Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thrombosis and cancer

Abstract

Venous thromboembolism (VTE) is a potentially life-threatening condition that can be associated with significant morbidity. Thrombosis and cancer are linked by numerous pathophysiological mechanisms; the frequency of VTE and the recurrence rate are increased in the cancer population in comparison with other patient groups. VTE is the second most common cause of death in patients with cancer, but can also be the initial presenting complaint in patients with an occult malignancy. Risk factors for cancer-related VTE include tumour type, surgery, chemotherapy and the use of central venous catheters; predictors of VTE for individuals are only now beginning to emerge. Patients with cancer who develop symptomatic VTE during chemotherapy are at a greater risk of early mortality than those without VTE. The apparent impact of VTE on early mortality in patients with cancer raises the question of whether anticoagulation might improve long-term survival in this population, by direct tumour biology-modifying mechanisms. There are widely published guidelines that highlight the benefits of effective VTE strategies in patients with cancer. In partnership with the patient and their carers, the clinical team can improve patient outcomes with optimal risk assessment and concordance with national and international guidelines in the prophylaxis and treatment of VTE.

Key Points

  • Venous thromboembolism (VTE) in patients with cancer is an important clinical problem

  • Patients should be informed about VTE risk and/or treatment and should be involved in their care, including monitoring for bleeding

  • VTE risk assessment and, if appropriate, thromboprophylaxis of patients with cancer are key to individualized care

  • Tissue factor (TF) is a key mediator of clotting, inflammation, tumour progression and angiogenesis; the association between elevated TF and subsequent VTE is under investigation

  • Further research is needed in the cancer setting with the new oral anticoagulants

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic changes upregulate molecules responsible for neoplastic transformation and tumour procoagulant activity.
Figure 2: Flow diagram of venous thromboembolism risk assessment.
Figure 3: Anticoagulant effect on mortality in patients receiving chemotherapy.

Similar content being viewed by others

References

  1. White, R. H. et al. Incidence of venous thromboembolism in the year before the diagnosis of cancer in 528,693 adults. Arch. Intern. Med. 165, 1782–1787 (2005).

    Article  PubMed  Google Scholar 

  2. Trousseau, A. in Clinique Medicale de l'Hotel-Dieu de Paris [French] 281–332 2nd edn (J.-B. Baillière et Fils, Paris, 1865).

    Google Scholar 

  3. House of Commons Health Committee. The Prevention of Venous Thromboembolism in Hospitalised Patients [online], (2005).

  4. Lyman, G. H. & Khorana, A. A. Cancer, clots and consensus: new understanding of an old problem. J. Clin. Oncol. 27, 4821–4826 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 110, 2339–2346 (2007).

    Article  PubMed  Google Scholar 

  6. Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 5, 632–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Heit, J. A. et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch. Intern. Med. 160, 809–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Blom, J. W., Doggen, C. J., Osanto, S. & Rosendaal, F. R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 293, 715–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Levitan, N. et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore) 78, 285–291 (1999).

    Article  CAS  Google Scholar 

  10. Stein, P. D. et al. Incidence of venous thromboembolism in patients hospitalized with cancer. Am. J. Med. 119, 60–68 (2006).

    Article  PubMed  Google Scholar 

  11. Khorana, A. A. et al. Thromboembolism in hospitalized neutropenic cancer patients. J. Clin. Oncol. 24, 484–490 (2006).

    Article  PubMed  Google Scholar 

  12. Khorana, A. A. & Connolly, G. C. Assessing risk of venous thromboembolism in the patient with cancer. J. Clin. Oncol. 27, 4839–4847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sallah, S., Wan, J. Y. & Nguyen, N. P. Venous thrombosis in patients with solid tumors: determination of frequency and characteristics. Thromb. Haemost. 87, 575–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Prandoni, P. et al. Deep-vein thrombosis and the incidence of subsequent symptomatic cancer. N. Engl. J. Med. 327, 1128–1133 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Heit, J. A. et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch. Intern. Med. 162, 1245–1248 (2002).

    Article  PubMed  Google Scholar 

  16. Rondina, M. T. et al. A pilot study utilizing whole body 18 F-FDG-PET/CT as a comprehensive screening strategy for occult malignancy in patients with unprovoked venous thromboembolism. Thromb. Res. 129, 22–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Bluff, J. E., Brown, N. J., Reed, M. W. R. & Staton, C. A. Tissue factor, angiogenesis and tumour progression. Breast Cancer Res. 10, 204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Winter, P. C. The pathogenesis of venous thromboembolism in cancer: emerging links with tumour biology. Hematol. Oncol. 24, 126–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Petralia, G. A., Lemoine, N. R. & Kakkar, A. K. Mechanisms of disease: the impact of antithrombotic therapy in cancer patients. Nat. Clin. Pract. Oncol. 2, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Furie, B. & Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 359, 938–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Rickles, F. R., Hair, G. A., Zeff, R. A., Lee, E. & Bona, R. D. Tissue factor expression in human leukocytes and tumor cells. Thromb. Haemost. 74, 391–395 (1995).

    CAS  PubMed  Google Scholar 

  22. Kakkar, A. K., Lemoine, N. R., Scully, M. F., Tebbutt, S. & Williamson, R. C. Tissue factor expression correlates with histological grade in human pancreatic cancer. Br. J. Surg. 82, 1101–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. White, R. H., Chew, H. & Wun, T. Targeting patients for anticoagulant prophylaxis trials in patients with cancer: who is at highest risk? Thromb. Res. 120 (Suppl. 2), 29–40 (2007).

    Article  Google Scholar 

  24. Boccaccio, C. & Comoglio, P. M. Genetic link between cancer and thrombosis. J. Clin. Oncol. 27, 4827–4833 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Sutherland, D. E., Weitz, I. C. & Liebman, H. A. Thromboembolic complications of cancer: epidemiology, pathogenesis, diagnosis, and treatment. Am. J. Hematol. 72, 43–52 (2003).

    Article  PubMed  Google Scholar 

  26. Falanga, A., Marchetti, M., Vignoli, A. & Balducci, D. Clotting mechanisms and cancer: implications in thrombus formation and tumor progression. Clin. Adv. Hematol. Oncol. 1, 673–678 (2003).

    PubMed  Google Scholar 

  27. Ruf, W., Disse, J., Carneiro-Lobo, T. C., Yokota, N. & Schaffner, F. Tissue factor and cell signalling in cancer progression and thrombosis. J. Thromb. Haemost. 9 (Suppl. 1), 306–315 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kasthuri, R. S., Taubman, M. B. & Mackman, N. Role of tissue factor in cancer. J. Clin. Oncol. 27, 4834–4838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boccaccio, C. et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 434, 396–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Morel, O. et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler. Thromb. Vasc. Biol. 26, 2594–2604 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Napoleone, E. et al. Leptin upregulates tissue factor expression in human breast cancer MCF-7 cells. Thromb. Res. 129, 641–647 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Lip, G. Y., Chin, B. S. & Blann, A. D. Cancer and the prothrombotic state. Lancet Oncol. 3, 27–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Khorana, A. A. Malignancy, thrombosis and Trousseau: the case for an eponym. J. Thromb. Haemost. 1, 2463–2465 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kosmaczewska, A. et al. Dysregulated expression of both the costimulatory CD28 and inhibitory CTLA-4 molecules in PB T cells of advanced cervical cancer patients suggests systemic immunosuppression related to disease progression. Pathol. Oncol. Res. 18, 479–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Verso, M. et al. Risk factors for upper limb deep vein thrombosis associated with the use of central vein catheter in cancer patients. Intern. Emerg. Med. 3, 117–122 (2008).

    Article  PubMed  Google Scholar 

  36. Walsh-McMonagle, D. & Green, D. Low-molecular-weight heparin in the management of Trousseau's syndrome. Cancer 80, 649–655 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Donald, I. & Hunt, B. Thromboprophylaxis for the prevention of hospital-acquired venous thromboembolism [online], (2012).

    Google Scholar 

  38. O'Connell, C. et al. Unsuspected pulmonary emboli adversely impact survival in patients with cancer undergoing routine staging multi-row detector computed tomography scanning. J. Thromb. Haemost. 9, 305–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Levine, M. N. et al. A randomized phase II trial of apixaban for the prevention of thromboembolism in patients with metastatic cancer. J. Thromb. Haemost. 10, 807–814 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kamba, T. & McDonald, D. M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer. 96, 1788–1795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palumbo, A. et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22, 414–423 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Imberti, D. et al. Clinical characteristics and management of cancer-associated acute venous thromboembolism: findings from the MASTER Registry. Haematologica 93, 273–278 (2008).

    Article  PubMed  Google Scholar 

  43. Verso, M. & Agnelli, G. Venous thromboembolism associated with long-term use of central venous catheters in cancer patients. J. Clin. Oncol. 21, 3665–3675 (2003).

    Article  PubMed  Google Scholar 

  44. Kuderer, N. M. et al. Venous thromboembolism represents a major risk factor for early all-cause mortality in patients receiving cancer chemotherapy [abstract]. J. Clin. Oncol. 26 (Suppl. 15), a9521 (2008).

    Article  Google Scholar 

  45. Chew, H. K., Wun, T., Harvey, D., Zhou, H. & White, R. H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 166, 458–464 (2006).

    Article  PubMed  Google Scholar 

  46. Chew, H. K., Wun, T., Harvey, D. J., Zhou, H. & White, R. H. Incidence of venous thromboembolism and the impact on survival in breast cancer patients. J. Clin. Oncol. 25, 70–76 (2007).

    Article  PubMed  Google Scholar 

  47. Elting, L. S. et al. Outcomes and cost of deep venous thrombosis among patients with cancer. Arch. Intern. Med. 164, 1653–1661 (2004).

    Article  PubMed  Google Scholar 

  48. Bergqvist, D. et al. Venous thromboembolism and cancer. Curr. Probl. Surg. 44, 157–216 (2007).

    Article  PubMed  Google Scholar 

  49. Scarvelis, D. et al. Hospital mortality due to pulmonary embolism and an evaluation of the usefulness of preventative interventions. Thromb. Res. 125, 166–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Prandoni, P. et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 100, 3484–3488 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Cohen, A. T. et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb. Haemost. 98, 756–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. McNeil, K. & Dunning, J. Chronic thromboembolic pulmonary hypertension (CTEPH). Heart 93, 1152–1158 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ashrani, A. A. et al. Impact of venous thromboembolism, venous stasis syndrome, venous outflow obstruction and venous valvular incompetence on quality of life and activities of daily living: a nested case-control study. Vasc. Med. 15, 387–397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khorana, A. A., Kuderer, N. M., Culakova, E., Lyman, G. H. & Francis, C. W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111, 4902–4907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. National Institute for Health and Clinical Excellence. Venous thromboembolism—reducing the risk (CG92) [online], (2010).

  56. Khorana, A. A., Francis, C. W., Culakova, E. & Lyman, G. H. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 104, 2822–2829 (2005).

    Article  PubMed  Google Scholar 

  57. Thodiyil, P. A. & Kakkar, A. K. Variation in relative risk of venous thromboembolism in different cancers. Thromb. Haemost. 87, 1076–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Paneesha, S. et al. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thromb. Haemost. 103, 338–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Petralia, G. et al. Venous thromboembolism and cancer. The PERCEIVE registry [abstract]. J. Thromb. Haemost. 5 (Suppl. 2), P-T-489 (2007).

    Google Scholar 

  60. Blom, J. W. et al. Incidence of venous thrombosis in a large cohort of 66 329 cancer patients: results of a record linkage study. J. Thromb. Haemost. 4, 529–535 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Alcalay, A. et al. Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J. Clin. Oncol. 24, 1112–1118 (2006).

    Article  PubMed  Google Scholar 

  62. Rodriguez, A. O. et al. Venous thromboembolism in ovarian cancer. Gynecol. Oncol. 105, 784–790 (2007).

    Article  PubMed  Google Scholar 

  63. Khorana, A. A. et al. Venous thromboembolism prophylaxis and treatment in cancer: a consensus statement of major guidelines panels and call to action. J. Clin. Oncol. 27, 4919–4926 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agnelli, G. et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: the @RISTOS project. Ann. Surg. 243, 89–95 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Haddad, T. C. & Greeno, E. W. Chemotherapy-induced thrombosis. Thromb. Res. 118, 555–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Levine, M. N. et al. The thrombogenic effect of anticancer drug therapy in women with stage II breast cancer. N. Engl. J. Med. 318, 404–407 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Hernandez, R. K., Sørensen, H. T., Pedersen, L., Jacobsen, J. & Lash, T. L. Tamoxifen treatment and risk of deep venous thrombosis and pulmonary embolism: a Danish population-based cohort study. Cancer 115, 4442–4449 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Pritchard, K. I. et al. Randomized trial of cyclophosphamide, methotrexate, and fluorouracil chemotherapy added to tamoxifen as adjuvant therapy in postmenopausal women with node-positive estrogen and/or progesterone receptor-positive breast cancer: a report of the National Cancer Institute of Canada Clinical Trials Group. Breast Cancer Site Group. J. Clin. Oncol. 15, 2302–2311 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Cavo, M. et al. First-line therapy with thalidomide and dexamethasone in preparation for autologous stem cell transplantation for multiple myeloma. Haematologica 89, 826–831 (2004).

    CAS  PubMed  Google Scholar 

  70. Rajkumar, S. V., Blood, E., Vesole, D., Fonseca, R. & Greipp, P. R. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. 24, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Zangari, M. et al. Thalidomide and deep vein thrombosis in multiple myeloma: risk factors and effect on survival. Clin. Lymphoma 4, 32–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Nalluri, S. R., Chu, D., Keresztes, R., Zhu, X. & Wu, S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300, 2277–2285 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Kuenen, B. C. et al. Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416. J. Clin. Oncol. 21, 2192–2198 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Lyman, G. H. et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J. Clin. Oncol. 25, 5490–5505 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Sallah, S. et al. Plasma coagulation markers in patients with solid tumors and venous thromboembolic disease receiving oral anticoagulation therapy. Clin. Cancer Res. 10, 7238–7243 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Rose, P. et al. Risk factors for cancer-associated venous thromboembolism in outpatient deep venous thrombosis clinics. Br. J. Haematol. 150, 640–641 (2010).

    Article  PubMed  Google Scholar 

  77. Connolly, G. C. & Khorana, A. A. Emerging risk stratification approaches to cancer-associated thrombosis: risk factors, biomarkers and a risk score. Thromb. Res. 125 (Suppl. 2), 1–7 (2010).

    Article  Google Scholar 

  78. Simanek, R. et al. A high platelet count independently predicts venous thromboembolism in cancer patients [abstract]. J. Thromb. Haemost. 5 (Suppl. 2), P-T-497 (2007).

    Article  Google Scholar 

  79. Manly, D. A. et al. Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb. Res. 125, 511–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Paneesha, S. et al. High D-dimer levels at presentation in patients with venous thromboembolism is a marker of adverse clinical outcomes. Br. J. Haematol. 135, 85–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Ay, C. et al. Prediction of venous thromboembolism in cancer patients. Blood 116, 5377–5382 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Mandala, M. et al. Incidence, risk factors and clinical implications of venous thromboembolism in cancer patients treated within the context of phase I studies: the 'SENDO experience'. Ann. Oncol. 23, 1416–1421 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Kakkar, A. K. Prevention of venous thromboembolism in the cancer surgical patient. J. Clin. Oncol. 27, 4881–4884 (2009).

    Article  PubMed  Google Scholar 

  84. Gould, M. K. et al. Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141 (Suppl. 2), 227–277 (2012).

    Article  CAS  Google Scholar 

  85. Geerts, W. H. et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133 (Suppl. 6), 381–453 (2008).

    Article  CAS  Google Scholar 

  86. Agnelli, G. et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: a randomised, placebo-controlled, double-blind study. Lancet Oncol. 10, 943–949 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Riess, H. et al. A prospective, randomized trial of simultaneous pancreatic cancer treatment with enoxaparin and chemotherapy: Final results of the CONKO-004 trial [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a4033 (2010).

    Article  Google Scholar 

  88. Maraveyas, A. et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur. J. Cancer 48, 1283–1292 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Agnelli, G. et al. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N. Engl. J. Med. 366, 601–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Oncologic Drugs Advisory Committee. NDA 203213, Semuloparin sodium, Sanofi-aventis [online],w (2012).

  91. Haas, S. K. et al. Low-molecular-weight heparin versus placebo for the prevention of venous thromboembolism in metastatic breast cancer or stage III/IV lung cancer. Clin. Appl. Thromb. Hemost. 18, 159–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Perry, J. R. et al. PRODIGE: A phase III randomized placebo-controlled trial of thromboprophylaxis using dalteparin low molecular weight heparin (LMWH) in patients with newly diagnosed malignant glioma [abstract]. J. Clin. Oncol. 25 (Suppl. 18), a2011 (2007).

    Google Scholar 

  93. Samama, M. M. et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in Medical Patients with Enoxaparin Study Group. N. Engl. J. Med. 341, 793–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Leizorovicz, A. et al. Randomized, placebo-controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation 110, 874–879 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Cohen, A. T. et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ 332, 325–329 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kakkar, A. K. et al. Low-molecular-weight heparin and mortality in acutely ill medical patients. N. Engl. J. Med. 365, 2463–2472 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Kahn, S. R. et al. Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141 (Suppl. 2), 195–226 (2012).

    Article  CAS  Google Scholar 

  98. Seddighzadeh, A., Shetty, R. & Goldhaber, S. Z. Venous thromboembolism in patients with active cancer. Thromb. Haemost. 98, 656–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Department of Health. Using the Commissioning for Quality and Innovation (CQUIN) payment framework – Guidance on national goals for 2011/12 [online], (2010).

  100. Department of Health. VTE risk assessment data collection; Q3 2011–2012 Key Points [online], (2012).

  101. Park, K., Oh, S. Y. & Kim, W. S. Randomised phase III trial of very low dose warfarin to prevent catheter-associated thrombosis [abstract]. Proc. Am. Soc. Clin. Oncol. a2330 (1999).

  102. Couban, S. et al. Randomized placebo-controlled study of low-dose warfarin for the prevention of central venous catheter-associated thrombosis in patients with cancer. J. Clin. Oncol. 23, 4063–4069 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Bern, M. M. et al. Very low doses of warfarin can prevent thrombosis in central venous catheters. A randomized prospective trial. Ann. Intern. Med. 112, 423–428 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Heaton, D. C., Han, D. Y. & Inder, A. Minidose (1 mg) warfarin as prophylaxis for central vein catheter thrombosis. Intern. Med. J. 32, 84–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Young, A. M. et al. Warfarin thromboprophylaxis in cancer patients with central venous catheters (WARP): an open-label randomised trial. Lancet 373, 567–574 (2009).

    Article  PubMed  Google Scholar 

  106. Akl, E. A. et al. Anticoagulation for thrombosis prophylaxis in cancer patients with central venous catheters. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD006468. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD006468.pub4/full.

  107. Hettiarachchi, R. J., Prins, M. H., Lensing, A. W. & Buller, H. R. Low molecular weight heparin versus unfractionated heparin in the initial treatment of venous thromboembolism. Curr. Opin. Pulm. Med. 4, 220–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, A. Y. et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N. Engl. J. Med. 349, 146–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Deitcher, S. R. et al. Secondary prevention of venous thromboembolic events in patients with active cancer: enoxaparin alone versus initial enoxaparin followed by warfarin for a 180-day period. Clin. Appl. Thromb. Hemost. 12, 389–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Meyer, G. et al. Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. Arch. Intern. Med. 162, 1729–1735 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Hull, R. D. et al. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am. J. Med. 119, 1062–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Akl, E. A. et al. Anticoagulation for the long-term treatment of venous thromboembolism in patients with cancer. Cochrane Database Systematic Reviews, Issue 15. Art. No.: CD006650. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD006650.pub3/full.

  113. Lee, A. Y. et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J. Clin. Oncol. 23, 2123–2129 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Sørensen, H. T., Mellemkjaer, L., Steffensen, F. H., Olsen, J. H. & Nielsen, G. L. The risk of a diagnosis of cancer after primary deep venous thrombosis or pulmonary embolism. N. Engl. J. Med. 338, 1169–1173 (1998).

    Article  PubMed  Google Scholar 

  115. Sørensen, H. T., Mellemkjaer, L., Olsen, J. H. & Baron, J. A. Prognosis of cancers associated with venous thromboembolism. N. Engl. J. Med. 343, 1846–1850 (2000).

    Article  PubMed  Google Scholar 

  116. Schulman, S. & Lindmarker, P. Incidence of cancer after prophylaxis with warfarin against recurrent venous thromboembolism. Duration of Anticoagulation Trial. N. Engl. J. Med. 342, 1953–1958 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Young, A. Thromboprophylaxis in cancer patients with central venous catheters. Thesis, University of Birmingham (2010).

  118. Zacharski, L. R. et al. Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Final report of VA Cooperative Study #75. Cancer 53, 2046–2052 (1984).

    Article  CAS  PubMed  Google Scholar 

  119. Chahinian, A. P. et al. A randomized trial of anticoagulation with warfarin and of alternating chemotherapy in extensive small-cell lung cancer by the Cancer and Leukemia Group B. J. Clin. Oncol. 7, 993–1002 (1989).

    Article  CAS  PubMed  Google Scholar 

  120. Maurer, L. H. et al. Randomized trial of chemotherapy and radiation therapy with or without warfarin for limited-stage small-cell lung cancer: a Cancer and Leukemia Group B study. J. Clin. Oncol. 15, 3378–3387 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Altinbas, M. et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J. Thromb. Haemost. 2, 1266–1271 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Kakkar, A. K. et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J. Clin. Oncol. 22, 1944–1948 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Klerk, C. P. et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J. Clin. Oncol. 23, 2130–2135 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Sideras, K. et al. Low-molecular-weight heparin in patients with advanced cancer: a phase 3 clinical trial. Mayo Clin. Proc. 81, 758–767 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Akl, E. A. & Schünemann, H. J. Routine heparin for patients with cancer? One answer, more questions. N. Engl. J. Med. 366, 661–662 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Deftereos, S. et al. Prevention and treatment of venous thromboembolism and pulmonary embolism: the role of novel oral anticoagulants. Curr. Clin. Pharmacol. http://dx.doi.org/10.2174/1574212225641248847.

  127. Levine, M. N. et al. A randomized phase II trial of apixaban for the prevention of thromboembolism in patients with metastatic cancer. J. Thromb. Haemost. 10, 807–814 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Bauersachs, R. et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 363, 2499–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Büller, H. R. et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N. Engl. J. Med. 366, 1287–1297 (2012).

    Article  PubMed  Google Scholar 

  130. Cohen, A. T. et al. Extended-duration rivaroxaban thromboprophylaxis in acutely ill medical patients: MAGELLAN study protocol. J. Thromb. Thrombol. 31, 407–416 (2011).

    Article  CAS  Google Scholar 

  131. Guyatt, G. H. et al. Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141 (Suppl. 2), 7–47 (2012).

    Article  CAS  Google Scholar 

  132. Mandala, M. et al. Management of venous thromboembolism in cancer patients: ESMO clinical recommendations. Ann. Oncol. 20 (Suppl. 4), 182–184 (2009).

    PubMed  Google Scholar 

  133. Joffe, H. V., Kucher, N., Tapson, V. F. & Goldhaber, S. Z. Upper-extremity deep vein thrombosis: a prospective registry of 592 patients. Circulation 110, 1605–1611 (2004).

    Article  PubMed  Google Scholar 

  134. Kakkar, A. K., Levine, M., Pinedo, H. M., Wolff, R. & Wong, J. Venous thrombosis in cancer patients: insights from the FRONTLINE survey. Oncologist 8, 381–388 (2003).

    Article  PubMed  Google Scholar 

  135. Department of Health. The Operating Framework: for the NHS in England 2012/13 [online], (2011).

  136. NHS Litigation Authority. NHS Risk Management Standards 2012/13 [online], (2012).

  137. Department of Health. Risk Assessment for Venous Thromboembolism (VTE) [online], (2010).

  138. Khorana, A. A. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J. Thromb. Haemost. 6, 1983–1985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tesselaar, M. E. et al. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J. Thromb. Haemost. 5, 520–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Uno, K. et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br. J. Cancer. 96, 290–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tesselaar, M. E., Romijn, F. P., van der Linden, I. K., Bertina, R. M. & Osanto, S. Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J. Thromb. Haemost. 7, 1421–1423 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Khorana, A. A. et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin. Cancer Res. 13, 2870–2875 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Ay, C. et al. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 27, 4124–4129 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Ay, C. et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 112, 2703–2708 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Kröger, K. et al. Risk factors for venous thromboembolic events in cancer patients. Ann. Oncol. 17, 297–303 (2006).

    Article  PubMed  Google Scholar 

  146. Chirinos, J. A. et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Dawar, J. R., Rose, P. E., Chant, I. D. & Gordge, M. Are circulating endothelial cells increased in patients with venous thromboembolism and are levels greater in patients with underlying malignancy and venous thromboembolism? Br. J. Haematol. 153 (Suppl. 1), 7 (2011).

    Google Scholar 

  148. Falanga, A. et al. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 92, 143–151 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Young researched the data for the article. A. Young, O. Chapman, P. Rose and A. K. Kakkar made a substantial contribution to the discussion of content, and wrote and edited the manuscript prior to submission. C. Connor and C. Poole wrote sections according to their expertise, and critiqued the full manuscript and amended accordingly.

Corresponding author

Correspondence to Annie Young.

Ethics declarations

Competing interests

O. Chapman has received honoraria from Boehringer Ingelheim. P. Rose has received honoraria from Bayer Healthcare, Boehringer Ingelheim, Bristol Myers Squibb and Roche. A. K. Kakkar has received grants and honoraria from Bayer Healthcare, Boehringer Ingelheim, Eisai and Pfizer. He has acted as a consultant for, and received grants and honoraria from Sanofi Aventis and he has received honoraria from Bristol Myers Squibb and GlaxoSmithKline. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, A., Chapman, O., Connor, C. et al. Thrombosis and cancer. Nat Rev Clin Oncol 9, 437–449 (2012). https://doi.org/10.1038/nrclinonc.2012.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.106

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer