Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detection and treatment of congenital hypothyroidism

Abstract

Congenital hypothyroidism is the most frequent endocrine disorder in neonates. Controversy exists regarding the necessity to adjust current screening programs to also diagnose patients with central hypothyroidism or those with mild forms of congenital hypothyroidism, who have high TSH levels but normal T4 and normal T3 levels (also known as 'subclinical hypothyroidism'). Thyroid hormone replacement should start as soon as the diagnosis is confirmed by measurement of elevated TSH and low serum thyroid hormone levels. Further diagnostic approaches, such as ultrasonography, scintigraphy and measurement of thyroglobulin levels, to determine the subtype of congenital hypothyroidism, should not delay initiation of treatment. Recommendations regarding the initial dosage of levothyroxine vary considerably, and no general accepted guideline exists with regards to initial dosage or optimal time point for dose adjustment according to biochemical parameters. More than 30 years after the introduction of the first neonatal screening programs, mental retardation can be prevented in the majority of children (>90%) with congenital hypothyroidism if therapy is commenced within the first 2 weeks of life, making neonate screening for this disorder the most successful population-based screening test in pediatrics.

Key Points

  • Neonatal screening for primary congenital hypothyroidism is an efficient tool for the secondary prevention of severe mental retardation

  • Diagnosis of primary congenital hypothyroidism is based on detection of an increased TSH concentration in the presence of low T4 levels in serum

  • The differential diagnosis of congenital hypothyroidism includes defects of thyroid hormone synthesis in patients with a normal thyroid gland or goiter and several diseases arising from thyroid transcription factor defects in patients with thyroid dysgenesis

  • Although evidence for particular treatment modalities was not generated in prospective controlled studies, an initial daily dose of >10 μg levothyroxine per kg of body weight is recommended to treat congenital hypothyroidism

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Congenital hypothyroidism due to thyroid dysgenesis.
Figure 2: Thyroid hormone synthesis.
Figure 3: Diagnostic algorithm for the detection of primary congenital hypothyroidism.

Similar content being viewed by others

References

  1. Radwin, L. S., Michelson, J. P., Berman, A. B. & Kramer, B. End results in treatment of congenital hypothyroidism; follow-up study of physical, mental and behavioral development. Am. J. Dis. Child. 78, 821–843 (1949).

    Article  CAS  Google Scholar 

  2. Fisher, D. A. et al. Screening for congenital hypothyroidism: results of screening one million North American infants. J. Pediatr. 94, 700–705 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Illig, R. & Gitzelmann, R. Screening for congenital hypothyroidism. J. Pediatr. 91, 348–349 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Clerc, J. et al. Scintigraphic imaging of paediatric thyroid dysfunction. Horm. Res. 70, 1–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Bubuteishvili, L., Garel, C., Czernichow, P. & Léger, J. Thyroid abnormalities by ultrasonography in neonates with congenital hypothyroidism. J. Pediatr. 143, 759–764 (2003).

    Article  PubMed  Google Scholar 

  6. Marinovic, D., Garel, C., Czernichow, P. & Léger, J. Ultrasonographic assessment of the ectopic thyroid tissue in children with congenital hypothyroidism. Pediatr. Radiol. 34, 109–113 (2004).

    Article  PubMed  Google Scholar 

  7. Maiorana, R. et al. Thyroid hemiagenesis: prevalence in normal children and effect on thyroid function. J. Clin. Endocrinol. Metab. 88, 1534–1536 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Klein, A. H., Meltzer, S. & Kenny, F. M. Improved prognosis in congenital hypothyroidism treated before age three months. J. Pediatr. 81, 912–915 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Odell, W. D., Wilber, J. F. & Paul, W. E. Radioimmunoassay of human thyrotropin in serum. Metabolism 14, 465–467 (1965).

    Article  CAS  PubMed  Google Scholar 

  10. Klein, A. H., Agustin, A. V. & Foley, T. P. Jr. Successful laboratory screening for congenital hypothyroidism. Lancet 2, 77–79 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Dussault, J. H. et al. Preliminary report on a mass screening program for neonatal hypothyroidism. J. Pediatr. 86, 670–674 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Fisher, D. A. & Odell, W. D. Acute release of thyrotropin in the newborn. J. Clin. Invest. 48, 1670–1677 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alm, J., Larsson, A. & Zetterström, R. Congenital hypothyroidism in Sweden. Incidence and age at diagnosis. Acta Paediatr. Scand. 67, 1–3 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Jacobsen, B. B. & Brandt, N. J. Congenital hypothyroidism in Denmark. Arch. Dis. Child. 56, 134–136 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hulse, J. A. Outcome for congenital hypothyroidism. Arch. Dis. Child. 59, 23–29 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grosse, S. D. & Van Vliet, G. Prevention of intellectual disability through screening for congenital hypothyroidism: how much and at what level? Arch. Dis. Child. 96, 374–379 (2011).

    Article  PubMed  Google Scholar 

  17. Alm, J., Hagenfeldt, L., Larsson, A. & Lundberg, K. Incidence of congenital hypothyroidism: retrospective study of neonatal laboratory screening versus clinical symptoms as indicators leading to diagnosis. Br. Med. J. (Clin. Res. Ed.) 289, 1171–1175 (1984).

    Article  CAS  Google Scholar 

  18. Rastogi, M. V. & LaFranchi, S. H. Congenital hypothyroidism. Orphanet. J. Rare Dis. 5, 17 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stoppa-Vaucher, S., Van Vliet, G. & Deladoëy, J. Variation by ethnicity in the prevalence of congenital hypothyroidism due to thyroid dysgenesis. Thyroid 21, 13–18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Castanet, M. et al. Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J. Clin. Endocrinol. Metab. 86, 2009–2014 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Hinton, C. F. et al. Trends in incidence rates of congenital hypothyroidism related to select demographic factors: data from the United States, California, Massachusetts, New York, and Texas. Pediatrics 125 (Suppl. 2), S37–S47 (2010).

    Article  PubMed  Google Scholar 

  22. De Felice, M. & Di Lauro, R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr. Rev. 25, 722–746 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Léger, J. et al. Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 87, 575–580 (2002).

    Article  PubMed  Google Scholar 

  24. Perry, R. et al. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J. Clin. Endocrinol. Metab. 87, 4072–4077 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. van Trotsenburg, A. S. et al. Trisomy 21 causes persistent congenital hypothyroidism presumably of thyroidal origin. Thyroid 16, 671–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Stagi, S., Manoni, C., Salti, R., Cecchi, C. & Chiarelli, F. Thyroid hypoplasia as a cause of congenital hypothyroidism in Williams syndrome. Horm. Res. 70, 316–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Narumi, S., Muroya, K., Asakura, Y., Adachi, M. & Hasegawa, T. Transcription factor mutations and congenital hypothyroidism: systematic genetic screening of a population-based cohort of Japanese patients. J. Clin. Endocrinol. Metab. 95, 1981–1985 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Al Taji, E. et al. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. Eur. J. Endocrinol. 156, 521–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Bamforth, J. S., Hughes, I. A., Lazarus, J. H., Weaver, C. M. & Harper, P. S. Congenital hypothyroidism, spiky hair, and cleft palate. J. Med. Genet. 26, 49–51 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clifton-Bligh, R. J. et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat. Genet. 19, 399–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Castanet, M. & Polak, M. Spectrum of human Foxe1/TTF2 mutations. Horm. Res. Paediatr. 73, 423–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Krude, H. et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2–1 haploinsufficiency. J. Clin. Invest. 109, 475–480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pohlenz, J. et al. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J. Clin. Invest. 109, 469–473 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carré, A. et al. Five new TTF1/NKX2.1 mutations in brain–lung–thyroid syndrome: rescue by PAX8 synergism in one case. Hum. Mol. Genet. 18, 2266–2276 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Guillot, L. et al. NKX2–1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in “Brain–Lung–Thyroid Syndrome”. Hum. Mutat. 31, E1146–E1162 (2010).

    Article  PubMed  Google Scholar 

  36. Breedveld, G. J. et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum. Mol. Genet. 11, 971–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Dentice, M. et al. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocrinol. Metab. 91, 1428–1433 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Macchia, P. E. et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat. Genet. 19, 83–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Meeus, L. et al. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J. Clin. Endocrinol. Metab. 89, 4285–4291 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Montanelli, L. & Tonacchera, M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol. Cell Endocrinol. 322, 64–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Biebermann, H., Grüters, A., Schöneberg, T. & Gudermann, T. Congenital hypothyroidism caused by mutations in the thyrotropin-receptor gene. N. Engl. J. Med. 336, 1390–1391 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Refetoff, S. Resistance to thyrotropin. J. Endocrinol. Invest. 26, 770–779 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bizhanova, A. & Kopp, P. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150, 1084–1090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ris-Stalpers, C. & Bikker, H. Genetics and phenomics of hypothyroidism and goiter due to TPO mutations. Mol. Cell Endocrinol. 322, 38–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Moreno, J. C. & Visser, T. J. New phenotypes in thyroid dyshormonogenesis: hypothyroidism due to DUOX2 mutations. Endocr. Dev. 10, 99–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Medeiros-Neto, G., Targovnik, H. M. & Vassart, G. Defective thyroglobulin synthesis and secretion causing goiter and hypothyroidism. Endocr. Rev. 14, 165–183 (1993).

    CAS  PubMed  Google Scholar 

  47. Abramowicz, M. J. et al. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J. Clin. Invest. 90, 1200–1204 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kopp, P., Pesce, L. & Solis-S., J. C. Pendred syndrome and iodide transport in the thyroid. Trends Endocrinol. Metab. 19, 260–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hulur, I. et al. A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J. Clin. Endocrinol. Metab. 96, E841–E845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pinsker, J. E., Rogers, W., McLean, S., Schaefer, F. V. & Fenton, C. Pseudohypoparathyroidism type 1a with congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 19, 1049–1052 (2006).

    Article  PubMed  Google Scholar 

  51. Beck-Peccoz, P. et al. Syndromes of hormone resistance in the hypothalamic–pituitary–thyroid axis. Best Pract. Res. Clin. Endocrinol. Metab. 20, 529–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Olivieri, A. et al. A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J. Clin. Endocrinol. Metab. 87, 557–562 (2002).

    CAS  PubMed  Google Scholar 

  53. Cutler, A. T., Benezra-Obeiter, R. & Brink, S. J. Thyroid function in young children with Down syndrome. Am. J. Dis. Child. 140, 479–483 (1986).

    CAS  PubMed  Google Scholar 

  54. Weisman, Y., Golander, A., Spirer, Z. & Farfel, Z. Pseudohypoparathyroidism type 1a presenting as congenital hypothyroidism. J. Pediatr. 107, 413–415 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Kempers, M. J. et al. Neonatal screening for congenital hypothyroidism based on thyroxine, thyrotropin, and thyroxine-binding globulin measurement: potentials and pitfalls. J. Clin. Endocrinol. Metab. 91, 3370–3376 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Hanna, C. E. et al. Detection of congenital hypopituitary hypothyroidism: ten-year experience in the Northwest Regional Screening Program. J. Pediatr. 109, 959–964 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. Fisher, D. A. Thyroid function and dysfunction in premature infants. Pediatr. Endocrinol. Rev. 4, 317–328 (2007).

    PubMed  Google Scholar 

  58. Filippi, L., Pezzati, M., Cecchi, A. & Poggi, C. Dopamine infusion: a possible cause of undiagnosed congenital hypothyroidism in preterm infants. Pediatr. Crit. Care Med. 7, 249–251 (2006).

    Article  PubMed  Google Scholar 

  59. Vincent, M. A., Rodd, C., Dussault, J. H. & Van Vliet, G. Very low birth weight neonates do not need repeat screening for congenital hypothyroidism. J. Pediatr. 140, 311–314 (2002).

    Article  PubMed  Google Scholar 

  60. Kugelman, A., Riskin, A., Bader, D. & Koren, I. Pitfalls in screening programs for congenital hypothyroidism in premature neonates. Am. J. Perinatol. 26, 383–385 (2009).

    Article  PubMed  Google Scholar 

  61. Toublanc, J. E. Guidelines for neonatal screening programs for congenital hypothyroidism. Working Group for Neonatal Screening in Paediatric Endocrinology of the European Society for Paediatric Endocrinology. Acta Paediatr. Suppl. 88, 13–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Rose, S. R. et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 117, 2290–2303 (2006).

    Article  PubMed  Google Scholar 

  63. Elmlinger, M. W., Kühnel, W., Lambrecht, H. G. & Ranke, M. B. Reference intervals from birth to adulthood for serum thyroxine (T4), triiodothyronine (T3), free T3, free T4, thyroxine binding globulin (TBG) and thyrotropin (TSH). Clin. Chem. Lab. Med. 39, 973–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lazar, L. et al. Natural history of thyroid function tests over 5 years in a large pediatric cohort. J. Clin. Endocrinol. Metab. 94, 1678–1682 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Schoen, E. J., Clapp, W., To, T. T. & Fireman, B. H. The key role of newborn thyroid scintigraphy with isotopic iodide (123I) in defining and managing congenital hypothyroidism. Pediatrics 114, e683–e688 (2004).

    Article  PubMed  Google Scholar 

  66. Muir, A., Daneman, D., Daneman, A. & Ehrlich, R. Thyroid scanning, ultrasound, and serum thyroglobulin in determining the origin of congenital hypothyroidism. Am. J. Dis. Child. 142, 214–216 (1988).

    CAS  PubMed  Google Scholar 

  67. Brown, R. S. et al. Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptor-blocking antibodies in over one million babies. J. Clin. Endocrinol. Metab. 81, 1147–1151 (1996).

    CAS  PubMed  Google Scholar 

  68. Mengreli, C. et al. Transient congenital hypothyroidism due to maternal autoimmune thyroid disease. Hormones (Athens) 2, 113–119 (2003).

    Article  Google Scholar 

  69. Gruters, A., l'Allemand, D., Heidemann, P. H. & Schürnbrand, P. Incidence of iodine contamination in neonatal transient hyperthyrotropinemia. Eur. J. Pediatr. 140, 299–300 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. Nishiyama, S. et al. Transient hypothyroidism or persistent hyperthyrotropinemia in neonates born to mothers with excessive iodine intake. Thyroid 14, 1077–1083 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Bernal, J. Thyroid hormones and brain development. Vitam. Horm. 71, 95–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Cassio, A. et al. Treatment for congenital hypothyroidism: thyroxine alone or thyroxine plus triiodothyronine? Pediatrics 111, 1055–1060 (2003).

    Article  PubMed  Google Scholar 

  73. von Heppe, J. H., Krude, H., L'Allemand, D., Schnabel, D. & Grüters, A. The use of L-T4 as liquid solution improves the practicability and individualized dosage in neonates and infants with congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 17, 967–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Conrad, S. C., Chiu, H. & Silverman, B. L. Soy formula complicates management of congenital hypothyroidism. Arch. Dis. Child. 89, 37–40 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bolk, N., Visser, T. J., Kalsbeek, A., van Domburg, R. T. & Berghout, A. Effects of evening vs morning thyroxine ingestion on serum thyroid hormone profiles in hypothyroid patients. Clin. Endocrinol. (Oxf.) 66, 43–48 (2007).

    CAS  Google Scholar 

  76. Hrytsiuk, I., Gilbert, R., Logan, S., Pindoria, S. & Brook, C. G. Starting dose of levothyroxine for the treatment of congenital hypothyroidism: a systematic review. Arch. Pediatr. Adolesc. Med. 156, 485–491 (2002).

    Article  PubMed  Google Scholar 

  77. Léger, J., Larroque, B. & Norton, J. Influence of severity of congenital hypothyroidism and adequacy of treatment on school achievement in young adolescents: a population-based cohort study. Acta Paediatr. 90, 1249–1256 (2001).

    Article  PubMed  Google Scholar 

  78. Rovet, J. F. Children with congenital hypothyroidism and their siblings: do they really differ? Pediatrics 115, e52–e57 (2005).

    Article  PubMed  Google Scholar 

  79. Oerbeck, B., Sundet, K., Kase, B. F. & Heyerdahl, S. Congenital hypothyroidism: influence of disease severity and L-thyroxine treatment on intellectual, motor, and school-associated outcomes in young adults. Pediatrics 112, 923–930 (2003).

    Article  PubMed  Google Scholar 

  80. Dubuis, J. M. et al. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. J. Clin. Endocrinol. Metab. 81, 222–227 (1996).

    CAS  PubMed  Google Scholar 

  81. Salerno, M. et al. Effect of different starting doses of levothyroxine on growth and intellectual outcome at four years of age in congenital hypothyroidism. Thyroid 12, 45–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Bongers-Schokking, J. J. & de Muinck Keizer-Schrama, S. M. Influence of timing and dose of thyroid hormone replacement on mental, psychomotor, and behavioral development in children with congenital hypothyroidism. J. Pediatr. 147, 768–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Selva, K. A., Harper, A., Downs, A., Blasco, P. A. & Lafranchi, S. H. Neurodevelopmental outcomes in congenital hypothyroidism: comparison of initial T4 dose and time to reach target T4 and TSH. J. Pediatr. 147, 775–780 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Dimitropoulos, A. et al. Children with congenital hypothyroidism: long-term intellectual outcome after early high-dose treatment. Pediatr. Res. 65, 242–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Boileau, P., Bain, P., Rives, S. & Toublanc, J. E. Earlier onset of treatment or increment in LT4 dose in screened congenital hypothyroidism: which as the more important factor for IQ at 7 years? Horm. Res. 61, 228–233 (2004).

    CAS  PubMed  Google Scholar 

  86. Grüters, A. & Krude, H. Update on the management of congenital hypothyroidism. Horm. Res. 68 (Suppl. 5), 107–111 (2007).

    PubMed  Google Scholar 

  87. Corbetta, C. et al. A 7-year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (congenital hypothyroidism). Clin. Endocrinol. (Oxf.) 71, 739–745 (2009).

    Article  CAS  Google Scholar 

  88. Mengreli, C. et al. Screening for congenital hypothyroidism: the significance of threshold limit in false-negative results. J. Clin. Endocrinol. Metab. 95, 4283–4290 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Korada, S. M. et al. Difficulties in selecting an appropriate neonatal thyroid stimulating hormone (TSH) screening threshold. Arch. Dis. Child. 95, 169–173 (2010).

    Article  PubMed  Google Scholar 

  90. Kreisner, E., Schermann, L., Camargo-Neto, E. & Gross, J. L. Predictors of intellectual outcome in a cohort of Brazilian children with congenital hypothyroidism. Clin. Endocrinol. (Oxf.) 60, 250–255 (2004).

    Article  CAS  Google Scholar 

  91. Kemper, A. R., Ouyang, L. & Grosse, S. D. Discontinuation of thyroid hormone treatment among children in the United States with congenital hypothyroidism: findings from health insurance claims data. BMC Pediatr. 10, 9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wong, S. C., Ng, S. M. & Didi, M. Children with congenital hypothyroidism are at risk of adult obesity due to early adiposity rebound. Clin. Endocrinol. (Oxf.) 61, 441–446 (2004).

    Article  CAS  Google Scholar 

  93. Salerno, M. et al. Long-term cardiovascular effects of levothyroxine therapy in young adults with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 93, 2486–2491 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Ng, S. M., Anand, D. & Weindling, A. M. High versus low dose of initial thyroid hormone replacement for congenital hypothyroidism. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD006972. doi:10.1002/14651858.CD006972.pub2 (2009).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Annette Grüters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grüters, A., Krude, H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol 8, 104–113 (2012). https://doi.org/10.1038/nrendo.2011.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing