Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complex architecture of oxygenic photosynthesis

A Correction to this article was published on 01 October 2005

Key Points

  • The process of oxygenic photosynthesis, in which solar energy is converted into chemical energy, underpins life on earth and is the principal producer of both oxygen and organic matter on earth.

  • Oxygenic photosynthesis is driven by four large membrane-protein complexes that reside in the thylakoid membranes of cyanobacteria, algae and plants. The structure of three of these assemblies (photosystem I, photosystem II and the cytochrome-b6f complex) were recently solved by X-ray crystallography, and the structure of the fourth (ATP synthase or F-ATPase) can be deduced from its mitochondrial relative, the structure of which is largely known.

  • In photosystem II, a cluster of four manganese ions, plus a calcium ion and a chloride ion, is responsible for water oxidation. A recent structure sheds light on the arrangement of this cluster and provides important insights into the mechanism of light-dependant oxygen evolution.

  • Structures of the cytochrome-b6f complex — which mediates electron transfer between photosystem II and photosystem I — have, surprisingly, revealed the position of unexpected cofactors that might have an important role in cyclic photophosphorylation.

  • A recently solved structure of plant photosystem I provides the first example of a supercomplex, which is composed of a reaction centre similar to that of cyanobacteria and a light-harvesting complex that is unique to the chloroplasts of eukaryotes.

  • Together, the structures of these complexes form a unique body of information that has helped us to understand the architecture of oxygenic photosynthesis, which is one of the most intricate and fundamental processes of life.

Abstract

Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process — the conversion of sunlight into chemical energy — is driven by four, multisubunit, membrane-protein complexes that are known as photosystem I, photosystem II, cytochrome b6f and F-ATPase. Structural insights into these complexes are now providing a framework for the exploration not only of energy and electron transfer, but also of the evolutionary forces that shaped the photosynthetic apparatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structures of the four large membrane-protein complexes in thylakoid membranes that drive oxygenic photosynthesis.
Figure 2: The structure of photosystem II and the cofactors that are involved in light-induced water oxidation and plastoquinone reduction.
Figure 3: The structure of the cytochrome-b6f complex from Chlamydomonas reinhardtii and the cofactors that are involved in its mechanism of action.
Figure 4: A view from the stroma on plant photosystem I.
Figure 5: A model for the interaction of plant photosystem I with its electron donors/acceptors and the pathways for light-induced electron transport.
Figure 6: A composit model for the structure of the chloroplast F-ATPase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Whatley, F. R., Tagawa, K. & Arnon, D. I. Separation of the light and dark reactions in electron transfer during photosynthesis. Proc. Natl Acad. Sci. USA 49, 266–270 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hill, R. & Bendall, F. Function of two cytochrome components in chloroplast: a working hypothesis. Nature 186, 136–137 (1960).

    Article  CAS  Google Scholar 

  3. Duysens, L. N. M., Amesz, J. & Kamp, B. M. Two photochemical systems in photosynthesis, Nature 190, 510–514 (1961).

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  5. McCarty, R. E. & Racker, E. Effect of a coupling factor and its antiserum on photophosphorylation and hydrogen ion transport. Brookhaven Symp. Biol. 19, 202–214 (1966).

    CAS  PubMed  Google Scholar 

  6. Jagendorf, A. T. Acid–base transitions and phosphorylation by chloroplasts. Fed. Proc. 26, 1361–1369 (1967).

    CAS  PubMed  Google Scholar 

  7. Cramer, W. A. & Butler, W. L. Light-induced absorbance changes of two cytochrome b components in the electron-transport system of spinach chloroplasts. Biochim. Biophys. Acta 143, 332–339 (1967).

    Article  CAS  PubMed  Google Scholar 

  8. Weber, K. & Osborn, M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412 (1969).

    Article  CAS  PubMed  Google Scholar 

  9. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. Bengis, C. & Nelson, N. Purification and properties of the photosystem I reaction center from chloroplasts. J. Biol. Chem. 250, 2783–2788 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Bengis, C. & Nelson, N. Subunit structure of chloroplast photosystem I reaction center. J. Biol. Chem. 252, 4564–4569 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Pick, U. & Racker, E. Purification and reconstitution of the N,N′ dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts. J. Biol. Chem. 254, 2793–2799 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Berthold, D. A., Babcock, G. T. & Yocum, C. F. A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234 (1981).

    Article  CAS  Google Scholar 

  14. Hurt, E. & Hauska, G. A cytochrome f/b6 complex of five polypeptides with plastoquinol–plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur. J. Biochem. 117, 591–595 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. McCarty, R. E., Evron, Y. & Johnson, E. A. The chloroplast ATP synthase: a rotary enzyme? Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 83–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Cramer, W. A. et al. Some new structural aspects and old controversies concerning the cytochrome b6f complex of oxygenic photosynthesis Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 477–508 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Junge, W. ATP synthase and other motor proteins. Proc. Natl Acad. Sci USA 96, 4735–4737 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herrmann, R. G. Biogenesis and evolution of photosynthetic (thylakoid) membranes. Biosci. Rep. 19, 355–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kaftan, D., Brumfeld, V., Nevo, R., Scherz, A. & Reich, Z. From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J. 21, 6146–6153 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trissl, H. -W. & Wilhelm, C. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem. Sci. 18, 415–419 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Barber, J. & Andersson, B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, J. M. & Chow, W. S. Structural and functional dynamics of plant photosystem II. Phil. Trans. R. Soc. Lond. B 357, 1421–1430 (2002).

    Article  CAS  Google Scholar 

  23. Barber, J. Photosystem II: a multisubunit membrane protein that oxidises water. Curr. Opin. Struct. Biol. 12, 523–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004). Describes a high-resolution structure of PSII, which provides a more precise description of the manganese cluster and identifies the position of the calcium ion within the cluster.

    Article  CAS  PubMed  Google Scholar 

  25. Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994). Reports the structure of LHCII at a resolution of 3.4–4.9 Å. The structure was obtained by electron crystallography and revealed the arrangement of the main helices, as well as the location of 12 chlorophylls and 2 carotenoids.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004). The first high-resolution structure of LHCII, which assigned almost all of the amino-acid side chains and revealed the arrangement and ligands of all 14 chlorophylls (8 chlorophyll-a and 6 chlorophyll-b molecules) and 4 carotenoids.

    Article  CAS  PubMed  Google Scholar 

  27. Boekema, E. J., van Roon, H., Calkoen, F., Bassi, R. & Dekker, J. P. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38, 2233–2239 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Nield. J. et al. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct. Biol. 7, 44–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hoganson, C. W. & Babcock, G. T. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277, 1953–1956 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Vrettos, J. S., Limburg, J. & Brudvig, G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta 1503, 229–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Junge, W., Haumann, M., Ahlbrink, R., Mulkidjanian, A. & Clausen, J. Electrostatics and proton transfer in photosynthetic water oxidation. Philos. Trans. R. Soc. Lond. B 357, 1407–1417 (2002).

    Article  CAS  Google Scholar 

  32. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001). The first crystal structure of PSII, which revealed the arrangement of its subunits and cofactors, and identified the location of the oxygen-evolving centre/manganese cluster.

    Article  CAS  PubMed  Google Scholar 

  33. Kamiya, N. & Shen, J. R. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc. Natl Acad. Sci. USA 100, 98–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Peloquin, J. M. & Britt, R. D. EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim. Biophys. Acta 1503, 96–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Robblee, J. H. et al. The Mn cluster in the S0 state of the oxygen-evolving complex of photosystem II studied by EXAFS spectroscopy: are there three Di-μ-oxo-bridged Mn2 moieties in the tetranuclear Mn complex? J. Am. Chem. Soc. 124, 7459–7471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vander Meulen, K. A., Hobson, A. & Yocum, C. F. Calcium depletion modifies the structure of the photosystem II O2-evolving complex. Biochemistry 41, 958–966 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Vasil'ev, S., Brudvig, G. W. & Bruce, D. The X-ray structure of photosystem II reveals a novel electron transport pathway between P680, cytochrome b559 and the energy-quenching cation, ChlZ+. FEBS Lett. 543, 159–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Baymann, F., Brugna, M., Muhlenhoff, U. & Nitschke, W. Daddy, where did (PS)I come from? Biochim. Biophys. Acta 1507, 291–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell, P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theor. Biol. 62, 327–367 (1976).

    Article  CAS  PubMed  Google Scholar 

  40. Trumpower, B. L. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 265, 11409–11412 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Berry, E. A., Guergova-Kuras, M., Huang, L. -S. & Crofts, A. R. Structure and function of cytochrome bc complexes. Annu. Rev. Biochem. 69, 1005–1075 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H. et al. Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart. Proc. Natl Acad. Sci. USA 95, 8026–8033 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Z. et al. Electron transfer by domain movement in cytochrome bc1 . Nature 392, 677–684 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Hunte, C., Koepke, J., Lange, C., Rossmanith, T. & Michel, H. Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure Fold Des. 8, 669–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W. A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Stroebel, D., Choquet, Y., Popot, J. L. & Picot, D. An atypical haem in the cytochrome b6f complex. Nature 426, 413–418 (2003). References 46 and 47 describe the first crystal structure of the cytochrome- b 6 f complex from cyanobacteria and green algae, respectively, and reveal important differences compared with cytochrome- bc 1 complexes (in particular, a novel haem group that might participate in cyclic electron transfer around PSI).

    Article  CAS  PubMed  Google Scholar 

  48. Carrell, C. J., Zhang, H., Cramer, W. A. & Smith, J. L. Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5, 1613–1625 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Martinez, S. E., Huang, D., Szczepaniak, A., Cramer, W. A. & Smith, J. L. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2, 95–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Horton, P. & Black, M. T. Activation of adenosine 5′ triphosphate-induced quenching of chlorophyll fluorescence by reduced plastoquinone: the basis of state I–state II transitions in chloroplasts. FEBS Lett. 119, 141–144 (1980).

    Article  CAS  Google Scholar 

  51. Allen, J. F., Bennett, J., Steinback, K. E. & Arntzen, C. J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29 (1981).

    Article  CAS  Google Scholar 

  52. Escoubas, J. M., Lomas, M., LaRoche, J. & Falkowski, P. G. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc. Natl Acad. Sci. USA 92, 10237–10241 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfannschmidt, T., Nilsson, A. & Allen, J. F. Photosynthetic control of chloroplast gene expression. Nature 397, 625–628 (1999).

    Article  CAS  Google Scholar 

  54. Vener, A. V., Van Kan, P. J., Gal, A., Andersson, B. & Ohad, I. Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation. Role of plastoquinol bound to the reduced cytochrome bf complex. J. Biol. Chem. 270, 25225–25232 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Zito, F. et al. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 18, 2961–1969 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Depege, N., Bellafiore, S. & Rochaix, J. D. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299, 1572–1575 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Wollman, F. A. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20, 3623–3630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson, N. & Ben-Shem, A. Photosystem I reaction center: past and future. Photosyth. Res. 73, 193–206 (2002).

    Article  CAS  Google Scholar 

  59. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001). The first high-resolution structure of cyanobacterial PSI, which shows almost all of the amino-acid side chains of its 12 subunits and reveals, in detail, the complete set of electron-transfer components and more than 100 antenna chlorophylls and carotenoids.

    Article  CAS  PubMed  Google Scholar 

  60. Scheller, H. V., Jensen, P. E., Haldrup, A., Lunde, C. & Knoetzel, J. Role of subunits in eukaryotic photosystem I. Biochim. Biophys. Acta 1507, 41–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Xiong, J. & Bauer, C. E. Complex evolution of photosynthesis. Annu. Rev. Plant. Biol. 53, 503–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ben-Shem, A., Frolow, F. & Nelson, N. The crystal structure of plant photosystem I. Nature 426, 630–635 (2003). The first crystal structure of plant PSI, which contains 16 subunits and 167 chlorophylls. The structure revealed the arrangement of the LHCI belt and its interaction with the reaction centre. It also shed light on the evolutionary forces that shaped plant PSI.

    Article  CAS  PubMed  Google Scholar 

  63. Ben-Shem, A., Frolow, F. & Nelson, N. Evolution of photosystem I — from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 564, 274–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Büttner, M. et al. Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc. Natl Acad. Sci. USA 89, 8135–8139 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Büttner, M. et al. The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim. Biophys. Acta 1101, 154–156 (1992).

    Article  PubMed  Google Scholar 

  66. Hauska, G., Schoedl, T., Remigy, H. & Tsiotis, G. The reaction center of green sulfur bacteria. Biochim. Biophys. Acta 1507, 260–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. Whole-genome analysis of photosynthetic prokaryotes. Science. 298, 1616–1620 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Durnford, D. G. et al. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J. Mol. Evol. 48, 59–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Chitnis, V. P. et al. Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 268, 11678–11684 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Chitnis, P. R. Photosystem I: function and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 593–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Ben-Shem, A., Frolow, F. & Nelson, N. Light harvesting by plant photosystem I. Photosynthesis Res. 81, 239–250 (2004).

    Article  CAS  Google Scholar 

  72. Bailey, S., Walters, R. G., Jansson, S. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213, 794–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Storf, S., Stauber, E. J., Hippler, M. & Schmid, V. H. Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum). Biochemistry 43, 9214–9224 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Jennings, R. C., Zucchelli, G., Croce, R. & Garlaschi, F. M. The photochemical trapping rate from red spectral states in PSI–LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. Biochim. Biophys. Acta 1557, 91–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Morosinotto, T., Breton, J., Bassi, R. & Croce, R. The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J. Biol. Chem. 278, 49223–49229 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Bibby, T. S., Nield, J. & Barber, J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Boekema, E. J. et al. A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412, 745–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Allen, J. F. & Forsberg, J. Molecular recognition in thylakoid structure and function. Trends Plant Sci. 6, 317–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Barber, J. Influence of surface charges on thylakoid structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 33, 261–295 (1982).

    Article  CAS  Google Scholar 

  80. Lunde, C. P., Jensen, P. E., Haldrup, A., Knoetzel, J. & Scheller, H. V. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408, 613–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, S. & Scheller, H. V. Light-harvesting complex II binds to several small subunits of photosystem I. J. Biol. Chem. 279, 3180–3187 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Binda, C., Coda, A., Aliverti, A., Zanetti, G. & Mattevi, A. Structure of the mutant E92K of [2Fe-2S] ferredoxin I from Spinacia oleracea at 1.7 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 54, 1353–1358 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Xue, Y., Okvist, M., Hansson, O. & Young, S. Crystal structure of spinach plastocyanin at 1.7 Å resolution. Protein Sci. 7, 2099–2105 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kurisu, G. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin–NADP+ reductase. Nature Struct. Biol. 8, 117–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Schubert, W. D. et al. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J. Mol. Biol. 280, 297–314 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P. & Redding, K. Evidence for two active branches for electron transfer in photosystem I. Proc. Natl Acad. Sci. USA 98, 4437–4442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nelson, N., Sacher, A. & Nelson, H. The significance of molecular slips in transport systems. Nature Rev. Mol. Cell Biol. 3, 876–881 (2002).

    Article  CAS  Google Scholar 

  88. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994). The asymmetric structure of the mitochondrial F 1 -ATPase bound to ADP and a non-hydrolysable analogue of ATP. The structure supported the binding-change mechanism for ATP synthesis, which was proposed by Boyer and is reviewed in reference 89.

    Article  CAS  PubMed  Google Scholar 

  89. Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Gibbons, C., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nature Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Stock, D., Leslie, A. G. W. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999). The structure of the c-ring of the F 0 -ATPase associated with the F 1 -ATPase from yeast showed that the c-ring contains contained ten c-subunits — a number that, contrary to predictions, is not divisible by three.

    Article  CAS  PubMed  Google Scholar 

  92. Engelbrecht, S. & Junge, W. ATP synthase: a tentative structural model. FEBS Lett. 414, 485–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Elston, T., Wang, H. Y. & Oster, G. Energy transduction in ATP synthase. Nature 391, 510–513 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Seelert, H. et al. Structural biology. Proton-powered turbine of a plant motor. Nature 405, 418–419 (2000). Imaging of the c/III-ring of plant chloroplast F-ATPase using atomic-force microscopy revealed 14 copies of subunit III (c), which indicates that the number of c/III-subunits might vary between organisms.

    Article  CAS  PubMed  Google Scholar 

  95. Girvin, M. E., Rastogi, V. K., Abildgaard, F., Markley, J. L. & Fillingame, R. H. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry 37, 8817–8824 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Joliot, P. & Joliot, A. Cyclic electron transfer in plant leaf. Proc. Natl Acad. Sci. USA 99, 10209–10214 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Danielsson, R., Albertsson, P. A., Mamedov, F. & Styring, S. Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochim. Biophys. Acta 1608, 53–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Munekage, Y. et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110, 361–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Li, X. P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Kulheim, C., Agren, J. & Jansson, S. Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93 (2002).

    Article  PubMed  Google Scholar 

  101. Munekage. Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Buchanan, B. B. & Wolosiuk, R. A. Photosynthetic regulatory protein found in animal and bacterial cells. Nature 264, 669–670 (1976).

    Article  CAS  PubMed  Google Scholar 

  103. Mills, J. D. & Mitchell, P. Modulation of coupling factor ATPase activity in intact chloroplasts: reversal of thiol modulation in the dark. Biochim. Biophys. Acta 679, 75–82 (1982).

    Article  CAS  Google Scholar 

  104. Dann, M. S. & McCarty, R. E. Characterization of the activation of membrane-bound and soluble CF1 by thioredoxin. Plant Physiol. 99, 153–160 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. He, X., Miginiac-Maslow, M., Sigalat, C., Keryer, E. & Haraux, F. Mechanism of activation of the chloroplast ATP synthase. J. Biol. Chem. 275, 13250–13258 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Nelson, N., Nelson, H. & Racker, E. Partial resolution of the enzymes catalyzing photophosphorylation. XII. Purification and properties of an inhibitor isolated from chloroplast coupling factor I. J. Biol. Chem. 247, 7657–7662 (1972).

    Article  CAS  PubMed  Google Scholar 

  107. Anderson, J. M., Chow, W. S. & Park, Y. -I. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosyn. Res. 46, 129–139 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Frasch for the use of his structural model of F-ATPase (figure 6). A.B.-S. is a recipient of a Charles Clore Foundation Ph.D. student scholarship. The work of N.N. is supported by the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1A70

1AG6

1JBO

1Q90

1QZV

1S5L

Swiss-Prot

human cytochrome b

human cytochrome c

TAIR

CP24

CP26

CP29

CP43

CP47

cytochrome b6

cytochrome f

D1

D2

PetG

PsaA

PsaC

PsaI

PsaJ

Rieske iron–sulphur protein

subunit IV

Glossary

PROTONMOTIVE FORCE

(pmf). A special case of an electrochemical potential. It is the force that is created by the accumulation of protons on one side of a cell membrane. This concentration gradient is generated using energy sources such as redox potential or ATP. Once established, the pmf can be used to carry out work, for example, to synthesize ATP or to pump compounds across the membrane.

PRIMARY ELECTRON DONORS

Reaction-centre chlorophyll pairs (P700 in PSI and P680 in PSII) that are very different from antenna chlorophylls. When they receive light energy (from the antenna pigments), they generate a redox-active chemical species. Excited P680* donates an electron to another component of PSII, then eventually to the cytochrome-b6f complex and to PSI. After donating the electron, P680+ — the strongest oxidant in biology — is generated. P700* is the strongest reductant in biology. P700+ accepts an electron from plastocyanin.

CHARGE SEPARATION

The process in which excited P680* and P700* donate their electrons to their respective acceptors to generate P680+ and P700+, respectively.

ELECTROCHEMICAL POTENTIAL

Electrochemical potential is the sum of the chemical potential (concentration difference across the membrane) and the electrical potential (charge-concentration difference across the membrane).

QUANTUM YIELD

In a particular system, the number of defined electronic or chemical events that occur per photon absorbed.

QUANTA

Specific packets of electromagnetic energy (also known as photons). They have no mass, but they do have a momentum. Photosynthetic organisms capture the momentum of a photon and translate it into biological energy.

CAROTENOID

Any of a class of yellow to red pigments, which include carotenes and xanthophylls.

REDOX POTENTIAL

Redox potential is a measure (in volts) of the affinity of a substance for electrons. This value for each substance is compared to that for hydrogen, which is set arbitrarily at zero. Substances that are more strongly oxidizing than hydrogen have positive redox potentials (oxidizing agents), whereas substances that are more reducing than hydrogen have negative redox potentials (reducing agents).

KOK–JOLIOT FIVE S-STATES

The oxidation of water to oxygen occurs at the oxygen-evolving complex/manganese cluster in photosystem II. This cluster cycles through five states (S0–S4) during the oxidation process, and this cycle was discovered by Bessel Kok and Pierre Joliot about four decades ago.

RIESKE IRON–SULPHUR PROTEIN

A subunit of the cytochrome-bc1 and -b6f complexes that contains an iron–sulphur cluster.

Q CYCLE

The mechanism by which the cytochrome-bc1 and -b6f complexes achieve their energy transduction to generate a protonmotive force.

CHLOROPHYLL TRIPLET

A chlorophyll with unpaired valence electrons. It can interact with molecular oxygen to form singlet oxygen. This, in turn, is a highly reactive molecule that might destruct nearby proteins or other biologically important molecules.

STATE TRANSITION

A short-term response to light conditions, in which plants can differentially distribute light energy between photosystem I and photosystem II. It is thought to occur through the relocation of light-harvesting complex II between the two photosystems.

CALVIN CYCLE

The Calvin cycle is a metabolic pathway that occurs in the stroma of chloroplasts, in which carbon enters in the form of CO2 and leaves in the form of sugar. The cycle uses ATP as an energy source and NADPH as a reducing agent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, N., Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5, 971–982 (2004). https://doi.org/10.1038/nrm1525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing