
LETTERS

Violation of the London law and
Onsager–Feynman quantization in
multicomponent superconductors

EGOR BABAEV1,2* AND N. W. ASHCROFT2

1Department of Theoretical Physics, The Royal Institute of Technology, 10691 Stockholm, Sweden
2Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
*e-mail: babaev@kth.se

Published online: 17 June 2007; doi:10.1038/nphys646

Non-classical response to rotation is a hallmark of quantum
ordered states such as superconductors and superfluids. The
rotational responses of all currently known single-component
‘super’ states of matter (superconductors, superfluids and
supersolids) are largely described by two fundamental principles
and fall into two categories according to whether the systems
are composed of charged or neutral particles: the London
law1 relating the angular velocity to a subsequently established
magnetic field and the Onsager–Feynman quantization of
superfluid velocity2,3. These laws are theoretically shown to
be violated in a two-component superconductor such as the
projected liquid metallic states of hydrogen and deuterium
at high pressures. The rotational responses of liquid metallic
hydrogen or deuterium identify them as a new class of
dissipationless states; they also directly point to a particular
experimental route for verification of their existence.

For superfluid systems composed of electrically neutral
particles (liquids, vapours or even solids4) and for slow rotations,
a fraction of the system, the superfluid fraction, remains
irrotational. However, in response to rotation above a certain
critical rotation frequency, the superfluid fraction comes into
rotation by means of vortex formation. Onsager2 and Feynman3

pointed out that the superfluid velocity (v) in these vortices
in single-component systems is quantized, and the circulation
quantum K depends only on the particle’s mass m and Planck’s
constant h̄: K = (1/2π)

∮
v · dl = h̄/m. For superfluids with, for

example, p-wave symmetry of the order parameter, which are
also invariant under simultaneous phase and spin transformations,
this quantization is modified5. A special situation also occurs
in a mixture of superfluids, where a superfluid velocity of one
condensate can drag the superfluid density of another6,7.

For systems composed of charged particles that are
also superconducting, vortices are not induced by rotation.
London showed that a uniformly rotating single-component
superconductor generates a persistent current in a thin layer
near its surface, and this in turn produces a detectable magnetic
field, the London field1. London related this field to the rotation
frequency, �, according to B = −(2mc/e)�, where m is the
electron’s mass, e denotes its electric charge and c is the speed of
light. This law is experimentally confirmed (see for example ref. 8).
Of crucial significance is the fact that the experimentally observed
London law involves only fundamental constants, and not materials
properties specific to the superconductor (such as an effective

mass for electrons). This law also holds with no modifications for
electronic superconductors with d- and p-wave pairing symmetry.

We consider the responses to rotation of the projected novel
quantum states with two electrically charged components showing
off-diagonal long-range order and that are now the subjects of
renewed experimental pursuit. Liquid metallic states of hydrogen
were predicted earlier to show Cooper pairing in both protonic
and electronic channels9; however, it should be noted that an even
simpler situation may occur in liquid metallic deuterium because
deuterons are bosons and can undergo condensation without the
need for a pairing instability. Also in a hydrogen-rich alloy under
extreme but experimentally accessible pressures both electrons and
protons may be mobile in a crystalline lattice10. Finally, a rotational
response similar to that discussed below would be present in
solid metallic hydrogen and deuterium if they possessed a metallic
equivalent of supersolidity. For brevity below we shall always refer
to ‘liquid metallic hydrogen (LMH)’, but it is important to keep
in mind that the range of potential applications is much wider,
including recent discussions of possible presence of several charged
baryonic condensates in neutron stars11. Previous studies of these
states have, however, mostly focused on the reaction of the system
to an applied magnetic field12,14,15; here, our intention is to study the
reaction of the system to rotation.

In the hydrodynamic approach a two-component
superconductor is described by the following free energy:

F =

∑
α=e,p

1

2mα

|Ψα|
2(∇θα ± eA)2 +

(∇ ×A)2

2
.

Here, Ψα = |Ψα|eiθα and mα (α = e,p) denote electronic and
protonic condensate wavefunctions and corresponding masses and
A is the vector potential. In this work we focus on the effects
caused by the coupling to the gauge field and thus we do not
consider possible drag effects6, nor do we consider different pairing
symmetries. In what follows we set h̄= 1,c = 1. This model can be
rewritten as

F =
1

2

|Ψe |
2

me

|Ψp |
2

mp

|Ψe |
2

me
+

|Ψp |
2

mp

(
∇

(
θe + θp

))2
+

1

2

1
|Ψe |

2

me
+

|Ψp |
2

mp

×

(
|Ψe|

2

me

∇θe −
|Ψp|

2

mp

∇θp − eA

[
|Ψe|

2

me

+
|Ψp|

2

mp

])2

+
B2

2
.

(1)

530 nature physics VOL 3 AUGUST 2007 www.nature.com/naturephysics

© 2007 Nature Publishing Group 

mailto:babaev@kth.se
http://www.nature.com/doifinder/10.1038/nphys646


LETTERS

The first term here shows no coupling to the gauge field and
therefore represents a neutral (or superfluid) mode, which is
associated with codirected flows of electronic and protonic Cooper
pairs (with no net charge transfer)12. The second term accounts for
the superconducting (or charged) sector of the model describing
electrical currents. In what follows, we denote a vortex with phase
windings (1θe = 2πne,1θp = 2πnp) by a pair of integers (ne,np).

We begin with inspection of the composite neutral mode’s
response to rotation. The simplest topological excitation in the
superfluid sector of the model (that is, a simplest vortex that has
a non-trivial winding in the phase sum (θe + θp)) is a vortex with
the windings of only one of the phases: (±1,0) or (0,±1). We
note that because the first term in (1) is symmetric with respect
to electronic and protonic condensates both the (1, 0) vortex
and the (0, 1) vortex have identical configurations of the neutral
composite (that is, consisting of both electrons and protons)
superflow. The difference between these two vortices lies only in
the contribution to the second term in (1), representing the charged
(superconducting) sector of the model.

We first focus on a (0, 1) vortex. For this case, the
solution for vector potential A at distances from the
core much larger than penetration length is given by12

|A| = (1/|e|r)(|Ψp|
2/mp)[(|Ψp|

2/mp)+ (|Ψe|
2/me)]

−1, where r
is the distance from the core centre. The superfluid velocities
of electrons and protons in such a vortex at a large distance
from the core are vp = (∇θp + eA)/mp and ve = −eA/me. An
equilibrium of a rotating system is achieved when the quantity
Er = E−M ·� is minimal (� is the rotation frequency and M and
E are the angular momentum and energy). Observe that if a system
nucleates a (1, 0) vortex then not only protons but also electrons
contribute to the angular momentum, whose magnitude is given
by |M| = |Mp +Me| =

∫
(mp|Ψp|

2vp +me|Ψe|
2ve)r dV .

The superfluid velocity circulations for protons and electrons
in a (0, 1) vortex are given by

∮
v(e,p) · dl = 2πK(e,p) =

2π(|Ψ(p,e)|
2/m(p,e))[(|Ψp|

2/mp)+ (|Ψe|
2/me)]

−1(1/m(e,p)). From
this we observe that in the two-component superconductor the
Onsager–Feynman quantization rule is violated: the superfluid
velocity quantization is fractional and the electronic and protonic
circulation quanta Ke,p depend not only on mass but also on
densities according to
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The quantization conditions (2) also hold for the vortex (1, 0).
It has been argued previously that quantization of magnetic
flux in LMH is also fractional12. The fractionalization of
superfluid velocity quantization that we find here has, however,
a different pattern. To compare the fractionalization of the
magnetic flux quantum Φ0 = 2π/e and the fractionalization
of superflow quantization we introduce an angle β as a
measure of the ratio of the average condensate densities
as follows: sin2(β/2) = (|Ψe|

2/me)[(|Ψp|
2/mp) + (|Ψe|

2/me)]
−1;

cos2(β/2)= (|Ψp|
2/mp)[(|Ψp|

2/mp)+(|Ψe|
2/me)]

−1. Let K 0
(e,p)

=

1/m(e,p) be the standard superflow circulation quantum in a
one-component neutral superfluid composed of particles with the
masses of electronic and protonic Cooper pairs correspondingly.
The quantization fractionalization pattern in this notation is then
summarized in the Table 1.

The energy per unit length E0 of vortices (1, 0) and (0, 1)
contains a logarithmically divergent part arising from the first term
in (1) (refs 12,13):
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Table 1 Fractionalization of superflow circulation and magnetic flux quanta.

Vortex (1, 0) (0, 1)

Magnetic flux sin2 (β/2)Φ0 −cos2 (β/2)Φ0

Electronic superflow circulation cos2 (β/2)K 0
e cos2 (β/2)K 0

e

Protonic superflow circulation sin2 (β/2)K 0
p sin2 (β/2)K 0

p

where a is a cut-off length that depends on the core structure and R
is the distance from the vortex centre to the system boundary. The
formation of vortices in response to rotation is controlled by the
neutral mode (that is, by the first term in (1)). As discussed above,
the vortices (1, 0) and (0, 1) have the same neutral superflow but
different contributions to the second term in (1). The energetically
preferred excitations forming in response to rotation are therefore
the (0, 1) vortices, which carry a smaller fraction of Φ0.

A vortex (0, 1) placed into a cylindrical system with
radius R and unit height has an angular momentum
|M| = πR2(|Ψe|

2/me)(|Ψp|
2/mp)[(|Ψp|

2/mp) + (|Ψe|
2/me)]

−1

(me + mp). Vortices form when Er = E0 − M · � < 0. This
determines the critical rotation frequency as

Ωc ≈
1

R2(me +mp)
log

R

a
.

We can make a rough estimate of critical frequency:
Ωc ≈ (me/mp)(e2/a0)(a0/R)2 log(R/a), where a0 is the Bohr
radius, which for a 100 µm sample is of the order of 10Hz. Note that
from the above considerations it follows that in a similar system but
composed of two types of particle with equal masses and charges
(such as electronic superconductors where multicomponent order
parameters arise from non-s-wave pairing symmetry) no vortices
can be induced by rotation.

A quite deep difference in the rotational physics in two-
component charged systems is manifested especially in the novel
‘aggregate states’ of vortex matter they should allow. As discussed
above, in the simplest case the rotating system forms a lattice of
(0, 1) vortices (see Fig. 1a). The most interesting situation arises
when a rotating system is also subjected to a magnetic field. In
this case the possible states of vortex matter are numerous, and we
will consider here some particularly interesting possibilities of novel
states of ‘vortex matter’.

If a weak magnetic field is applied in a direction opposite to
the field of rotation-induced vortices, the superconducting sector
of (1) will try to minimize its energy by introducing (1,−1)
vortices. These vortices have no neutral superflow (electronic and
protonic currents are counter-directed) but carry onemagnetic flux
quantum12. However, a vortex (1,−1) is not stable in a lattice of
(0, 1) vortices because it experiences an attraction to such vortices
within the range of the penetration length scale13. A (1,−1) vortex
therefore should annihilate with a (0, 1) vortex, resulting in a
(1, 0) vortex state. At length scales larger than the penetration
length a (1, 0) vortex has a Coulomb repulsive interaction with a
(0, 1) vortex similar to interaction between two (0, 1) vortices13,
and therefore under normal conditions will occupy a space in a
rotation-induced lattice of (0, 1) vortices; it can therefore be viewed
as a ground-state ‘electronic vortex impurity’ in a ‘protonic vortex
lattice’ (see Fig. 1b). The concentration of these ‘vortex impurities’
depends on the applied magnetic field and there are indeed many
interesting possibilities for their orderings and phase transitions.

Consider next a situation with a stronger magnetic field and
with a rotation frequency just above Ωc. Then the dominant
structure is a field-induced lattice of composite (1,−1) vortices
(as in the case of no rotation12,14,15). Here the energetically most
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Figure 1 Vortices in a two-component superconductor. a, A rotating
two-component superconductor forms a lattice of ‘protonic’ (0, 1) vortices (small red
tubes). The arrow denotes the direction of the self-induced magnetic field. b, When
an external field is applied in the direction opposite to the field carried by
rotation-induced vortices, the ground state possesses (1, 0) ‘electronic vortices’
(blue tubes) placed as ‘impurities’ in the protonic vortex lattice. c,d, In a strong
magnetic field, and for rotations just above the critical frequency, the ground state
features either ‘electronic vortex impurities’ in the lattice of composite vortices or
‘interstitial’ protonic vortices, depending on the applied field direction.

favourable way to introduce a superfluid momentum-carrying
vortex is the substitution of one of the (1,−1) vortices by a
(1, 0) vortex (see Fig. 1c). This vortex interacts repulsively with
its neighbours and carries almost one magnetic flux quantum, but
also possesses angular momentum in the superfluid sector. It is
therefore an ‘elementary vortex impurity’ in a lattice of composite
vortices. Such a system should show a number of novel phase
transitions and vortex-matter states. One such transition will occur
because there is a finite potential barrier for a ‘vortex impurity’
to jump from one lattice site to another. At certain temperatures
the vortex impurities should be able to move from one site to
another freely. There is an analogy between ‘light’ vortices, which
in the ground state are concentred with ‘heavy’ vortices, and a
system of Bose particles living on sites of a triangular lattice,
which is known to possess a supersolid state (see for example
ref. 16). In this analogy the z direction in the vortex lattices plays
the role of ‘time’ in the Bose system and the ‘heavy’ vortices
play the role of a robust ‘lattice potential’. There arises therefore
the possibility of an interesting ‘aggregate state of vortex matter’,
analogous to the supersolid state of Bose particles, which in
our case may be called a ‘vortex supersolid’. This state should
feature coexistence of crystalline order of vortices and ‘fluidity’
of ‘vortex impurities’. Because of the fluid state of light vortices
the phase of the corresponding condensate will be disordered in
the z direction, which in turn should destroy the order in gauge-
invariant phase sum. For this reason the transition into this ‘vortex
supersolid’ phase has an important physical consequence, namely,
the disappearance of superfluidity of particles along the rotation
axis, which constitutes the phase transition from superconducting
superfluidity to superconductivity selectively along this direction.

In the case where the rotation direction is inverted, while
the magnetic field is unchanged, the topological defects in the
superfluid sector that minimize energy in a rotating frame are
(−1,0) and (0,−1). The former vortex subtracts almost one

Magnetic field

Rotation

Figure 2 Rotating two-component superconductor. If a two-component
superconductor is brought into rotation two types of particle flow are generated: for
slow rotation the two components (here electrons and protons) start circulating in
opposite directions (schematically denoted by thick pink and light-blue arrows),
inducing a magnetic field B along the rotation axis. At a faster rotation a second type
of particle flow also appears in the form of quantum vortices. Here electrons and
protons flow in the same direction (thin dashed red and blue arrows). In this picture
the basic laws governing rotational response of one-component quantum fluids, the
Onsager–Feynman quantization of superflow circulation and the London law,
are violated.

magnetic flux quantum and should be compensated by two (1,−1)
vortices. In this scenario a lattice should become more dense
(with a certain energy penalty). On the other hand there is a
second possibility to acquire angular momentum: the introduction
of a (0,−1) vortex. This results in a different type of energy
penalty: a vortex (0,−1) interacts via a screened potential with
a composite vortex (1,−1) but the interaction strength is weaker
than between two composite vortices13. Therefore, such a vortex can
be introduced as an ‘interstitial vortex defect’ (see Fig. 1d), which,
for a range of parameters, should be amore energetically favourable
way to acquire angular momentum than the first possibility. The
‘light’ vortices may form an ‘interstitial vortex liquid’ state, whereas
the concentricity of light vortices with the lattice of heavy vortices
is controlled by a different energy scale. This is again a state
with coexistent vortex crystalline order and vortex defect fluidity
and yet another example of a ‘vortex supersolid’, which resembles
the supersolid state of interstitial particles in crystals discussed
in ref. 4.

Finally, let us discuss the reaction of the superconducting sector
of the system to rotation. It is important to note that electronic
and protonic Cooper pair momenta depend on the same vector
potential, Pα ≡ ∇θα = mαvα + eαA and hence A = (Pα/eα) −

(mα/eα)vα (where e(e,p) =±e). Consider now the situation without
an applied external field and low rotation frequencies, so that
there are no vortices (that is, Ω < Ωc). Then, taking the curl of
the previous expression, we arrive at the constraint dictated by
gauge invariance:

mp

ep
∇ ×vp =

me

ee
∇ ×ve. (3)

Turn first to the zero-temperature (T = 0) case when there is no
normal component. If the condensate charges entering the problem
are opposite (as is indeed the case for LMH) this equation has
a trivial solution: vp = ve = 0; that is, at T = 0 for Ω < Ωc the
condensates remain irrotational. However, in the presence of a
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normal component with a net electric charge its rotation produces
an electric current, so vp = ve = 0 can no longer be a stationary
solution. From (3) it also follows that, in contrast to London’s
picture for ordinary superconductors1, superconducting electrons
and protons will not follow the rotation of the normal component
because it would violate constraint (3). This dictates a counter-
intuitive situation, namely that in response to slow rotation the
superconducting electrons and protons can move only in opposite
directions and at different speeds. Their superconducting velocities
can be expressed in the following form: vα = γα� × r. To find
γα we first observe that from the stationarity requirement we
can obtain an extra condition by equating the rotation-induced
electric current of the normal component (multiplied by−1) to the
rotation-induced current response of the superconducting sector
subject to constraint (3): Js = (epγp|Ψp|

2
+ eeγe|Ψe|

2)�× r. From
the overall electrical neutrality of the system it follows that the
rotation-induced normal current is Jn =−(ep|Ψp|

2
+ee|Ψe|

2)�×r.
Hence we find

vp =
|Ψp|

2
−|Ψe|

2

|Ψp|
2 +

mp

me
|Ψe|

2
�×r; ve =

|Ψe|
2
−|Ψp|

2

|Ψe|
2 +

me

mp
|Ψp|

2
�×r.

To sustain these counter-currents a rotating two-gap
superconductor should generate in its bulk a vector potential and
hence rotation induces a magnetic field:

Brot =
2

e

|Ψp|
2
−|Ψe|

2

|Ψp |
2

mp
+

|Ψe |
2

me

�. (4)

Whereas in the bulk the superfluid electrons and protons have the
velocities ve,p, the field Brot is generated by velocity variations in the
layer near the system’s edge with thickness of the penetration length
l = (e2[|Ψp|

2/mp+|Ψe|
2/me])

−1/2. This follows from the equation
for magnetic field variation, namely −l2

∇
2B(r) + B(r) = Brot.

Equation (4) demonstrates a remarkable circumstance: the London
law in the two-component superconductor is actually violated.
The rotation-induced field is not a universal function of the
fundamental constants irrespective of microscopic details. Indeed,
it acquires a dependence on densities. At temperatures just below
the superconducting transition for protons a rotating sample of
radius R generates a magnetic flux of the order of R2Ω flux quanta
(R given in cm and Ω in s−1), which could be detectable with
modern superconducting quantum interference devices even for
samples as small as 10 µm rotating at 1Hz (we note that it is easier
to achieve high pressures in small samples, which makes it a very
convenient experimental probe). Going to a larger sample or higher
rotation frequency would even allow measurement of the ratio

of the condensate densities and their temperature dependences,
as follows from (4). Moreover, of course, its absence would even
rule out protonic superconductivity or deuteronic condensation. It
follows that a direct experimental route exists for the verification of
this possible new class of dissipationless states.

Though this has been cast in terms of a possible failure of
London’s law (otherwise rigorously applicable up to relativistic
corrections in electronic superconductors), the major issue
discussed here might well be viewed as a possible extension of
the classifications of the rotational responses of quantum fluids.
Rotational response is a quintessentially state-defining property of
quantum fluids, and the one we find in LMH (as summarized
in Fig. 2) is seen to be quite complex; it involves both co- and
counter-directed electrical currents, and in particular a current in
the direction opposite to rotation. This suggests a classification of
the projected liquid state of metallic hydrogen as a new quantum
fluid, and one that may present considerable opportunity for new
and emerging physics.
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