Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical importance of emerging Campylobacter species

Abstract

A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.

Key Points

  • Members of the Campylobacter genus are ecologically diverse and readily colonize humans and animals

  • C. jejuni and C. coli are established pathogens in human gastroenteritis, but other Campylobacter species (the 'emerging' pathogens) also have a role in gastrointestinal and extragastrointestinal infections in humans

  • The pathogenic mechanisms used by emerging Campylobacter spp. are diverse, and include attachment and invasion, production of toxins that modulate host functions and evasion of host defense systems

  • Emerging Campylobacter spp. pose a substantial risk of zoonotic transmission as these species colonize pets, farm animals and wild animals, and can be found in contaminated food products

  • Ongoing epidemiological surveillance of emerging Campylobacter spp. is key to understanding the distribution and zoonosis of these potentially novel and emerging pathogens

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colorized scanning electron microscopic images of a number of emerging Campylobacter species.
Figure 2: Proposed mechanisms of pathogenesis used by emerging Campylobacter species to colonize the intestinal tract or to spread to systemic sites.
Figure 3: Current methodological approaches used for the isolation of fastidious Campylobacter species.

Similar content being viewed by others

References

  1. Karmali, M. A., Penner, J. L., Fleming, P. C., Williams, A. & Hennessy, J. N. The serotype and biotype distribution of clinical isolates of Campylobacter jejuni and Campylobacter coli over a three-year period. J. Infect. Dis. 147, 243–246 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Gürtler, M., Alter, T., Kasimir, S. & Fehlhaber, K. The importance of Campylobacter coli in human campylobacteriosis: prevalence and genetic characterization. Epidemiol. Infect. 133, 1081–1087 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamidian, M. et al. Prevalence of putative virulence markers in Campylobacter jejuni and Campylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran. Can. J. Microbiol. 57, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Friedman, C. R. et al. Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Clin. Infect. Dis. 38 (Suppl. 3), S285–S296 (2004).

    Article  PubMed  Google Scholar 

  5. Moore, J. E. et al. Campylobacter. Vet. Res. 36, 351–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Bourke, B., Chan, V. L. & Sherman, P. Campylobacter upsaliensis: waiting in the wings. Clin. Microbiol. Rev. 11, 440–449 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lastovica, A. Emerging Campylobacter spp.: the tip of the iceberg. Clin. Microbiol. Newsletter 28, 49–56 (2006).

    Article  Google Scholar 

  8. Lastovica, A. J. & Skirrow, M. B. in Campylobacter, 2nd edn (eds. Nachamkin, I. & Blaser, M. J.) 89–120 (American Society for Microbiology, Washington, 2000).

    Google Scholar 

  9. Levy, A. J. A gastro-enteritis cutbreak probably due to a bovine strain of Vibrio. Yale J. Biol. Med. 18, 243–258 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. King, E. O. Human infections with Vibrio fetus and a closely related vibrio. J. Infect. Dis. 101, 119–128 (1957).

    Article  CAS  PubMed  Google Scholar 

  11. Scallan, E. et al. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17, 7–15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ailes, E. et al. Continued decline in the incidence of Campylobacter infections, FoodNet 1996–2006. Foodborne Pathog. Dis. 5, 329–337 (2008).

    Article  PubMed  Google Scholar 

  13. Adak, G. K., Meakins, S. M., Yip, H., Lopman, B. A. & O'Brien, S. J. Disease risks from foods, England and Wales, 1996–2000. Emerg. Infect. Dis. 11, 365–372 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gillespie, I. A., O'Brien, S. J. & Bolton, F. J. Age patterns of persons with campylobacteriosis, England and Wales, 1990–2007. Emerg. Infect. Dis. 15, 2046–2048 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hall, G. et al. Estimating foodborne gastroenteritis, Australia. Emerg. Infect. Dis. 11, 1257–1264 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lastovica, A. J. & le Roux, E. Efficient isolation of Campylobacteria from stools. J. Clin. Microbiol. 38, 2798–2799 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vandenberg, O. et al. Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. J. Antimicrob. Chemother. 57, 908–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Lindblom, G. B., Sjogren, E., Hansson-Westerberg, J. & Kaijser, B. Campylobacter upsaliensis, C. sputorum sputorum and C. concisus as common causes of diarrhoea in Swedish children. Scand. J. Infect. Dis. 27, 187–188 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Labarca, J. A. et al. Campylobacter upsaliensis: Another pathogen for consideration in the United States. Clin. Infect. Dis. 34, E59–E60 (2002).

    Article  PubMed  Google Scholar 

  20. Alam, K. et al. Clinical characteristics and serotype distribution of Campylobacter jejuni and Campylobacter coli isolated from diarrhoeic patients in Dhaka, Bangladesh, and Cape Town, South Africa. Bangladesh J. Microbiol. 23, 121–124 (2006).

    Article  Google Scholar 

  21. Engberg, J., On, S. L., Harrington, C. S. & Gerner-Smidt, P. Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. J. Clin. Microbiol. 38, 286–291 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawson, A. J., Linton, D. & Stanley, J. 16S rRNA gene sequences of 'Candidatus Campylobacter hominis', a novel uncultivated species, are found in the gastrointestinal tract of healthy humans. Microbiology 144, 2063–2071 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Van Etterijck, R. et al. Isolation of Campylobacter concisus from feces of children with and without diarrhea. J. Clin. Microbiol. 34, 2304–2306 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsheka, M. I., Lastovica, A. J., Zappe, H. & Elisha, B. G. The use of (GTG)5 oligonucleotide as an RAPD primer to type Campylobacter concisus. Lett. Appl. Microbiol. 42, 600–605 (2006).

    CAS  PubMed  Google Scholar 

  25. Aabenhus, R., On, S. L., Siemer, B. L., Permin, H. & Andersen, L. P. Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J. Clin. Microbiol. 43, 5091–5096 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engberg, J. et al. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin. Microbiol. Infect. 11, 288–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Aabenhus, R., Permin, H. & Andersen, L. P. Characterization and subgrouping of Campylobacter concisus strains using protein profiles, conventional biochemical testing and antibiotic susceptibility. Eur. J. Gastroenterol. Hepatol. 17, 1019–1024 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Kalischuk, L. D. & Inglis, G. D. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans. BMC Microbiol. 11, 53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sandstedt, K., Ursing, J. & Walder, M. Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs. Curr. Microbiol. 8, 209–213 (1983).

    Article  CAS  Google Scholar 

  30. Steele, T. W., Sangster, N. & Lanser, J. A. DNA relatedness and biochemical features of Campylobacter spp. isolated in central and South Australia. J. Clin. Microbiol. 22, 71–74 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor, D. N., Kiehlbauch, J. A., Tee, W., Pitarangsi, C. & Echeverria, P. Isolation of group 2 aerotolerant Campylobacter species from Thai children with diarrhea. J. Infect. Dis. 163, 1062–1067 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Goossens, H. et al. Is “Campylobacter upsaliensis” an unrecognised cause of human diarrhoea? Lancet 335, 584–586 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Goossens, H. et al. Investigation of an outbreak of Campylobacter upsaliensis in day care centers in Brussels: analysis of relationships among isolates by phenotypic and genotypic typing methods. J. Infect. Dis. 172, 1298–1305 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Jenkin, G. A. & Tee, W. Campylobacter upsaliensis-associated diarrhea in human immunodeficiency virus-infected patients. Clin. Infect. Dis. 27, 816–821 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Walmsley, S. L. & Karmali, M. A. Direct isolation of atypical thermophilic Campylobacter species from human feces on selective agar medium. J. Clin. Microbiol. 27, 668–670 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Broczyk, A., Thompson, S., Smith, D. & Lior, H. Water-borne outbreak of Campylobacter laridis-associated gastroenteritis. Lancet 1, 164–165 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Tauxe, R. V. et al. Illness associated with Campylobacter laridis, a newly recognized Campylobacter species. J. Clin. Microbiol. 21, 222–225 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bullman, S. et al. Campylobacter ureolyticus: an emerging gastrointestinal pathogen? FEMS Immunol. Med. Microbiol. 61, 228–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Lawson, A. J., Shafi, M. S., Pathak, K. & Stanley, J. Detection of Campylobacter in gastroenteritis: comparison of direct PCR assay of faecal samples with selective culture. Epidemiol. Infect. 121, 547–553 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bullman, S., O'Leary, J., Corcoran, D., Sleator, R. D. & Lucey, B. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis. Epidemiol. Infect. 18, 1–5 (2011).

    Google Scholar 

  41. Inglis, G. D., Boras, V. F. & Houde, A. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook Heath Region of Southwestern Alberta, Canada. J. Clin. Microbiol. 49, 209–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Tremblay, C., Gaudreau, C. & Lorange, M. Epidemiology and antimicrobial susceptibilities of 111 Campylobacter fetus subsp. fetus strains isolated in Quebec, Canada, from 1983 to 2000. J. Clin. Microbiol. 41, 463–466 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Man, S. M., Kaakoush, N. O. & Mitchell, H. M. The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat. Rev. Gastroenterol. Hepatol. 8, 152–168 (2011).

    Article  PubMed  Google Scholar 

  44. Newman, A. & Lambert, J. R. Campylobacter jejuni causing flare-up in inflammatory bowel disease. Lancet 2, 919 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L. et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J. Clin. Microbiol. 47, 453–455 (2009).

    Article  PubMed  Google Scholar 

  46. Man, S. M. et al. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm. Bowel Dis. 16, 1008–1016 (2010).

    Article  PubMed  Google Scholar 

  47. Lastovica, A. J. Clinical relevance of Campylobacter concisus isolated from pediatric patients. J. Clin. Microbiol. 47, 2360 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mukhopadhya, I. et al. Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS ONE 6, e21490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deshpande, N. P. et al. Sequencing and validation of the genome of a Campylobacter concisus reveals intra-species diversity. PLoS ONE 6, e22170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kovach, Z. et al. Immunoreactive proteins of Campylobacter concisus, an emergent intestinal pathogen. FEMS Immunol. Med. Microbiol. http://dx.doi.org/10.1111/j.1574–1695X.2011.00864.x.

  51. Macuch, P. J. & Tanner, A. C. Campylobacter species in health, gingivitis, and periodontitis. J. Dent. Res. 79, 785–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Abiko, Y., Sato, T., Mayanagi, G. & Takahashi, N. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. J. Periodontal Res. 45, 389–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. von Troil-Linden, B., Torkko, H., Alaluusua, S., Jousimies-Somer, H. & Asikainen, S. Salivary levels of suspected periodontal pathogens in relation to periodontal status and treatment. J. Dent. Res. 74, 1789–1795 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Lopez, R., Dahlen, G., Retamales, C. & Baelum, V. Clustering of subgingival microbial species in adolescents with periodontitis. Eur. J. Oral Sci. 119, 141–150 (2011).

    Article  PubMed  Google Scholar 

  55. Umeda, M. et al. The distribution of periodontopathic bacteria among Japanese children and their parents. J. Periodontal Res. 39, 398–404 (2004).

    Article  PubMed  Google Scholar 

  56. Castillo, D. M. et al. Detection of specific periodontal microorganisms from bacteraemia samples after periodontal therapy using molecular-based diagnostics. J. Clin. Periodontol 38, 418–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Arce, R. M. et al. Characterization of the invasive and inflammatory traits of oral Campylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures. J. Reprod. Immunol. 84, 145–153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, B., Kraig, E. & Kolodrubetz, D. Use of defined mutants to assess the role of the Campylobacter rectus S-layer in bacterium-epithelial cell interactions. Infect. Immun. 68, 1465–1473 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogura, N. et al. Effect of Campylobacter rectus LPS on plasminogen activator-plasmin system in human gingival fibroblast cells. J. Periodontal Res. 30, 132–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Aas, J. A. et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 46, 1407–1417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chua, K. et al. Campylobacter insulaenigrae causing septicaemia and enteritis. J. Med. Microbiol. 56, 1565–1567 (2007).

    Article  PubMed  Google Scholar 

  62. Pigrau, C. et al. Bacteremia due to Campylobacter species: clinical findings and antimicrobial susceptibility patterns. Clin. Infect. Dis. 25, 1414–1420 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Wong, J. S., Anderson, T. P., Chambers, S. T., On, S. L. & Murdoch, D. R. Campylobacter fetus-associated epidural abscess and bacteremia. J. Clin. Microbiol. 47, 857–858 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pacanowski, J. et al. Campylobacter bacteremia: clinical features and factors associated with fatal outcome. Clin. Infect. Dis. 47, 790–796 (2008).

    Article  PubMed  Google Scholar 

  65. Nielsen, H. et al. Bacteraemia as a result of Campylobacter species: a population-based study of epidemiology and clinical risk factors. Clin. Microbiol. Infect. 16, 57–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Preston, M. A. et al. In vitro susceptibility of “Campylobacter upsaliensis” to twenty-four antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 9, 822–824 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Krause, R. et al. Recurrent septicemia due to Campylobacter fetus and Campylobacter lari in an immunocompetent patient. Infection 30, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt, U., Chmel, H., Kaminski, Z. & Sen, P. The clinical spectrum of Campylobacter fetus infections: report of five cases and review of the literature. Q. J. Med. 49, 431–442 (1980).

    CAS  PubMed  Google Scholar 

  69. de Vries, J. J., Arents, N. L. & Manson, W. L. Campylobacter species isolated from extra-oro-intestinal abscesses: a report of four cases and literature review. Eur. J. Clin. Microbiol. Infect. Dis. 27, 1119–1123 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Cody, A. J., Clarke, L., Bowler, I. C. & Dingle, K. E. Ciprofloxacin-resistant campylobacteriosis in the UK. Lancet 376, 1987 (2010).

    Article  PubMed  Google Scholar 

  71. Zhao, S. et al. Antimicrobial resistance of Campylobacter isolates from retail meat in the United States between 2002 and 2007. Appl. Environ. Microbiol. 76, 7949–7956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng, J., Meng, J., Zhao, S., Singh, R. & Song, W. Adherence to and invasion of human intestinal epithelial cells by Campylobacter jejuni and Campylobacter coli isolates from retail meat products. J. Food Prot. 69, 768–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Zheng, J., Meng, J., Zhao, S., Singh, R. & Song, W. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-κB. Infect. Immun. 76, 4498–4508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Malagon, I., Garcia, S. & Heredia, N. Adherence, invasion, toxigenic, and chemotactic properties of Mexican Campylobacter strains. J. Food Prot. 73, 2093–2098 (2010).

    Article  PubMed  Google Scholar 

  75. Gorkiewicz, G. et al. A genomic island defines subspecies-specific virulence features of the host-adapted pathogen Campylobacter fetus subsp. venerealis. J. Bacteriol. 192, 502–517 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Mooney, A. et al. Invasion of human epithelial cells by Campylobacter upsaliensis. Cell. Microbiol. 5, 835–847 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J. Infect. Dis. 202, 1855–1865 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Graham, L. L., Friel, T. & Woodman, R. L. Fibronectin enhances Campylobacter fetus interaction with extracellular matrix components and INT 407 cells. Can. J. Microbiol. 54, 37–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Graham, L. L. Campylobacter fetus adheres to and enters INT 407 cells. Can. J. Microbiol. 48, 995–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Fouts, D. E. et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3, e15 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sylvester, F. A., Philpott, D., Gold, B., Lastovica, A. & Forstner, J. F. Adherence to lipids and intestinal mucin by a recently recognized human pathogen, Campylobacter upsaliensis. Infect. Immun. 64, 4060–4066 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nielsen, H. L. et al. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. PLoS ONE 6, e23858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaakoush, N. O. et al. The secretome of Campylobacter concisus. FEBS J. 277, 1606–1617 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Baker, N. T. & Graham, L. L. Campylobacter fetus translocation across Caco-2 cell monolayers. Microb. Pathog. 49, 260–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Watson, R. O. & Galan, J. E. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog. 4, e14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ge, Z., Schauer, D. B. & Fox, J. G. In vivo virulence properties of bacterial cytolethal-distending toxin. Cell. Microbiol. 10, 1599–1607 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Asakura, M. et al. Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunol. Med. Microbiol. 52, 260–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Nakanishi, S., Tazumi, A., Moore, J. E., Millar, B. C. & Matsuda, M. Molecular and comparative analyses of the full-length cytolethal distending toxin (cdt) gene operon and its adjacent genetic loci from urease-positive thermophilic Campylobacter (UPTC) organisms. Br. J. Biomed. Sci. 67, 208–215 (2010).

    CAS  PubMed  Google Scholar 

  89. Pickett, C. L. et al. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect. Immun. 64, 2070–2078 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Asakura, M. et al. Comparative analysis of cytolethal distending toxin (cdt) genes among Campylobacter jejuni, C. coli and C. fetus strains. Microb. Pathog. 42, 174–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Johnson, W. M. & Lior, H. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb. Pathog. 4, 115–126 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Bang, D. D. et al. Prevalence of cytolethal distending toxin (cdt) genes and CDT production in Campylobacter spp. isolated from Danish broilers. J. Med. Microbiol. 50, 1087–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Ohya, T., Tominaga, K. & Nakazawa, M. Production of cytolethal distending toxin (CLDT) by Campylobacter fetus subsp. fetus isolated from calves. J. Vet. Med. Sci. 55, 507–509 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Mooney, A. et al. Campylobacter upsaliensis exerts a cytolethal distending toxin effect on HeLa cells and T lymphocytes. Microbiology 147, 735–743 (2001).

    Article  CAS  Google Scholar 

  95. Gillespie, M. J., Smutko, J., Haraszthy, G. G. & Zambon, J. J. Isolation and partial characterization of the Campylobacter rectus cytotoxin. Microb. Pathog. 14, 203–215 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Arimi, S. M., Park, R. W. & Fricker, C. R. Study of haemolytic activity of some Campylobacter spp. on blood agar plates. J. Appl. Bacteriol. 69, 384–389 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P. & Smith, S. C. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates of Campylobacter concisus. J. Med. Microbiol. 53, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Istivan, T. S., Smith, S. C., Fry, B. N. & Coloe, P. J. Characterization of Campylobacter concisus hemolysins. FEMS Immunol. Med. Microbiol. 54, 224–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, W. M. & Lior, H. Cytotoxic and cytotonic factors produced by Campylobacter jejuni, Campylobacter coli, and Campylobacter laridis. J. Clin. Microbiol. 24, 275–281 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fasano, A. et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J. Clin. Invest. 96, 710–720 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81–176. Infect. Immun. 70, 6242–6250 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moolhuijzen, P. M. et al. Genomic analysis of Campylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets. BMC Microbiol. 9, 86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Batchelor, R. A., Pearson, B. M., Friis, L. M., Guerry, P. & Wells, J. M. Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology 150, 3507–3517 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Jani, A. J. & Cotter, P. A. Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8, 2–6 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. US National Library of Medicine. The National Center for Biotechnology Information [online], (2011).

  108. Blaser, M. J. et al. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J. Infect. Dis. 155, 696–706 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. Blaser, M. J., Smith, P. F., Repine, J. E. & Joiner, K. A. Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J. Clin. Invest. 81, 1434–1444 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Okuda, K. et al. Role for the S-layer of Campylobacter rectus ATCC33238 in complement mediated killing and phagocytic killing by leukocytes from guinea pig and human peripheral blood. Oral Dis. 3, 113–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Goossens, H. et al. Characterization and description of “Campylobacter upsaliensis” isolated from human feces. J. Clin. Microbiol. 28, 1039–1046 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Blaser, M. J. & Pei, Z. Pathogenesis of Campylobacter fetus infections: critical role of high-molecular-weight S-layer proteins in virulence. J. Infect. Dis. 167, 372–377 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Tu, Z. C., Gaudreau, C. & Blaser, M. J. Mechanisms underlying Campylobacter fetus pathogenesis in humans: surface-layer protein variation in relapsing infections. J. Infect. Dis. 191, 2082–2089 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Haddock, G. et al. Campylobacter jejuni 81–176 forms distinct microcolonies on in vitro-infected human small intestinal tissue prior to biofilm formation. Microbiology 156, 3079–3084 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Gunther, N. W. 4th & Chen, C. Y. The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol. 26, 44–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Buswell, C. M. et al. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl. Environ. Microbiol. 64, 733–741 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Noiri, Y., Ozaki, K., Nakae, H., Matsuo, T. & Ebisu, S. An immunohistochemical study on the localization of Porphyromonas gingivalis, Campylobacter rectus and Actinomyces viscosus in human periodontal pockets. J. Periodontal Res. 32, 598–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Wyss, C. Sticky, a novel phenotype of Campylobacter rectus. Microb. Ecol. Health Dis. 8, 175–179 (1995).

    Article  Google Scholar 

  120. Salama, S. M., Tabor, H., Richter, M. & Taylor, D. E. Pulsed-field gel electrophoresis for epidemiologic studies of Campylobacter hyointestinalis isolates. J. Clin. Microbiol. 30, 1982–1984 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Moran, L., Scates, P. & Madden, R. H. Prevalence of Campylobacter spp. in raw retail poultry on sale in Northern Ireland. J. Food Prot. 72, 1830–1835 (2009).

    Article  PubMed  Google Scholar 

  122. Logue, C. M., Sherwood, J. S., Elijah, L. M., Olah, P. A. & Dockter, M. R. The incidence of Campylobacter spp. on processed turkey from processing plants in the midwestern United States. J. Appl. Microbiol. 95, 234–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Kapperud, G., Skjerve, E., Bean, N. H., Ostroff, S. M. & Lassen, J. Risk factors for sporadic Campylobacter infections: results of a case-control study in Southeastern Norway. J. Clin. Microbiol. 30, 3117–3121 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Neimann, J., Engberg, J., Molbak, K. & Wegener, H. C. A case-control study of risk factors for sporadic Campylobacter infections in Denmark. Epidemiol. Infect. 130, 353–366 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sekizuka, T. et al. Molecular cloning, nucleotide sequencing and characterization of the flagellin gene from isolates of urease-positive thermophilic Campylobacter. Res. Microbiol. 155, 185–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Inglis, G. D., McAllister, T. A., Larney, F. J. & Topp, E. Prolonged survival of Campylobacter species in bovine manure compost. Appl. Environ. Microbiol. 76, 1110–1119 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Lynch, O. A., Cagney, C., McDowell, D. A. & Duffy, G. Occurrence of fastidious Campylobacter spp. in fresh meat and poultry using an adapted cultural protocol. Int. J. Food Microbiol. 150, 171–177 (2011).

    Article  PubMed  Google Scholar 

  128. Bostan, K., Aydin, A. & Ang, M. K. Prevalence and antibiotic susceptibility of thermophilic Campylobacter species on beef, mutton, and chicken carcasses in Istanbul, Turkey. Microb. Drug Resist. 15, 143–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Ichiyama, S. et al. Campylobacter fetus subspecies fetus cellulitis associated with bacteremia in debilitated hosts. Clin. Infect. Dis. 27, 252–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Chaban, B., Ngeleka, M. & Hill, J. E. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol. 10, 73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Parsons, B. N. et al. Prevalence and shedding patterns of Campylobacter spp. in longitudinal studies of kennelled dogs. Vet. J. http://dx.doi.org/10.1016/j.tvjl.2010.10.006.

  132. Parsons, B. N. et al. Prevalence of Campylobacter spp. in a cross-sectional study of dogs attending veterinary practices in the UK and risk indicators associated with shedding. Vet. J. 184, 66–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Figura, N. Campylobacter spp isolated from dog faeces. Lancet 338, 1403 (1991).

    Article  CAS  PubMed  Google Scholar 

  134. Goossens, H. et al. Campylobacter upsaliensis enteritis associated with canine infections. Lancet 337, 1486–1487 (1991).

    Article  CAS  PubMed  Google Scholar 

  135. Gurgan, T. & Diker, K. S. Abortion associated with Campylobacter upsaliensis. J. Clin. Microbiol. 32, 3093–3094 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Minihan, D. et al. Campylobacter spp. in Irish feedlot cattle: a longitudinal study involving pre-harvest and harvest phases of the food chain. J. Vet. Med. B Infect. Dis. Vet. Public Health 51, 28–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Schweitzer, N. et al. Molecular characterization of Campylobacter lanienae strains isolated from food-producing animals. Foodborne Pathog Dis. 8, 615–621 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Kapperud, G. et al. Factors associated with increased and decreased risk of Campylobacter infection: a prospective case-control study in Norway. Am. J. Epidemiol. 158, 234–242 (2003).

    Article  PubMed  Google Scholar 

  139. Gallay, A. et al. Risk factors for acquiring sporadic Campylobacter infection in France: results from a national case-control study. J. Infect. Dis. 197, 1477–1484 (2008).

    Article  PubMed  Google Scholar 

  140. Kaboré, H et al. Association between potential zoonotic enteric infections in children and environmental risk factors in Quebec, 1999–2006. Zoonoses Public Health 57, e195–e205 (2010).

    Article  PubMed  Google Scholar 

  141. Gorkiewicz, G., Feierl, G., Zechner, R. & Zechner, E. L. Transmission of Campylobacter hyointestinalis from a pig to a human. J. Clin. Microbiol. 40, 2601–2605 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Acke, E. et al. A comparison of different culture methods for the recovery of Campylobacter species from pets. Zoonoses Public Health 56, 490–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Bolton, F. J., Hutchinson, D. N. & Parker, G. Reassessment of selective agars and filtration techniques for isolation of Campylobacter species from faeces. Eur. J. Clin. Microbiol. Infect. Dis. 7, 155–160 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Debruyne, L., On, S. L., De Brandt, E. & Vandamme, P. Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int. J. Syst. Evol. Microbiol. 59, 1126–1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Kaur, T. et al. Campylobacter troglodytis - sp. nov., isolated from feces of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) in Tanzania. Appl. Environ. Microbiol. 77, 2366–2373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zanoni, R. G., Debruyne, L., Rossi, M., Revez, J. & Vandamme, P. Campylobacter cuniculorum sp. nov., from rabbits. Int. J. Syst. Evol. Microbiol. 59, 1666–1671 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Rossi, M. et al. Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry. Int. J. Syst. Evol. Microbiol. 59, 2364–2369 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Debruyne, L. et al. Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region. Int. J. Syst. Evol. Microbiol. 60, 815–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Debruyne, L. et al. Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus). Int. J. Syst. Evol. Microbiol. 60, 1870–1875 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Beisele, M. et al. Helicobacter marmotae, novel Helicobacter sp. and Campylobacter sp. isolated from livers and intestines of Prairie dogs. J. Med. Microbiol. 60, 1366–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Goldman, C. G. et al. Novel gastric helicobacters and oral campylobacters are present in captive and wild cetaceans. Vet. Microbiol. 152, 138–145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Blaser, M. J. et al. Extraintestinal Campylobacter jejuni and Campylobacter coli infections: host factors and strain characteristics. J. Infect. Dis. 153, 552–559 (1986).

    Article  CAS  PubMed  Google Scholar 

  153. Petersen, R. F., Harrington, C. S., Kortegaard, H. E. & On, S. L. A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J. Appl. Microbiol. 103, 2601–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Kumar, P. S., Griffen, A. L., Moeschberger, M. L. & Leys, E. J. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J. Clin. Microbiol. 43, 3944–55 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tu, Z. C. et al. Campylobacter fetus of reptile origin as a human pathogen. J. Clin. Microbiol. 42, 4405–4407 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Simor, A. E., Karmali, M. A., Jadavji, T. & Roscoe, M. Abortion and perinatal sepsis associated with Campylobacter infection. Rev. Infect. Dis. 8, 397–402 (1986).

    Article  CAS  PubMed  Google Scholar 

  157. Dronda, F., Garcia-Arata, I., Navas, E. & de Rafael, L. Meningitis in adults due to Campylobacter fetus subspecies fetus. Clin. Infect. Dis. 27, 906–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Willis, M. D. & Austin, W. J. Human Vibrio fetus infection. Report of two dissimilar cases. Am. J. Dis. Child. 112, 459–462 (1966).

    Article  CAS  PubMed  Google Scholar 

  159. Sauerwein, R. W., Bisseling, J. & Horrevorts, A. M. Septic abortion associated with Campylobacter fetus subspecies fetus infection: case report and review of the literature. Infection 21, 331–333 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Linscott, A. J. et al. Fatal septicemia due to Clostridium hathewayi and Campylobacter hominis. Anaerobe 11, 97–98 (2005).

    Article  PubMed  Google Scholar 

  161. Lastovica, A. J. in Campylobacters, Helicobacters and related organisms (eds Newell, D. G. et al.) 475–479 (Plenum Press, New York, 1996).

    Book  Google Scholar 

  162. Logan, J. M., Burnens, A., Linton, D., Lawson, A. J. & Stanley, J. Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int. J. Syst. Evol. Microbiol. 50, 865–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Morris, C. N., Scully, B. & Garvey, G. J. Campylobacter lari associated with permanent pacemaker infection and bacteremia. Clin. Infect. Dis. 27, 220–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. On, S. L., Ridgwell, F., Cryan, B. & Azadian, B. S. Isolation of Campylobacter sputorum biovar sputorum from an axillary abscess. J. Infect. 24, 175–179 (1992).

    Article  CAS  PubMed  Google Scholar 

  165. Tee, W., Luppino, M. & Rambaldo, S. Bacteremia due to Campylobacter sputorum Biovar sputorum. Clin. Infect. Dis. 27, 1544–1545 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. On, S. L., Atabay, H. I., Corry, J. E., Harrington, C. S. & Vandamme, P. Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int. J. Syst. Bacteriol. 48, 195–206 (1998).

    Article  PubMed  Google Scholar 

  167. Patton, C. M. et al. Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positive Campylobacter species) in the United States. J. Clin. Microbiol. 27, 66–73 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Gaudreau, C. & Lamothe, F. Campylobacter upsaliensis isolated from a breast abscess. J. Clin. Microbiol. 30, 1354–1356 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Man, S. M., Kaakoush, N. O., Octavia, S. & Mitchell, H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Appl. Environ. Microbiol. 76, 3071–3081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Duerden, B., Bennet, K. W. & Faulkner, J. Isolation of Bacteroides ureolyticus (B. corrodens) from clinical infections. J. Clin. Pathol. 35, 309–312 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W. Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int. J. Syst. Evol. Microbiol. 57, 2636–2644 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Enokimoto, M., Kubo, M., Bozono, Y., Mieno, Y. & Misawa, N. Enumeration and identification of Campylobacter species in the liver and bile of slaughtered cattle. Int. J. Food Microbiol. 118, 259–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Inglis, G. D. et al. Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. Appl. Environ. Microbiol. 72, 4088–4095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Muller, W., Bohland, C. & Methner, U. Detection and genotypic differentiation of Campylobacter jejuni and Campylobacter coli strains from laying hens by multiplex PCR and fla-typing. Res. Vet. Sci. http://dx.doi/org/10.1016/j.rvsc.2011.01.028.

  175. Wadl, M. et al. Easy-to-use rapid test for direct detection of Campylobacter spp. in chicken feces. J. Food Prot. 72, 2483–2488 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Nonga, H. E. & Muhairwa, A. P. Prevalence and antibiotic susceptibility of thermophilic Campylobacter isolates from free range domestic duck (Cairina moschata) in Morogoro municipality, Tanzania. Trop. Anim. Health Prod. 42, 165–172 (2010).

    Article  PubMed  Google Scholar 

  177. Hutchinson, D. N. et al. Campylobacter enteritis associated with consumption of raw goat's milk. Lancet 1, 1037–1038 (1985).

    Article  CAS  PubMed  Google Scholar 

  178. Sestak, K. et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect. Immun. 71, 4079–4086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ertas, H. B., Ozbey, G., Kilic, A. & Muz, A. Isolation of Campylobacter jejuni and Campylobacter coli from the gall bladder samples of sheep and identification by polymerase chain reaction. J. Vet. Med. B Infect. Dis. Vet. Public Health 50, 294–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Oporto, B. & Hurtado, A. Emerging thermotolerant Campylobacter species in healthy ruminants and swine. Foodborne Pathog. Dis. 8, 807–813 (2011).

    Article  PubMed  Google Scholar 

  181. Campero, C. M. et al. Immunohistochemical identification of Campylobacter fetus in natural cases of bovine and ovine abortions. J. Vet. Med. B Infect. Dis. Vet. Public Health 52, 138–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Schulze, F., Bagon, A., Muller, W. & Hotzel, H. Identification of Campylobacter fetus subspecies by phenotypic differentiation and PCR. J. Clin. Microbiol. 44, 2019–2024 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Willoughby, K. et al. A multiplex polymerase chain reaction to detect and differentiate Campylobacter fetus subspecies fetus and Campylobacter fetus -species venerealis: use on UK isolates of, C. fetus and other Campylobacter spp. J. Appl. Microbiol. 99, 758–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Harvey, S. & Greenwood, J. R. Isolation of Campylobacter fetus from a pet turtle. J. Clin. Microbiol. 21, 260–261 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Gebhart, C. J., Edmonds, P., Ward, G. E., Kurtz, H. J. & Brenner, D. J. “Campylobacter hyointestinalis” sp. nov.: a new species of Campylobacter found in the intestines of pigs and other animals. J. Clin. Microbiol. 21, 715–720 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Hill, B. D., Thomas, R. J. & Mackenzie, A. R. Campylobacter hyointestinalis-associated enteritis in Moluccan rusa deer (Cervus timorensis subsp. Moluccensis). J. Comp. Pathol. 97, 687–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  187. Hanninen, M. L. et al. Campylobacter hyointestinalis subsp. hyointestinalis, a common Campylobacter species in reindeer. J. Appl. Microbiol. 92, 717–723 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Stoddard, R. A. et al. Campylobacter insulaenigrae isolates from northern elephant seals (Mirounga angustirostris) in California. Appl. Environ. Microbiol. 73, 1729–1735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Foster, G. et al. Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int. J. Syst. Evol. Microbiol. 54, 2369–2373 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. González, M., Villanueva, M. P., Debruyne, L., Vandamme, P. & Fernández, H. Campylobacter insulaenigrae: first isolation report from South American sea lion (Otaria flavescens [Shaw, 1800]). Braz. J. Microbiol. 42, 261–265 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Stoddard, R. A. Salmonella and Campylobacter spp. in Northern Elephant Seals, California. Emerg. Infect. Dis. 11, 1967–1969 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Benjamin, J., Leaper, S., Owen, R. J. & Skirrow, M. B. Description of Campylobacter laridis, a new species comprising the nalidixic acid resistant thermophilic Campylobacter (NARTC) group. Curr. Microbiol. 8, 231–238 (1983).

    Article  Google Scholar 

  193. Molina-Lopez, R. A. et al. Wild raptors as carriers of antimicrobial-resistant Salmonella and Campylobacter strains. Vet. Rec. 168, 565 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Shigematsu, M. et al. Genetic heterogeneity of the cytolethal distending toxin B (cdtB) gene locus among isolates of Campylobacter lari. Br. J. Biomed. Sci. 63, 179–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Fox, J. G. et al. “Campylobacter upsaliensis” isolated from cats as identified by DNA relatedness and biochemical features. J. Clin. Microbiol. 27, 2376–2378 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Hariharan, H. et al. Isolation of Bacteroides ureolyticus from the equine endometrium. J. Vet. Diagn. Invest. 6, 127–130 (1994).

    Article  CAS  PubMed  Google Scholar 

  197. Selander, B., Rydberg, J., Lenner, C. & Hagerstrand, I. Unusual infectious complication in a pregnant woman. Spontaneous abortion caused by Campylobacter coli. Lakartidningen 90, 4356–4357 (1993).

    CAS  PubMed  Google Scholar 

  198. Macfarlane, S., Furrie, E., Macfarlane, G. T. & Dillon, J. F. Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus. Clin. Infect. Dis. 45, 29–38 (2007).

    Article  PubMed  Google Scholar 

  199. Cox, C. J., Kempsell, K. E. & Gaston, J. S. Investigation of infectious agents associated with arthritis by reverse transcription PCR of bacterial rRNA. Arthritis Res. Ther. 5, R1–R8 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Farrugia, D. C., Eykyn, S. J. & Smyth, E. G. Campylobacter fetus endocarditis: two case reports and review. Clin. Infect. Dis. 18, 443–446 (1994).

    Article  CAS  PubMed  Google Scholar 

  201. Steinkraus, G. E. & Wright, B. D. Septic abortion with intact fetal membranes caused by Campylobacter fetus subsp. fetus. J. Clin. Microbiol. 32, 1608–1609 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yamashita, K., Aoki, Y. & Hiroshima, K. Pyogenic vertebral osteomyelitis caused by Campylobacter fetus subspecies fetus. A case report. Spine (Phila Pa 1976) 24, 582–584 (1999).

    Article  CAS  Google Scholar 

  203. Johnson, C. C. et al. Bacteroides gracilis, an important anaerobic bacterial pathogen. J. Clin. Microbiol. 22, 799–802 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 137, 495–501 (2009).

    Article  PubMed  Google Scholar 

  205. Ruigomez, A., Garcia Rodriguez, L. A. & Panes, J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities. Clin. Gastroenterol. Hepatol. 5, 465–469 (2007).

    Article  PubMed  Google Scholar 

  206. Verdu, E. F., Mauro, M., Bourgeois, J. & Armstrong, D. Clinical onset of celiac disease after an episode of Campylobacter jejuni enteritis. Can. J. Gastroenterol. 21, 453–455 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Poropatich, K. O., Walker, C. L. & Black, R. E. Quantifying the association between Campylobacter infection and Guillain-Barre syndrome: a systematic review. J. Health Popul. Nutr. 28, 545–552 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ternhag, A., Torner, A., Svensson, A., Ekdahl, K. & Giesecke, J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg. Infect. Dis. 14, 143–148 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Roberts, T., Shah, A., Graham, J. G. & McQueen, I. N. The Miller Fischer syndrome following Campylobacter enteritis: a report of two cases. J. Neurol. Neurosurg. Psychiatry 50, 1557–1558 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chamovitz, B. N. et al. Campylobacter jejuni-associated hemolytic-uremic syndrome in a mother and daughter. Pediatrics 71, 253–256 (1983).

    CAS  PubMed  Google Scholar 

  211. Lam, J. Y. et al. Three cases of severe invasive infections caused by Campylobacter rectus and first report of fatal C. rectus infection. J. Clin. Microbiol. 49, 1687–1691 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Aabenhus, R., Stenram, U., Andersen, L. P., Permin, H. & Ljungh, A. First attempt to produce experimental Campylobacter concisus infection in mice. World J. Gastroenterol. 14, 6954–6959 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Arce, R. M. et al. Increased TLR4 expression in murine placentas after oral infection with periodontal pathogens. Placenta 30, 156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  214. Young, V. B., Dangler, C. A., Fox, J. G. & Schauer, D. B. Chronic atrophic gastritis in SCID mice experimentally infected with Campylobacter fetus. Infect. Immun. 68, 2110–2118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to my colleagues who provided helpful suggestions for this Review article: R. O. Gilbert (Cornell University, USA), H. M. Mitchell and N. O. Kaakoush (The University of New South Wales, Australia), and P. Tourlomousis and D. Raghunathan (University of Cambridge, UK). I would also like to thank the Cambridge Commonwealth Trust and the Cambridge Australia Trust for their kind support. I apologize to my colleagues whose work was not cited in the Review owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, S. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8, 669–685 (2011). https://doi.org/10.1038/nrgastro.2011.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.191

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology