4, 52.

The biphasic dynamics arising from complex feedback architecture can also manifest as two
subsets of a bacterial population simultaneously exhibiting different phenotypes. Several
examples exist with coupled positive feedback loops. In Bacillus subtilis, positive feedback
in several steps of the Spo0A sporulation phosphorelay generates noise, increasing the
variability of phospho-Spo0A levels in the population53. As a result, a fraction of the cells
exceed the downstream threshold for sporulation entry, and both vegetative and sporulating
subpopulations co-exist in a bet-hedging strategy. The Spo0A system is an integrated part of
a larger network that appears to ratiometrically integrate quorum sensing signals along with
stress54 and interacts with competence regulation55, showing that population structure and
cell-to-cell communication can become a part of the decision circuit. Multiple positive
feedback loops also occur in gram-negative bacteria: in Salmonella, the SPI1 type III
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secretion system is controlled by a coupled set of transcription factors that positively
regulate one another to both impose a discrete threshold on SPI1 gene expression and
increase expression levels when induced56.

Coupled negative feedback loops have important physiological consequences as well. They
relate to dynamic properties of the network, and their effects typically depend on details
such as delays between the signal and response caused by signal processing steps:
transcription, translation, protein folding, multimerization, etc. While negative feedback
without delay improves induction response times50 and reduces noise57, persistent
oscillations and increased noise can arise with delays in the response58, 59 or consumption of
end products in metabolic pathways58, 60. Multiple negative feedback loops stabilize the
system and improve homeostasis by eliminating these effects61.

Non-transcriptional cell cycle control
The Gram-negative bacterium Caulobacter crescentus is a model bacterium in which
coupled networks of post-translational spatiotemporal control regulate the cell cycle62. Each
division in C. crescentus is a finely orchestrated process resulting in the simultaneous
production of two distinct daughter cells – a swarmer cell and a stalked cell (Figure 4D).
The swarmer cell undergoes a brief motile stage before maturing to the stalked phenotype,
attaching to a surface, and resuming asymmetrical cell division. Unlike in bet-hedging cases
(such as in B. subtilis described above), these two cell types are maintained
deterministically: every mother cell cycle produces one stalk and one swarmer daughter.

The core regulatory circuit consists of four genes expressed at specific points during the cell
cycle (Figure 4D). Each gene product regulates multiple downstream cell cycle-specific
genes. In one model, the four gene products form a positive feedback loop. Within the larger
positive loop, the phosphorylated form of master regulator CtrA is at the center of two
negative loops, one with GcrA and one with CcrM (Figure 4E). Repeated expression of the
same genes in the same order, over many consecutive cell cycles, depends on fast, regulated
turnover of the protein products via proteolytic degradation63 (Figure 4E). For stable
proteins, signal loss depends on dilution via cell growth and division, a much slower process
than is needed for brief expression during a short fraction of a cell cycle. So, with induced
degradation of each gene product, the core cell cycle genes are expressed in distinct pulses
for discrete periods, forming an oscillator63. Such oscillatory dynamics prevent competition
between signals for different stages in the cell cycle.

The asymmetric character of C. crescentus cell division depends on a spatial signaling
gradient in the master regulator CtrA and maintenance of the chromosome in a polarized
physical orientation64, with the origin of replication at the stalked pole before replication
initiation. The critical parameter is the amount of phosphorylated CtrA. The bifunctional
kinase/phosphatase CckA modulates CtrA phosphorylation and is under feedback control by
CtrA~P itself65, 66. When CtrA is phosphorylated, CckA is largely localized to the stalked
and swarmer polar regions of the pre-divisional cell. The stalked pole CckA has CtrA
phosphatase activity while swarmer pole CckA exhibits kinase activity via interaction with
DivL67. A recent study coupled mathematical analysis with experimental, spatially-resolved
measurements of CtrA-regulated DNA replication initiation67 to elegantly demonstrate
phosphorylation control that allows replicative asymmetry67. Nevertheless, the gradient in
total CtrA likely contributes to the cell cycle: perturbations in CtrA proteolysis and CckA
activity buffer one another62. This type of partial redundancy of non-transcriptional
processes ensures that the cell cycle proceeds robustly in the presence of noise. The
complexity of the C. crescentus cell-cycle control network, combining transcriptional and
non-transcriptional interactions, may therefore have evolved in response to selective
pressure for a robust phenotype.
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Spatial gradients and oscillatory cell cycle regulation dynamics also appear in other bacterial
species. CtrA-modulated cell cycle regulation is conserved in α-proteobacteria68. Studies
have shown that a stalk cell undergoes aging, with decreasing reproduction associated with a
specific stalk pole69, an effect that has been generalized to the morphologically symmetric
γ-proteobacterium E. coli70.

Mechanistic synthetic biology
Non-transcriptional non-linearities, implicit interactions, and overall complexity underscore
the challenges of studying natural networks. Improved knowledge of, and control over,
network architectures is essential for a better understanding of their function. These issues
have driven researchers to construct synthetic biological networks that function as tractable
laboratory models and allow a more thorough understanding of phenotype at the level of
genotype71.

Challenges in constructing synthetic gene networks
In early synthetic biological networks, signals were often encoded as the number of protein
transcription factors in a cell72-76. In this type of network, the precision of signal
transmission is limited by gene expression noise. Random production and degradation of
mRNAs77 and proteins78, transmitted fluctuations from other molecules in the network78, 79,
and variations in global factors such as polymerases and ribosomes80, reduce the precision
with which a given protein can be expressed. Indeed, the standard deviation in protein
abundance across a population of cells is often 10-50% of the mean81. Because many
transcription factors bind strongly to their promoters, small changes in transcription factor
concentration can significantly change promoter activity. In such circumstances fluctuations
can lead to signal degradation in an individual cell and dramatic differences in behaviors of
networks between neighboring cells. These fluctuations can in turn result in breakdown in
the function of the synthetic network75.

Signal matching is another difficulty that arises in the construction of synthetic gene
networks. The range of output signal produced by a given node can be improperly matched
with the range of signal to which another node can respond. For example, if two promoters
are connected in series, leaky expression of a transcription factor from the first promoter
may be sufficient to strongly activate or repress the second76, 82. In such a case the
downstream node promoter effectively becomes ‘deaf’ to information coming from the
upstream node promoter and the network can lose dynamic range of response, or become
non-functional76, 82, 83.

Control of translation rate
Various methods have been used to match signal strengths in synthetic gene
networks73, 76, 83-85, with modification of translation initiation rates being a particularly
successful approach. For a given protein, the mRNA sequence surrounding the start codon
regulates total abundance in the cell. Among other parameters, the distance of the ribosome
binding site (RBS) from the start codon and the degree of base pairing with 16s ribosomal
RNA controls the rate of translation, and thereby concentration. RBS swapping73 and
directed evolution83 have been used to tune the abundances of signal-carrying proteins in
transcriptional networks. Recently, thermodynamic models that allow the de novo design of
RBS sequences with desired translation rates have been developed85, 86. New DNA
assembly methods make it possible to place a synthetic RBS sequence in front of any open
reading frame without leaving scars from restriction enzyme sites87. This type of seamless
sequence replacment is important when cloning RBSs, as their activity is strongly dependent
on adjacent nucleotide sequences85.
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Robust oscillations via post-translational control
A goal of synthetic biology is to engineer networks capable of generating robust, dynamic
cellular behaviors. A particularly challenging behavior is that of persistent oscillations. The
first attempt to construct an oscillator used three transcriptional repressors organized in a
ring topology, known as the repressilator75. If any repressor achieved high concentration, it
would repress the next member of the network. The third repressor would then increase in
abundance, subsequently repressing the first. Though this topology gave rise to oscillations,
they were short-lived and unstable, unlike the robust natural oscillations in organisms such
as C. crescentus. Because signal is carried as transcription factor abundance, gene
expression noise is thought to compromise the performance of the repressilator75, 81.

Recently, Hasty and colleagues demonstrated that non-transcriptional effects can play an
important role in the performance of transcriptional oscillatory networks88, 89. In one
engineered network, the arabinose-dependent transcription factor AraC was engineered to
activate its own transcription and transcription of the lac repressor protein LacI88. In this
way, when arabinose is present, both AraC and LacI rise in abundance. After accumulating
to a significant level, LacI dominantly represses new AraC transcription. Both transcription
factors were tagged for proteolytic degradation, causing their abundances to decrease rapidly
when AraC is not being actively produced. A mathematical model of the network suggests
that delays in the LacI-mediated negative feedback step arising from transcription,
translation, protein folding, multimerization, and DNA binding are crucial for robust
oscillations. Indeed, the longer the negative feedback delay, the more robust the oscillations
are to changes in network parameters90. Though the general properties of negative feedback
driven oscillatory networks have long been known, the construction of this synthetic
network highlighted the impact that these more subtle processes can have on the
performance of gene networks.

In a follow up study, the performance of engineered oscillators was further improved by
employing a cell membrane diffusible acyl-homoserine lactone (AHL) signaling molecule
from the Vibrio fischeri quorum sensing system89. In this network, the AHL signal activates
its own production and that of the enzyme AiiA, which degrades it. AHL is also a ligand for
the transcription factor LuxR, acting much like arabinose in the previous oscillator. Here,
the concentration of AHL is proportional to the abundance of enzymes producing and
degrading it, and it likely serves to average out the noise in the expression of these proteins.
The membrane diffusibility of AHL also drives neighboring cells to occupy the same
signaling state at the same time. Beyond driving the bacteria to oscillate in synchrony, this
type of population averaging also improves the robustness of the network in any individual
cell. Any cell that begins to drift from the synchronized signal range is drawn back into the
oscillatory regime by the influence of neighboring cells.

Physical colocalization improves signal flow
Signal flow through a network can also be regulated by controlling physical interactions
between signaling nodes91. Keasling and co-workers recently demonstrated that metabolite
flux through a carbon catabolic pathway can be dramatically improved by scaffolding
otherwise freely-diffusing metabolic enzymes into a multi-protein complex92, 93. The group
began by introducing two S. cerevisiae enzymes into E. coli to generate mevalonate, a
precursor to the anti-malarial compound Artemisinin94. It was found that a major
performance limitation of this pathway was the proper matching of the three nodes. In the
first design, the upstream enzymes in the pathway (AtoB and HMGS) generated a large
amount of metabolic product, while a comparatively slow third enzyme (HMGR) produced a
bottleneck. Overexpression of HMGR failed to significantly alleviate the problem due to the
growth burden of its production in the E. coli host cell. The problem was solved by tethering
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different numbers of the three enzymes together on a synthetic protein scaffold constructed
from a translational fusion of three mammalian protein-protein interaction domains (SH3,
PDZ, and GDB)93. Scaffolding two HMGS and two HMGR to a single AtoB enzyme
resulted in a nearly 80-fold increase in yield over the unscaffolded system, while other
stoichiometries were less efficient. The large increase in yield occurred at very low absolute
enzyme abundance, decreasing the overall metabolic burden imposed on the host cell.

Improvements arising from scaffolding are likely due to higher local concentrations of
pathway intermediates, reduction of the accumulation of toxic intermediates throughout the
cell, and proper input-output matching of nodes with different enzymatic rates. From a
design perspective, input-output matching by scaffolding is analogous to tuning ribosome
binding sites for diffusible signal carriers: total strength of a given node can be raised or
lowered by engineering the efficiency of the node.

New inspiration for the biological network designer
Not surprisingly, physical interactions underlie signal processing in natural systems as well.
One remarkable example is the stressosome, a 1.8MDa protein complex in B. subtilis that
contains a symmetrical core structure reminiscent of a viral capsid, decorated with an array
of outward-facing sensor proteins. The sensors appear to detect a variety of stresses such as
UV light, pH fluctuations, and ethanol95. Each sensor is oriented to transmit a detected
signal detected from the outside inward, as a phosphorylation event within the stressosome
core. Phosphorylation results in the release of an enzyme activating the alternative sigma
factor σB 96. Most early synthetic biological networks were inspired by the circuits of
electrical engineering. Systems such as the stressosome, however, demonstrate that biology
can process signals using approaches that a mechanical engineer might envision as well.
Though we are far from being able to design macromolecular structures this sophisticated,
we will be well served to take inspiration from biological networks in all of their varied
forms.

Concluding remarks
The rise of genomics and systems biology has greatly enhanced our understanding of the
molecular organization of life, particularly microbial life. Recent studies, highlighted here,
demonstrate that broad systems-level analysis must be deepened with consideration of
molecular mechanisms and non-transcriptional effects. Mechanistic details such as growth
rates, spatial gradients, implicit feedback loops, and others can alter the properties of gene
expression programs. The ability to deeply understand life, and to engineer it for useful
purposes, requires accounting for these effects.

The mechanistic approach to understanding biological networks has important implications
for the uses of mathematical models and their relation to experiment. The theoretical
foundation of biology is not networks themselves, but their underlying physics. Relevant
models, conceptual and mathematical, must reflect the chemical physics of matter: atoms
and molecules interacting in space. It is from these interactions that sophisticated gene
expression programs arise. Physics has constrained evolution, and must be remembered
when building a model, performing an experiment, or designing a synthetic network.

The importance of mechanism—evolutionary and physical—underscores the importance of
quantitative experiments. Microbiologists are moving toward an experimental approach
guided by, and guiding, theory. Such complementary approaches are necessary for the next
generation of life sciences. The quantitative effects of ultrasensitivity, implicit and complex
feedback networks, and spatiotemporal organization of genetic programs covered in this
review exemplify the importance of non-transcriptional processes. Many other quantitative
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processes and characteristics outside the scope of this review are known to exist:
transcriptional coupling97, DNA-mediated interactions such as promoter cooperativity98,
and multicellular effects99. Yet other examples likely await discovery.

Synthetic network design has benefitted from the combined use of transcriptional and non-
transcriptional interactions. The fact that synthetic networks are subject to the same
mechanistic rigors and challenges as a natural system makes them an important scientific
tool: they enable the comprehensive quantitative experiments needed to deepen our
biological understanding. Indeed, characterization of these networks in living cells has
revealed subtle physical effects, the impacts of which were not widely appreciated a priori.
Feedback between synthetic and systems biology will pave the way toward important
medical and industrial applications that will arise from our deepened understanding of
biological networks. The complementary approach of synthetic network construction
alongside quantitative network analysis stands to contribute, perhaps more than any other
single approach, to our understanding of the organizing principles of biology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

network Set of biochemical reactions or interactions employed for cellular
information processing. The term network can refer either to either
interactions on whole-cell level or smaller circuits - subsystems of
the larger network

non-
transcriptional

A combination of post-transcriptional, post-translational and
pleiotropic effects

coupled feedback
loops

Multiple feedback loops that interact in some way, such as being
nested, or resulting from a single regulatory event that modulates
multiple transcriptionally coupled genes

bet-hedging An evolved phenotype that employs heterogeneity to ensure that
distinct subsets of a cellular population are adapted to different
outcomes of an unpredictable future environment

implicit feedback
loop

A feedback loop whose existence is not obvious, but emerges from
non-transcriptional interactions

biphasic A response composed of two distinct, characteristic types of
dynamics separated in time, such as initial transient phase and a
long-term persistent phase

signal Biological signals can take a wide variety of forms. In the context of
this review, signal refers to the information that flows through a
biological network

signal matching Adjusting the amount of signal produced by an upstream node so
that it is within the range to which a downstream node is responsive
(unsaturated)

node A molecular entity that takes in a signal and outputs a signal in
response, such as a transcription factor or allosterically regulated
enzyme. Upstream or downstream nodes refer to their order in the
information flow

ultrasensitivity A type of signal-response curve characterized by a very high slope
in the responsive range

oscillator A network architecture that results in periodic oscillations of some
output

Jacobian matrix A matrix whose entries quantitate the sensitivity of each variable
(often corresponding to chemical species) to each other variable
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effective
cooperativity

A concept representing sensitivity, or how much one molecular
species affects production of another. A phenomenological
generalization of cooperativity, where binding of one molecule to
another increases the affinity of further copies of one of the
molecules to bind

bistability A feature of a system where there are two stable steady states under
the same conditions. Which state the system adopts in practice
depends on initial conditions and noise. A bistable switch has a
signal-response curve with two stable steady states

robustness The term has taken many, subtly different meanings in the field of
systems biology. For the purposes of this review, we take robustness
to mean insensitivity of dynamic performance to small parameter
perturbations that would arise from intrinsic or extrinic noise, slight
enivronmental variations, etc

Michaelis-Menten
kinetics

A model of enzyme kinetics often used to mathematically represent

first-order saturation processes where the flux  for
substrate or regulator x, maximum flux rate Vmax, and Michaelis-
Menten constant Km

Hill kinetics A generalization of Michaelis-Menten kinetics that allows
mathematical representation of higher-order, or cooperative,

processes where flux  has nth-order effective
cooperativity

pleiotropic A type of interaction where one component or effect simultaneously
affects many targets

toxin-antitoxin
system

A small gene network that typically includes one gene encoding a
toxin and another encoding a neutralizing antitoxin

dynamical
performance

The characteristics of a response to a signal over time

noise Variability in signals and responses from cell to cell that arise either
intrinsically from the nature of the physico-chemical processes or
from extrinsic variability such as randomness in ribosome
inheritance
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Online summary

• The performance of bacterial transcriptional regulatory networks is often
affected by post-transcriptional, post-translational, and pleiotropic effects.

• Despite their importance, non-transcriptional effects are often obscure or
difficult to characterize without quantitative analytical techniques.

• Feedback loops can arise via non-transcriptional interactions and these have
important effects on signal processing.

• Stress-response networks, cell-cycle regulators, and sRNA-mediated gene
expression are examples of bacterial signaling networks that depend strongly on
non-transcriptional interactions.

• Mathematical network analysis techniques used in combination with
quantitative experimental approaches can reveal how non-transcriptional
processes contribute to complex dynamic phenotypes.

• Synthetic biological networks are a powerful tool for studying the role of non-
transcriptional effects in natural networks. Synthetic networks are well-defined
and easily manipulated. Recent advances in synthetic network design underscore
the importance of non-transcriptional effects.

• Synthetic network construction complemented by quantitative network analysis
will speed discovery and deepen our understanding of the fundamental
organizing principles of biology.
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Box 1

Signal-response systems are quantified with the mathematical approach of sensitivity
analysis. The sensitivity is typically quantified as the derivative, or slope, of the curve on
a log-log scale. With nth order Hill kinetics, the sensitivity decreases from the value of
the Hill coefficient n at small signal to zero near saturation (large signal). In gene
regulation, the Hill coefficient is usually limited by a small integer values (curves with n
= 1, 2 or 4 in A and B). Post-translational interactions can increase the kinetic order to
much higher levels (e.g. n = 10; blue curves in A and B). In ultrasensitive regimes, low
and high signals have smaller kinetic orders while a discrete intermediate signal has a
very high kinetic order (n = 20, 40 or higher), corresponding to a signal-response
threshold (Panel C).
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Box 2

In a chemical reaction network with established rates of production and degradation of
each species, feedback loops can still be difficult to determine by examination.
Mathematical tools adapted from chemical engineering can assist in their analysis. One
approach, chemical reaction network theory105, exploits topological features of post-
translational networks to predict bistability33, absolute concentration robustness106 (e.g.
robustness of regulation by bifunctional two-component systems to the expression level
of their proteins 107, 108), and other dynamic properties of networks.

Another approach is to write each molecular subspecies as a system of differential
equations and exploit dynamical systems theory. For example, one can detect implicit
feedback loops using a matrix that captures the local sensitivity of all molecular species
to each other using partial derivatives, known mathematically as the Jacobian matrix34.
The Jacobian reveals to what extent fluxes that produce and degrade one variable depend
on others. We may find that variable A depends on C, which in turn depends on B, which
in turn depends on A, so that we have a feedback loop A → B → C → A. To be sure that
all feedback loops are detected, all significant interactions between species (both direct
and pleiotropic) should be present in the Jacobian matrix. This task is often challenging
due to subtle physical effects that may need to be determined experimentally.

A simple model for a two-species network where one species has a ubiquitous inhibitory
effect on growth can be diagrammed with each reaction and regulatory interaction, and
represented as a set of differential equations where x′ and y′ are the rates of each
variable:

The regulator x induces production of y, which inhibits growth-mediated protein
degradation (via dilution). Here, the network Jacobian is:

A mathematical expression for each matrix entry tells us the sign of each effective
interaction. With dependencies within the network determined by the entries in the
Jacobian matrix, a circuit diagram of off-diagonal elements simplifies the picture and
shows the effects of growth inhibition manifesting as a positive feedback loop:
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Figure 1.
Information flow in signaling networks can strongly depend on non-transcriptional details
with important physiological consequences. (A). Illustration of components in a
transcriptional network. Input signals transfer information via nodes to create a
physiological output. Right panel – transcriptional network diagram corresponding to
detailed network on the left. C. A typical two-component system gene circuit is positively
autoregulated by phosphorylated response regulator (RR). Right panel – simplified
transcriptional network diagram corresponding to detailed network on the left. C. The
system can exhibit feedback-induced overshoot (surge) kinetics if there is a small amount of
regulator phosphorylation from an exogenous source (orange arrow and dashed line) in
addition to sensor phosphorylation. In the absence of exogenous phosphorylation, induction
is monotonic (solid green line). Overshoot of RR phosphorylation speeds induction of
downstream genes (Normalized Output).
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Figure 2.
Saturation creates an ultrasensitive switch. A. As total sigma factor concentration increases,
anti-σ sequesters it until the critical point is reached, determined by the concentration of
anti- σ and the affinity of the σ -anti- σ interaction. The resulting quantitative effect is a
titration curve for free σ that crosses a steep transition into the range where the sigma factor
has high concentrations. Comparing responses for different binding affiinities shows that
strong binding is necessary for the effect. B. An analogous threshold arises when a small
RNA (sRNA) prevents translation. After mRNA concentration exceeds a threshold
determined by sRNA concentration (due to sufficient stress signals level), translation of
unsequestered mRNA proceeds. Points in the graph represent experimental data from
expressing GFP fused with the crsodB sRNA recognition sequence in the 5’-UTR under
various sRNA induction conditions; solid curves are model predictions26. Each line
corresponds to a different sRNA concentration. C. In Mycobacterium tuberculosis, σE

upregulates MprAB, a two-component system (TCS) that regulates stress responses. Positive
feedback from the TCS combined with an ultrasensitive σ-anti-σ interaction enables a
bistable signal-response from MprAB with two ultrasensitive thresholds as demonstrated by
signal-response curve(middle panel). Right panel shows that simulated single cell
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distributions of σE activity reporter are bimodal with a growing fraction of cells inducing σE

after stress intiation. [Graph in part B copied directly from Levine et al 2007.]

Ray et al. Page 24

Nat Rev Microbiol. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Modulation of growth rate can create an implicit feedback loop with two resulting
subpopulations of microbes. A. A toxin expressed from a plasmid is unequally partitioned
into two daughter cells. With higher toxin, there is slower growth, allowing, in turn, more
toxin buildup. The result of the feedback loop is a non-linear relationship between toxin
promoter strength and growth rate. A mathematical model predicts two resulting
subpopulations of cells growing at different rates for some conditions (red curve; dashed
portion represents unstable intermediate steady state) and unimodal populations with
nonlinear toxin response in other conditions (black curve) 35. B. A synthetic system in E.
coli with autoregulating T7 RNA polymerase that also upregulates a fluorescent protein
(CFP) as a readout. A second, implicit feedback loop arises from the metabolic burden of
gene expression. Microcolonies of the synthetic strain exhibit bimodal fluorescence (visible
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as both dark and green cells) as a result of bistability36. [Part B copied directly from Tan et
al.]
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Figure 4.
Complex feedback architecture with non-transcriptional interactions enables complex
dynamic responses. A. The E. coli AR2 acid response system is a complex network with
interleaved transcriptional-post-translational interactions that responds to acid stress on two
timescales: initial low pH feeding into the EvgAS two-component system, and upregulation
of alternative sigma factor RpoS in response to persistent stress48, 49. B. A circuit diagram
reveals a negative feedback architecture for early responses (pre-60 minutes) and a coherent
feedforward loop under persistent stress. C. High temporal resolution measurement of
promoter kinetics in the AR2 system shows two response phases: a fast, overshooting
response from the negative feedback loop, and a persistent high-expression response
imparted by the RpoS-Gad feedforward loop49. Losses of dynamical characteristics in
systematic deletions show the role of each feedback loop in the emergent AR2 biphasic
system response. D. The Caulobacter crescentus cell cycle has evolved to deterministically
produce daughter cells at two different developmental stages: a transient swarming cell type
that and a mature stalk cell type. Each cell cycle stage has characteristic expression of core
genetic circuitry components. E. The core genetic program is a feedback circuit that depends
on regulated degradation to attain oscillatory behavior. A spatial gradient of CtrA
phosphorylation mediated by polar localization of kinase and phosphatase activities
suppresses chromosome replication in the swarmer pole but not in the stalked pole.
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Figure 5.
Engineering non-transcriptional processes for synthetic biology. A. ‘Leaky’ transcription
can produce sufficient signal to flood downstream nodes. Signal matching can be achieved
by engineering the ribosome binding site (RBS) to prevent low-level transcription from
causing extraneous downstream signaling85. B. A similar mismatch occurs in a synthetic
metabolic pathway for mevalonate production. A physical scaffold prevents accumulation of
undesired intermediate HMG-CoA, reducing host cell toxicity and greatly increasing
mevalonate product yield92, 93.
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