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Abstract
A central goal of systems biology is to elucidate the structural and functional architecture of the
cell. To this end, large and complex networks of molecular interactions are being rapidly
generated for humans and model organisms. A recent focus of bioinformatics research has been to
integrate these networks with each other and with diverse molecular profiles to identify sets of
molecules and interactions that participate in a common biological function— i.e. ‘modules’.
Here, we classify such integrative approaches into four broad categories, describe their
bioinformatic principles and review their applications.

Introduction
Cellular organization is thought to be fundamentally modular1,2. At the molecular level,
modules have been variously described as groups of genes, gene products, or metabolites
that are functionally coordinated, physically interacting and/or co-regulated1-7. For example,
a pioneering perspective1 on modular cell biology described a module as a distinct group of
interacting molecules driving a common biological process— for example., the ribosome is
a module that synthesizes proteins. Modules, in essence, are functional building blocks of
the cell1-7.

In an effort to develop a complete map of biological modules underlying cellular
architecture and function, large networks of inter-molecular interactions are being measured
systematically for humans and many model species8-16. Such networks include physical
associations underlying protein-protein, protein-DNA or metabolic pathways, as well as
functional associations, including epistatic and synthetic lethal relationships between genes,
correlated expression between genes, or correlated biochemical activities among other types
of molecules (Supplementary Table 1). Numerous approaches have been advanced to mine
such networks for identifying biological modules, including methods for clustering
interactions and those based on topological features of the network such as degree and
betweenness centrality (as reviewed5-7; see glossary). These approaches are based on the
premise that modular structures such as protein complexes, signaling cascades, or
transcriptional regulatory circuits display characteristic patterns of interaction5-7.

Module discovery in biological networks has been extremely powerful for elucidating
molecular machineries underlying physiological and disease phenotypes5-7,17-19.
Nonetheless, many challenges confound the interpretation of biological networks and their
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embedded modular structures. A first challenge relates to the sheer complexity of the
problem at hand-it is not yet completely clear how to transform data for thousands of
molecular interactions into functionally coherent models of cellular machinery. Second,
technological biases in high-throughput approaches20-22 can compromise signal accuracy.
For example, experimental artifacts, variability in coverage across datasets, sampling bias
towards well-studied processes, limitations in screening power and inherent sensitivities in
various assays can yield false positives and false negatives in interaction data23-26. Third,
individual high-throughput experiments measuring a subset or type of interactions (e.g.,
protein-protein or protein-DNA), simply cannot expose the full interaction landscape of a
cell. Finally, as molecular networks are commonly assembled in single, static experimental
conditions, they grossly overlook the inherently dynamic nature of molecular interactions,
which can be massively rewired during physiological or environmental shifts10,27,28. Hence,
current network models reveal only partial and static snapshots of the cell.

A key strategy to address these challenges is data integration. In recent years, a rich
collection of integrative methods has emerged for identification of network modules of high
quality, broad coverage, and context-specific dynamics. Here, we review these integrative
approaches, highlighting their logical underpinnings and biological applications. We classify
integrative module discovery methods into four broad categories: identification of ‘active
modules’ through integration of networks and molecular profiles, identification of
‘conserved modules’ across multiple species, identification of ‘differential modules’ across
different conditions, and identification of ‘composite modules’ through integration of
different interaction types. Together, these four categories encompass a wide spectrum of
network integration strategies and available data types. An illustrative poster29 titled
‘Integrative Systems Biology’ was previously published and is recommended as an
accompanying guide.

Identification of ‘active modules’
One of the most successful integrative approaches has been to overlay networks with
molecular profiles to identify ‘active modules’. Molecular profiles of transcriptomic,
genomic, proteomic, epigenomic and other cellular information are rapidly populating
public databases (Supplementary Table 1). As these profiles capture dynamic and process-
specific information correlated with cellular or disease states, they naturally complement
interaction data, which are primarily derived under a single experimental condition.
Computational integration of network and ‘omics’ profiles has thus become a popular
strategy for extracting context-dependent active modules, which mark regions of the
network showing striking changes in molecular activity (e.g., transcriptomic expression) or
phenotypic signatures (e.g., mutational abundance) associated with a given cellular
response4,30-38 (Figure 1; these regions have alternatively been described as network
hotspots39,40 or responsive subnetworks41-43).

A large number of computational techniques have been developed that automate large-scale
identification of active modules in an unbiased manner. Several of these methods have been
packaged as publicly-available application tools (Table 1). These methods generally fall into
three classes, as follows. Given the rapid emergence of integrative methodologies, some
effort has been made to compare their accuracy (precision), sensitivity (recall) or
computational efficiency within individual method classes44-46. However, unbiased
comparisons across different methods’ classes using uniform data metrics will need to be
undertaken comprehensively47.
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Significant-area-search methods
The first class of methods, themed SigArSearch (Significant-Area-Search)31,33,48 was
previously reviewed43. Many of these methods33,41,44,48-56 descend from an early
formulation, JActiveModules48, (also implemented as an application tool through the
network analysis/visualization platform, Cytoscape57; Table 1), which was the first to frame
the active modules search task as an optimization problem. SigArSearch methods invoke
three common procedural steps for module discovery (Figure 1). First, network nodes
(molecules), and/or edges (interactions) are annotated with scores quantifying molecular
activity, where activity is measured via molecular profiles such as gene expression levels-
the most common data choice in such applications. Next, a scoring function is formulated to
compute an aggregate score for each subnetwork, reflecting overall activity of member
nodes/interactions. Subsequently, a search strategy is devised to identify subnetworks with
high scores, which mark active modules.

Scoring and search of active modules present a range of computational considerations and
implementations43. Different scoring functions have assumed scores on network nodes48, or
edges41,58 or both59; or constrained scores by topology56 or signal content44; or prioritized
by high-scoring ‘seed’ nodes60, including using strategies for computational color coding of
‘seed’ paths51,55. Active module search has proven to be a computationally difficult
problem48. Hence, so-called heuristic solutions (e.g. based on greedy52,61-63, simulated
annealing48 or genetic64 algorithms; Box 1) that optimize computing time by recovering
high-scoring subnetworks without necessarily seeking the maximally-scoring (globally
optimal) subnetworks have been widely applied. Nevertheless, exact methods that guarantee
the detection of maximally scoring subnetworks, albeit at higher computational expense,
have been programmed to run in fast time-scales44,45,65,66.

Diffusion-flow and network-propagation methods
The second group of methods for active module identification emulates the related concepts
of diffusion flow and network propagation36,37,45,67-72. Analogous to fluid or heat flow
through a system of pipes, network ‘flow’ is ‘diffused’ from nodes implicated in molecular
profiles, such as differentially-expressed or known disease genes. The flow reaches
outwards along network edges to subsequently identify active modules as subnetworks
accumulating maximum flow.

Recently, a series of bioinformatics tools including HotNet67, PARADIGM70, MEMo73 and
Multi-Dendrix37 (Table 1) have incorporated propagation-based methods for network
mapping of cancer mutations. These methods have proven particularly valuable for
discovering mutational hotspots in human cancers67,70-74, and additionally discriminating
‘driver’ oncogenic pathways from ‘passenger’ mutations37 For example, in one
implementation of the application tool HotNet67, significantly mutated pathways in
glioblastomas and adenocarcinomas were identified through network-propagation of
associated cancer mutation profiles. Here, diffusion flow was run on a human protein-
protein network seeded from known cancer genes to map their global neighborhood of
interaction. This operation translates to computing the net ‘influence’ of cancer genes on all
remaining genes in the network (Box 1). The resulting ‘influence network’ (representing the
full set of network connectivities surrounding cancer seed genes) was subsequently
partitioned into weighted subnetworks, thresholded either by number of patients in which
they were mutated, or by average number of somatic mutations associated per interacting
gene pair in a given subnetwork, as informed by tumor sequence profiles. The highest
weighted sub-networks marked significantly mutated cancer pathways. Such strategies have
become increasingly popular and data-rich due to easy availability of genome sequence and
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other ‘omics profiles in public repositories such as The Cancer Genome Atlas75 (TCGA;
http://cancergenome.nih.gov/).

Additionally, a number of propagation-based tools such as RegMod45, ResponseNet76 and
NetWalker77 (Table 1) permit functional network analysis informed by transcriptomic data.
For example, a network-optimization framework dubbed ResponseNet traces information
flow from upstream response regulators through signaling and regulatory pathways
embedded in integrated protein networks for providing pathway-based explanations for
downstream transcriptional changes captured in gene expression profiles.

Network propagation methods are particularly suitable for annotation, ranking, or clustering
of genes (such as disease genes) based on affiliations formed by network connectivity. In
these situations, the precise architecture of a network may hold less concern. Rather, the
primary motivation behind network propagation is to take advantage of the general
functional proximity of genes to one another. Hence the phrase ‘network smoothing’ has
come to describe such strategies.

Clustering-based methods
The third group of methods employs simultaneous clustering of network interactions and the
conditions under which these interactions are active, in a concept termed ‘bi-clustering’46.
Clustering based on network connectivity alone has proven instrumental in defining basic
principles of modular network organization7,78,79. Bi-clustering algorithms further expand
these capabilities by evaluating both network connectivity as well as the correlation of
performance across multiple biological datasets36,46,80,81. A quantitative assessment of bi-
clustering methods was recently presented46. Many (bi)clustering methods have been
adapted as application tools (Table 1) such as SANDY82, SAMBA83 and cMonkey69 (Box
1), that permit multiplexed data analysis by interpreting global network topology and
statistics in contexts of transcriptional regulatory information, differential expression
profiles across multiple conditions and/or other biomedical evidences (phenotypic,
sequence-based, literature, and/or clinical information).

Modules derived through such a broad spectrum of data, covering multiple levels of
biological regulation, are providing increasingly comprehensive interpretation of biological
systems. For example, methods have also been developed for identifying active modules
within metabolic networks, in which omics or regulatory data are used to constrain the
allowable metabolic fluxes through the reactions in the network. High-flux reactions (edges)
are clustered together and reported as active modules. We refer the reader to recent
reviews84,85 on integrative methods for modeling of metabolic networks through omics-
based constraints. A version of the application tool, COBRA (constraint-based
reconstruction and analysis; Table 1) permits omics-constrained analysis of genome-scale
metabolic networks to predict feasible metabolic phenotypes and relevant modules under a
given set of conditions86.

Applications of active modules
Active modules have been identified using a wide array of interaction types (e.g. protein-
protein, regulatory and metabolic; Supplementary Table 1A) and ‘omics’ profiles (e.g.,
gene-expression, mutation status, RNAi phenotypes and other cellular state data;
Supplementary Table 1b), any combination of which may be applied within a single
module-finding application.

A great many applications have related to interpretation of omics profiles in context of
protein-protein interaction networks34,39,48,50,62,67,70,72-74,81,87. For example, a recent
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study72 established a comprehensive network view of molecular pathways altered in clear
cell renal cell carcinoma (ccCRC) by analyzing a diverse cohort of TCGA-derived omics
data including gene-expression, genome mutation, and methylation profiles in conjunction
with human protein-protein interactions. The methods HotNet and Paradigm were used to
identify cancer-relevant active modules (Figure 1c), highlighting PI3K pathways and SWI/
SNF chromatin remodelling complexes. Moreover, aberrant remodeling of cellular
metabolism was found to recurrently affect tumor stage and severity. Similarly, employing
the application program ResponseNet, yeast networks of protein-protein, metabolic and
protein-DNA interactions were analysed simultaneously with mRNA-profiling data to
discover pathways responding to alpha-synuclein toxicity88.

Another study applied the JActiveModule method to detect protein-protein pathways
showing dysregulated expression in human breast cancer62. Compared with individual
cancer gene markers, these expression-based modules showed greater accuracy in
distinguishing metastatic from non-metastatic breast cancers, demonstrating the superior
power of module-based biomarkers for disease prognosis. Alternatively, co-clustering of
RNAi data with protein-protein networks identified HCV-responsive modules in humans,
establishing the role of human ESCRT-III complex as an infection-permissive host factor81.
Other discoveries of omics-derived modules using protein interaction knowledge have
spanned a variety of model organisms, including metabolism in yeast48, drug response in
Mycobacterium tuberculosis50, aging in Drosophila89, aging56 and embyogeneisis in C.
elegans34, and cellular responses to inflammation87, HIV infection61, or TNF-mediated
stress90 in humans.

Another prominent group of applications relates to integration of omics profiles with
protein-DNA interaction networks for identification of active regulatory pathways4,82,91. For
example, co-clustering of protein-DNA interactions and multi-condition gene-expression
profiles in yeast demonstrated widespread dynamic remodeling of transcription networks in
response to diverse environmental stimuli82. It further showed that while a few
transcriptional complexes act as constant “hubs” of transcription (see glossary), most appear
transiently under particular conditions. In another study, differentially expressed arsenic
responsive pathways were extracted through overlay of transcriptional profiles on yeast
protein-DNA networks using the jActiveModule platform91. It was found that transcriptional
data recognized important transcriptional complexes in regulatory networks but not in
metabolic networks, while phenotypic profiles (of arsenic sensitivity) mapped more
cohesively onto metabolic networks.

Active module finding has also been applied to metabolic networks50,91-93. Constrain-based
methods for analyzing metabolic networks, including the widely exploited flux balance
analysis (FBA) method, predict steady state distributions of metabolic fluxes based on
various physio-chemical constrains such as rates of cellular growth and bioenergetics94. A
recent variation on these methods adopts an integrative framework, whereby metabolic flux
predictions are guided by omics or regulatory information (as reviewed84,85). For example, a
genome-scale reconstruction of a human metabolic network (curated from literature
evidences) was constrained using quantitative measures of gene- and protein- expression to
predict tissue-specific metabolic uptake and release92. The study revealed a central role for
post-transcriptional regulation in directing tissue-specific metabolic behaviors and
associated metabolic diseases.

Discovery of active modules has paved the way for exciting diagnostic and therapeutic
interventions. For example, active modules showing characteristic patterns of gene
expression correlated with specific disease phenotypes can yield valuable biomarkers for
disease classification62,95,96. Module-based biomarkers achieve greater predictive power
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and reproducibility over single gene markers, as demonstrated for the classification of
numerous human disorders including Alzheimer’s97, diabetes36,98-100 and several forms of
cancers including breast cancers45,55,62,99,101,102, ovarian cancer73,103,104,
glioblastomas67,70,73,74, and others39,72,95,105,106. Because active modules can reveal
pathway-centric insights reinforced by multiple lines of evidence, they naturally provide
mechanistic explanations for complex traits and multi-genic diseases like cancer. Moreover,
active modules can assist in discovery of drug-target pathways50,107 and predicting patient
outcomes, such as response to chemotherapy55.

Identification of ‘conserved modules’
Biological networks undergo significant rewiring through evolutionary time, concomitant
with gains, losses, or modifications in gene functions108-111. Therefore, network modules
showing conservation over large evolutionary distances are likely to reflect well preserved
‘core’ functions maintained by natural selection. Discovery of such ‘conserved modules’ can
address fundamental questions about biological regulation while predicting evolutionary
principles shaping network architectures. Some publicly available tools for finding
conserved modules are summarized in Table 1.

Conserved interactions
In one of the most fundamental approach to identifying conservation at the network level,
individual interactions have been observed to occur between orthologous gene-pairs in two
species, corresponding to conserved protein-protein (interologs)112 or conserved regulatory
(regulogs)113 interactions. In one interesting extension of this idea, a network of co-
expressed gene pairs in humans, flies, worms and yeasts was derived and, then a clustering
algorithm used to extract conserved modules underlying cell cycle regulation and other core
cellular processes3.

Beyond conservation of individual interactions, comparison of modules across species may
reveal high overall consistency in structure and function despite lack of one-to-one
correspondence at the level of individual molecules or interactions. Hence, a group of
approaches have been developed to align complex network structures, paralleling advances
in computational solutions for cross-species sequence comparison114. These network
alignment approaches can be organized as follows:

Pairwise network alignments
Computational methods for network alignment have greatly advanced evolutionary
comparisons of network modules. For example, local network alignment tools like
PathBlast115 and NetworkBlast116 permit parallel comparisons of simple pathways (also
known as linear paths) or subnetworks (also known as modules), respectively. These
methods employ a common heuristic workflow whereby a merged representation of two
networks, denoted the ‘network alignment graph’, is searched for conserved paths or
subnetworks based on a probabilistic log-likelihood model of interaction densities.

Parallel alignment of multiple networks
Network alignment has been progressively scaled for analysis of multiple (more than two)
networks. For instance, fast computation of conserved modules across as many as ten
species was achieved in one study117 by redefining the alignment graph in NetworkBlast and
treating multiple networks as separate layers linked via common orthology (see glossary).
Orthology, as in the above methods, is commonly defined based on sequence homology.
However, each gene/protein may potentially harbor multiple orthologs and paralogs due to
gene duplication events in any of the multiple species being compared. The resulting many-
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to-many correspondences between putative orthologs can introduce high computational
complexity in network alignment methods, which can scale exponentially with the addition
of each new species and corresponding network. To address this scalability issue when
aligning graphs from multiple species, global alignment methods such as those implemented
in a recent study118 and network alignment tools such as IsoRank119 and Graemlin120 allow
for functional orthologs based on similar neighborhood topologies across species (i.e., the
overall arrangement of interactions surrounding a gene or protein or molecule).

Network alignment incorporating evolutionary dynamics
An important question in network evolution pertains to how evolutionary dynamics of
genome modification shape network architecture over time121-123. Network alignment
methods for scoring module conservation such as MaWish124 and others are increasingly
incorporating evolutionary rates of gene deletion, insertion or/and duplication for accurate
representation of the network evolution model. One study125 additionally accounted for the
phylogenetic history of genes, through reconstruction of a conserved ancestral PPI network
(CAPPI) from multiple species and its subsequent projection on the individual networks to
identify conserved subnetworks across fly, worm and humans.

Applications of conserved modules
Conservation-based studies have provided fascinating insights into network evolution. For
example, the identification of conserved metabolic genes and reactions across Archea,
Bacteria and Eukaryotes, followed by species clustering and simulations in the presence and
absence of oxygen, evidenced that the emergence of all three domains of Life predated
widespread availability of atmospheric oxygen, and that adaptability to oxygen was coupled
with increased network-complexity, and concurrently, increased biological complexity126.

Additionally, comparative analyses of conserved modules can supplement sequence-
matching techniques for function prediction114,127-130, based on the premise that interaction
partners of orthologous genes or proteins are likely to be functionally conserved as well.
This was illustrated in the proof-of-principle application of NetworkBlast, where 4,645
previously uncharacterized protein functions were predicted based on their conserved
interaction neighborhoods inferred based on pairwise alignment of protein-protein networks
across yeast, worm, and fly116.

Evolutionary conservation can also support predictions of drug-action mechanisms: when a
given drug is shown to target elements of a module that is conserved across two
evolutionary distant model organisms, the probability that the same drug also targets the
corresponding conserved module in humans increases131. Furthermore, identification of
evolutionarily diverged modules in pathogenic species can uncover pathogen-specific drug
targets that are absent in humans132.

‘Differential’ network modules
Molecular interactions can change dramatically in response to cellular cues, developmental
stages, environmental stresses, pharmacological treatments and disease
states32,101,130,133,134. Yet the inherently dynamic wiring of molecular networks remains
under-explored at the systems level, as interaction data are typically measured under single
conditions (e.g., standard laboratory growth media). Therefore, a number of so-called
‘differential’ network analyses (Figure 2) have adopted an experimental approach whereby
biological networks are measured and compared across conditions to identify interactions
and modules that are differentially present, absent or modified.
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Principles of differential network analyses
Analogous to ‘differential’ expression analyses, differential network analysis involves pair-
wise subtraction of interactions mapped in different experimental conditions130. The
subtractive process filters out ubiquitous interactions (so-called ‘housekeeping’
interactions130) that are redundant to all static conditions of interest. By selectively
extracting interactions relevant to the studied condition or phenotype, this reduces the
typical complexity of static networks. Most notably, differential networks tap interaction
spaces that are inaccessible to static networks, as individual interactions that may be too
weak (in magnitude of interaction strength) to capture in either static condition can be solely
identified based on significance of their differential measure27,130. Such differential
interactions once identified, may be further organized into modules using a number of
hierarchical or graph clustering methods47,135 or various Cytoscape57-based network
analysis tools136,137.

Applications
Physical networks assembled from quantitative protein-DNA and protein-protein binding
data under different conditions were some of the first to be analyzed in a differential mode.
For example, utilizing standard ChIP-based assays for protein-DNA interactions in vivo
(Supplementary Table 1), alterations in Transcription Factor-promoter binding following
amino acid starvation10 or chemical induction of DNA-damage138 were mapped in yeast,
providing insights into dynamic regulation of stress response pathways. Similar comparisons
of protein–protein interactions following epidermal growth factor (EGF) treatment in yeast
have shed light on EGF-dependent signaling139. A recent study140 exploring tissue-specific
effects on network wiring demonstrated a profound role of tissue-regulated alternate splicing
on dynamic remodeling of protein-protein networks. Using a luminescence-based
mammalian interactome mapping approach (LUMIER) for measuring physical binding
between experimentally chosen ‘bait’ (seed) and ‘prey’ (target) proteins, the authors mapped
protein-protein interactions between normally functioning ‘prey’ proteins and several
neurally-regulated ‘bait proteins’ that were genetically engineered to include or exclude
specific exons with the purpose of exploring exon-dependent effects on network wiring in
human cells. The study found that almost a third of neurally-regulated exons that were tested
significantly modulated protein-protein interactions, and that overall, tissue-dependent exons
participated in more protein-protein interactions than other proteins.

Differential analysis has also been performed across functional networks (i.e., as opposed to
physical networks, see Supplementary Table 1). For instance, we applied an approach
termed differential epistasis mapping (dE-MAP) to compare genetic networks induced by
different types of DNA damaging agents27,141. In another example, gene co-expression
networks from transcriptomic profiles of normal or prostate cancer samples were compared
to identify subnetworks induced in prostate cancer142. Differential, but not static networks,
in this study successfully recognized known prostate cancer-specific interactions for RAD50
and TRF2.

Similarly, metabolic networks assembled from correlated activities of liver metabolites were
differentially compared between normal and diabetic conditions to identify functional
regulators of diabetic dyslipidemias in humans143. It is likely that continued advances in
differential network mapping and analysis will shed light on tissue-specific, spatio-temporal
and dosage-dependent rewiring of biological networks.
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Discovery of ‘composite functional’ modules
Rationale for composite modules

Different types of biological interactions provide distinct, yet complementary, insights into
cellular structure and function. For instance, protein-protein, regulatory and metabolic
networks each reflect a different aspect of the physical architecture of a cell (Supplementary
Table 1). Moreover, ‘genetic’ interactions, which quantify epistatic effects of one gene on
the phenotype expressed by another, reveal functional relationships between gene pairs. A
key opportunity lies in reconciling these complementary network views of the cell into
cohesive models. Powerful integrative approaches aimed at identifying composite functional
modules composed of multiple types of biological interactions are providing considerable
advances in this direction.

Modes and applications
One class of approaches maps ‘composite modules’ that are jointly supported by physical
and genetic interactions144 (Figure 3). A common theme in these approaches13,129,145-147,
implemented in the application PanGia148 (Table 1), involves identification of overlapping
clusters of physical and genetic interactions as ‘composite modules’ implicating genes acting
‘within’ a pathway. Clusters of genetic interactions bridging two different composite
modules reflect inter-module dependencies running ‘between’ synergistic, compensatory or
redundant pathways145. Integrative analysis of composite physical-genetic modules can
reveal physical mechanisms underlying mutational phenotypes associated with genetic
screens, or conversely, predict genetic dependencies between protein complexes mapped in
physical binding assays. Module maps elucidating global physical-genetic interrelations
have been assembled in a number of studies exploring Hsp90 signaling149, chromosomal
biology13,146, RNA processing150, secretory pathways151, DNA damage response27, or
global biological processes145,152.

Integrative strategies have similarly uncovered ‘composite modules’ in signaling and
regulatory networks, primarily through combined evaluation of protein-DNA (transcription
factor (TF)-target) and protein-protein interactions 11,59,153,154, or by additionally including
genetic interactions152. In early work along these lines, composite ‘motifs’ comprised of
regulatory and protein-protein interactions among 2, 3 or 4 proteins were mapped and
classified into distinct feed-forward loops, interacting transcriptional hubs and other logical
circuits153. Such simple ‘motifs’ were thought to combine with recurrent patterns to
organize higher-order network ‘themes’ or complex functional modules associated with
specific biological responses152. In other work along these lines154, yeast protein-protein
and protein-DNA interaction networks were combined to identify 72 co-regulated protein
complexes. Such coregulated complexes depict dense protein clusters (in protein-protein
networks) whose members are jointly regulated by a common set of transcription factors (in
corresponding protein-DNA networks). At the network level, these TF-protein co-complexes
were visualized along with their regulatory relationships to the other (non-transcriptional)
modules they regulate. Evolutionary comparison of these co-regulated complexes suggested
the possibility that protein complexes may evolve with slower dynamics than protein-DNA
transcriptional relationships. Related studies exploring co-regulated complexes in yeast have
revealed cross-pathway communication between hyperosmotic, heat shock and oxidative
stress response systems59, and elucidated signaling networks active during pheromone
response53.

Protein-DNA interactions have also been combined with metabolic networks to understand
the effects of transcriptional regulation on biochemical output84,85,91,155-157. For instance, a
method called PROM (probabilistic regulation of metabolism) was developed to facilitate
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automated and quantitative integration of regulatory interactions and other high-throughput
data for constraint-based modeling of metabolic networks157. The method was applied for
genome-scale analysis of an integrative metabolic-regulatory network model for
Mycobacterium tuberculosis, incorporating information from over 2,000 TF-gene promoter
interactions regulating 3,300 metabolic reactions, 1,300 expression profiles, and 1,905
deletion phenotypes from E. coli and M. tuberculosis. The method enabled powerful
prediction of microbial growth phenotypes under various environmental perturbations and
aided in identification of novel gene functions. Furthermore, the study isolated several
transcription factor hubs (see glossary) regulating multiple target proteins in the pathogen-
interactome as a strategy for uncovering promising anti-microbial drug-targets.

Combined application of integrative approaches
Given the above four integrative approaches, a very recent trend has been to chain together
more than one of these to create network analysis pipelines of increasing sophistication and
complexity. For example, network module-finding methods based on integration across
molecular profiles and network types (e.g., for finding active modules or composite
modules) have been extended across species for extracting co-functional modules that are
also conserved. A multi-species and scalable framework, neXus (Network-cross(X)-species-
Search)158, was developed for discovering conserved functional modules derived through
parallel expression profiling in multiple species (Figure 4). Specifically, a clustering based
approach was used to extract sub-networks from functional linkage networks (incorporating
a wide array of interaction and omics information) derived independently in mouse and
human. Sub-networks were seeded from differentially expressed orthologues, and
simultaneously expanded in both species. Using programmatic constrains to threshold
candidate sub-networks by network connectivity and molecular activity, conserved active
sub-networks were nominated, which showed significant differential activity in stem cells
relative to differential cells and shared similar patterns of gene expression across mouse and
human. An extended version of the cMonkey framework designed for simultaneous (over
sequential) data-integration across multiple species159 (Table 1), further expands the scope
of such analyses by allowing parallel evaluation of protein-protein interactions,
transcriptomic data, sequence profiles, metabolic and signaling pathway models and
comparative genomics from multiple species to infer conserved co-regulated modules.

Another recent study160 mapped global genetic networks in the fission yeast S. pombe and
compared them with integrated maps of existing genetic and protein-protein networks
(composite modules) in the divergent budding yeast S. cerevisiae, with the aim of
identifying conserved functional modules. The authors demonstrated a hierarchical model
for evolution of genetic interactions: interactions among genes whose products were in the
same protein complex showed the highest degree of conservation, those involved within the
same biological process showed lower but still significant conservation, whereas those
participating in different biological processes were poorly conserved. Conservation of cross-
pathway interactions between distinct biological processes was observed on a larger scale.
Together, these observations reveal functional and evolutionary design principles underlying
modular organization of cellular networks.

With continued progress in integrative bioinformatics pipelines and expansion in data
handling capabilities, potentially a very large combination of data types, conditions, species,
time points and cell states should be amenable to joint evaluation for in-depth network
analysis.
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Perspective
The past decade has witnessed explosive growth in data on biological networks9-14,16,161,162

albeit with inherent limitations24, and largely from a static perspective130. The integrative
approaches reviewed here substantially increase the scope, scale and depth of network
analyses, by permitting joint interpretation of ensembles of biomedical information. While
these strategies have greatly refined high-throughput data analysis by tackling several of its
prevalent challenges such as variability in accuracy, coverage and context-specificity, even
greater power for mining biological knowledge remains to be achieved by implementing a
combination of such approaches. Such combination strategies encompassing multiple
algorithms, data types, conditions and species contexts are likely to maximize performance,
relevance and scope of module-assisted network analysis. Along these lines, for example,
although it has not yet been attempted, it would be conceivable to analyze differential
networks (Approach 3) across multiple species (Approach 2) to detect conserved dynamic
modules and process-specific pathways. Another challenging direction would be to study the
evolution of composite modules, as it is becoming increasingly clear that different network
types exhibit specific evolutionary dynamics, with for example regulatory interactions
evolving faster than genetic, protein and metabolic networks 163.

Module-based biomarkers derived through integrative network analyses also provide
superior predictive performance in disease classification, especially when compared with
single-gene disease markers that have been routinely annotated through genome wide
association studies (GWAS)38,62,71,72,164,165. Future work on integrative network analyses
will provide greater clues into pathway structures and highlight network-level dynamics
underlying biological responses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We gratefully acknowledge NIH grants P41 GM103504 and P50 GM085764 in support of this work.

Biography
Dr. Trey Ideker is Professor and Chief of Genetics at the UCSD School of Medicine. He
received Bachelor’s and Master’s degrees from MIT in Computer Science and his Ph.D.
from University of Washington in Molecular Biology. Ideker is a pioneer in using genome-
scale measurements to construct network models of the cell. His recent research includes
mapping of networks governing the response to DNA damage and methods for network-
based diagnosis of disease. Among Ideker’s accolades are the 2009 ISCB Overton Prize and
features in the Scientist, Technology Review, New York Times, San Diego Union Tribune,
and Forbes.

Dr. Mitra is a postdoctoral scholar in the laboratory of Dr. Trey Ideker at UCSD, Dept. of
Medicine. Her research entails development and application of network-based approaches
for systematic elucidation of biological and disease regulation. Her primary focus lies in
delineating the network basis of cellular stress-response systems, particularly those relating
to autophagy and aging. This work involves high-throughput experimental and
computational pipelines for assembling large-scale maps of dynamic cellular networks. Dr.
Mitra received her PhD in Genetics from the Albert Einstein College of Medicine, NY in

Mitra et al. Page 11

Nat Rev Genet. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2007. Her graduate work explored chromosomal genetics and stem cell therapies for
application against human cancers.

Dr. Anne-Ruxandra Carvunis is a postdoctoral scholar at the University of California, San
Diego, where she conducts research in systems biology and evolutionary biology under the
supervision of Professor Trey Ideker. She received a Bachelor’s degree in Biology, a
Magistere title in Biology/Biochemistry, and a Master’s degree in Neuroscience from the
Universite Paris VI and the Ecole Normale Superieure de Paris. She also holds a Master’s
degree in Interdisciplinary Approaches to Life Sciences from the Universite Paris VII and
the Ecole Normale Superieure de Paris. She received a PhD in Bioinformatics in 2011 from
the University of Grenoble, France.

Mr. Sanath Kumar Ramesh received his Master’s degree in computer science from
University of California San Diego. His research work in the laboratory of Prof. Trey Ideker
focused on developing bioinformatics tools for functional analysis of biological networks
using heterogeneous data driven models. His current interests involve solving data-storage
and other computational challenges faced in high-throughput network analyses as well as in
creating network visualization platforms.

Glossary

Epistasis The phenomenon whereby one gene affects the phenotype (e.g.,
growth) of another gene

Synthetic
lethality

An extreme case of negative genetic epistasis in which mutation of
two genes in combination, but not individually, causes a lethal
phenotype

Network
topology

Overall arrangement of nodes and edges in a given network

Network
connectivity

Measure of network proximity between any two molecules (nodes),
defined by the number of interactions (edges) separating them

Degree Number of interactions (edges) that a molecule (node) has in a
network

Betweenness
centrality

A statistical intuition of how ‘central’ the status of a given molecule
(node) or interaction (edge) is within a network, which is inferred by
the fraction of shortest paths between all pairs of nodes that pass
through a particular node or edge. The distribution of node
betweenness centrality is thought to follow a power law

Hubs Molecules with highest number of interactions (degree) in a network

Metabolic Flux The flow of chemicals through any metabolic reaction (e.g., an
enzymatic reaction). Constrain-based methods (e.g., flux balance
analysis; FBA), optimize flux predictions in genome-scale metabolic
networks using various constrains, most recently, including omics-
information.

Orthology The evolutionary phenomenon whereby two genes with homologous
sequences, descending from a common ancestor, are separated by a
speciation event. Such genes are denoted as orthologues.
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Box 1: Common bioinformatics themes applied in integrative module-
finding approaches

Simulated Annealing (SA) A probabilistic heuristic that attempts global optimization of
a function in a large search space (analogous to a physical system) and aims to bring the
system from an arbitrary initial state to an optimized state using minimum energy. SA
was the first heuristic to be applied for hotspots searching. In one SA framework48, sub-
networks were expanded through iterative addition of active nodes (showing significant
molecular activity) until no further gain in sub-network score was possible. A node was
randomly selected per iteration Ti and its state toggled between active or inactive. The
toggle was retained if sub-network score increased as a result of the addition, or else,

accepted according to the probability function  where η reflects the score of
the highest-ranking component of a sub-network at a given iteration i.

Greedy methods Greedy algorithms create decisions that locally optimize an iterative
step. For example, in one greedy-based scheme52, sub-networks were iteratively
expanded from high-degree nodes until (i) aggregate sub-network score fell below a
predefined threshold, or (ii) sub-network size was saturated. Alternately, nodes only
within a fixed radius of the seed node were aggregated62. In a greedy variant of SA, the
number of negative scoring nodes admitted per iteration (inactive) was limited61.

Genetic Algorithms (GA) GA mimic natural selection among members of a population
to iteratively compute various combinations of solutions, selecting those with the best
fitness (scores). In one GA-based hotspot detection method64, node fitness was estimated
based on both, molecular activity and network topology.

Exact Approaches- Exact methods extract maximally scoring as well as highly scoring
sub-networks in optimum timeframes44,45,65,66. One such method44 allowed fast
recovery of modules by transforming the sub-network search task into a well-known
prize-collecting Steiner trees (PCST) problem and solving it using integer linear
programming (ILP).

Network propagation (network smoothing) NP methods propagate network flow from
select nodes to identify sub-networks accumulating the maximum ‘flow’ (or influence
from neighboring nodes). In one such method67, an ‘influence graph’ was generated by
releasing flow from cancer genes (source node) along interaction edges, where weight
(w) of an edge between a pair of nodes gi and gk was given by the relationship w(g↓i,
g↓k) = min(influence (g↓i, g↓k), influence (g↓k, g↓i)). To identify cancer hotspots, the
influence graph was decomposed into sub-graphs of connected maximum coverage
which tends to be a polynomial-hard problem. An alternate model of ‘enhanced
influence’ was devised to reduce this complexity through enhancing the measure of
network connectivity (influence) by multiplying edge weights (w) with the number of
mutations associated per interacting gene pair.

Co-clustering methods These methods allow simultaneous clustering of interaction data
and conditional profiles to identify co-regulated or correlated modules. In a bi-clustering
method, cMonkey69, p-values of correlated expression (rik), sequence similarity (sik) and
network connectivity (qik) were measured and aggregate p-value was defined as joint
membership probability (πik). Using SA, nodes with high membership values πik≈1 were
iteratively aggregated; those with low values πik ≈0 were dropped; while those with
intermediate values were added with decreasing probability per iteration (heat gradient)
to identify hotspots.
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Online ‘at-a-glance’ summary

• Bioinformatics approaches for integrating molecular networks across various
types of interaction data, omics profiles, conditions or species have
demonstrated significant power for detection and interpretation of biological
modules.

• Module-discovery approaches are broadly classified into four categories:
identification of ‘Active Modules’ through integration of networks and
molecular profiles, identification of ‘Conserved Modules’ across multiple
species, identification of ‘Differential Modules’ across different conditions, and
identification of ‘Composite Modules’ through integration of different
interaction types.

• Active Modules mark regions of a network that are most active during a given
cellular or disease response and can identify important biomarkers, disease
mechanism and therapeutic targets.

• Conserved Modules are revealed through alignment or comparison of networks
across multiple species. Such modules reflect biologically important pathways
that have been conserved over long evolutionary periods.

• Differential Modules are identified through differential analyses of
experimentally mapped interactions across multiple conditions.

• Composite Modules are detected through simultaneous integration of diverse
types of molecular interactions.

• Such integrative approaches reviewed here substantially increase the scope,
scale and depth of bioinformatics analysis, by permitting joint interpretation of
ensembles of distinct biological information.
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Figure 1. Identifying ‘network hotspots’
(A) Schematic representation of active modules inferred through integration of biological
networks and cellular state profiles. (B) Common procedural workflow involved in active
module identification. Panel C shows regulatory interactions of clear renal cell carcinoma
cancer genes70 that were identified by integrating mutation, copy number and mRNA
expression data, with pathway information catalogued in public databases using the
PARADIGM algorithm. In particular the network identified roles for chromatin remodelers
in this cancer. Each gene is depicted as a set of concentric rings representing various levels
of biological information, and where each ‘spoke’ in a ring pertains to a single patient
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sample. From periphery inwards, the rings indicate ‘PARADIGM’-inferred levels of gene
activity, mRNA expression levels, mutational abundance and correlation of gene expression
or activity to mutation events. Reproduced with permission from Nature 2013.
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Figure 2. Differential analysis of molecular networks across conditions
(A) Schematic representation of a differential mapping approach to identify dynamically
rewired modules. Molecular networks are assembled under multiple static conditions and
these static networks are subtracted across a pair of conditions to deduce differentially
enriched interactions and modules. As illustrated, differential genetic modules may be
further projected on protein-protein interactions to display functional (genetic) interrelations
within and among protein complexes. (B) Differential rewiring of the Serine/threonine MAP
kinase SLT2 protein-protein interactions before and after methyl methanesulfonate -induced
DNA damage in yeast. Red and green edges indicate positive and negative differential
interactions (i.e., corresponding pairwise-deletion phenotypes associated with these
interactions are deemed favorable or detrimental for survival respectively). Adapted from
Molecular systems biology (2012) (C) Differential genetic interactions can co-cluster
between protein complexes (pathways). The network shows cross-pathway genetic
interactions bridging distinct protein complexes (pathways) functioning in DNA damage
response in S. cerevisiae27 Adapted from Science.
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Figure 3. Integrating networks across interaction types
(A) Schematic view of composite functional modules identified through computational
integration of genetic and physical networks. (B) A hierarchical module map extracted from
network information obtained from ref 130 using the Cytoscape57 based application tool,
Pangia148 illustrating intra-modular and inter-modular relationships in a joint network of
protein-protein interactions and genetic interactions in yeast. Modules are determined based
on physical and genetic interaction densities. Functional modules are represented as boxes,
while edges between boxes represent the density of inter-module genetic interactions, i.e.
connecting genes across the two modules (C) Magnified internal view of four network
modules revealing their physical interactions and distinct ‘within-pathway’ and ‘between-
pathway’ genetic interactions, where blue and red edges symbolize protein-protein and
genetic interactions respectively. Networks were produced using data from 130 and the
cytoscape tool.
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Figure 4. Identification of conserved functional modules by integration of data across multiple
species
(A) Functional linkage networks are assembled from multiple lines of evidence (e.g.,
protein-protein and genetic interactions, gene expression, protein localization, phenotype,
and sequence data) and integrated with differential gene-expression profiles, in this example
derived from human and mouse tissues (stem cell and differentiated cells). Candidate seed
genes (red) are defined as differentially expressed othologues). The functional neighborhood
(yellow) of each seed gene is marked by genes whose path confidence (the product of
linkage weights along the path) from the seed gene meets a specified threshold. (B) A search
for modules seeks densely connected subnetworks of genes sharing similar patterns of
expression in both species. (C) In this search, subnetworks are grown simultaneously in both
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species starting from the seed genes (red) and expanded through iterative addition of genes
satisfying both of two criteria: first, the genes must be in the same functional neighborhood,
and second, the genes must maximize a differential expression activity score. Differentially
expressed genes are colored green (up) or red (down)
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Table 1
Some recent bioinformatics tools for module extraction through network integration

TOOLS URL REF.

Active-module detection through network projection on omics data

jActiveModules http://apps.cytoscape.org/apps/iactivemodules Ideker et al. 48

MATISSE http://acgt.cs.tau.ac.il/matisse/ Ulitsky et al. 166

ToPNet http://www.biosolveit.de/ToPNet/ Hanisch et al. 167

PinnacleZ http://apps.cytoscape.org/apps/pinnaclez Chuang et al. 62

GXNA http://stat.stanford.edu/~serban/gxna. Nacu et al. 52

BioNet http://bionet.bioapps.biozentrum.uni-wuerzburg.de/ Beisser et al. 168

COSINE http://cran.r-proiect.org/web/packages/COSINE/ Ma et al. 105

DECOB http://www.sfu.ca/~ester/software/DECOB.zip Colak et al. 169

SANDY http://sandy.topnet.gersteinlab.org/ Luscombe et al. 79

HotNet http://ccmbweb.ccv.brown.edu/hotnet/ Vandin et al 67

PARADIGM http://sbenz.github.com/Paradigm Vaske et al. 70

MEMo http://cbio.mskcc.org/memo Ciriello et al. 73

Multi-Dendrix http://compbio.cs.brown.edu/software Leiserson et al. 37

RegMod Supplementary Material 45 Qiu et al. 45

NetWalk/FunWalk http://netwalkersuite.org Komurev et al. 11

ResponseNet http://bioinfo.bgu.ac.il/respnet Lan et al. 76

ClustEx http://www.mybiosoftware.com/pathway-analysis/5495 Gu et al 40

SAMBA www.cs.tau.ac.il/rshamir/~expander/expander.html Tanay et al 83

cMonkey http://bonneaulab.bio.nyu.edu/biclustering.html Reiss et al. 69

COBRAv2.0 http://opencobra.sourceforge.net/openCOBRA/Welcome.html Schellenberger et al. 86

Networks comparison across species to identify conserved modules

PathBLAST www.pathblast.org Kelley et al. 115

NetworkBLAST http://www.cs.tau.ac.il/~bnet/networkblast.htm Kalaev et al. 170

NetworkBLAST-M http://www.cs.tau.ac.il/~bnet/License-nbm.htm Kalaev et al. 117

IsoRankN http://groups.csail.mit.edu/cb/mna/packages/isorank-n-v2.tar.gz Liao et al. 171

Graemlin http://graemlin.stanford.edu/ Flannick et al. 120

NeXus http://csbio.cs.umn.edu/neXus/help.html Deshpande et al. 158

Multi-species cMonkey http://bonneaulab.bio.nyu.edu/biclustering.html Waltman et al. 159

Differential analysis of interaction networks to identify dynamic modules

CytoDDN http://www.cbil.ece.vt.edu/software.htm Zhang et al. 104

DNA http://www.somnathdatta.org/Supp/DNA/ Gill et al. 172

Integration of diverse types of interaction networks to identify composite modules

PanGIA http://prosecco.ucsd.edu/PanGIA/ Srivas et al. 148
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