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Coulomb interactions can have a decisive effect on the ground state of 

electronic systems. The simplest system in which interactions can play an interesting 

role is that of two electrons on a string. In the presence of strong interactions the 

two electrons are predicted to form a Wigner molecule, separating to the ends of the 

string due to their mutual repulsion. This spatial structure is believed to be clearly 

imprinted on the energy spectrum, yet to date a direct measurement of such a 

spectrum in a controllable one-dimensional setting is still missing. Here we use an 

ultra-clean suspended carbon nanotube to realize this system in a tunable potential. 

Using tunneling spectroscopy we measure the excitation spectra of two interacting 

carriers, electrons or holes, and identify seven low-energy states characterized by 

their spin and isospin quantum numbers. These states fall into two multiplets 

according to their exchange symmetries. The formation of a strongly-interacting 

Wigner molecule is evident from the small energy splitting measured between the 

two multiplets, that is quenched by an order of magnitude compared to the non-

interacting value. Our ability to tune the two-electron state in space and to study it 

for both electrons and holes provides an unambiguous demonstration of the 

fundamental Wigner molecule state. 
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Two electrons confined to a one-dimensional string form one of the simplest 

realizations of an interacting quantum-mechanical system. The behavior of this system is 

governed by the balance between kinetic and interaction energies; When kinetic energy 

dominates, the electrons occupy particle-in-a-box levels along the string. In contrast, 

when interactions dominate, a Wigner-molecule ground state is formed, in which the 

repulsion of the two electrons drives them to localize at the two sides of the string
1,2

. 

Owing to the fermionic nature of the two particles their total wavefunction is anti-

symmetric with respect to electron exchange, leading to an intimate connection between 

their real space and spin-space behaviors. Consequently, the real-space charge separation 

in a Wigner molecule goes hand in hand with a spin-space signature, namely a dramatic 

quenching of its spin excitation energies
3
. 

Carbon nanotubes (NT) are an excellent system to search for the existence of a 

Wigner-molecule ground state. This system is known to have strong electron-electron 

interactions
4–8

, and due to recent technological breakthroughs
9
 it is now possible to 

fabricate NT devices clean enough to allow measurements down to the single-carrier 

limit
10–12

. Compared to III-V semiconductor systems
13–16

 in which Wigner molecule 

formation has been explored previously, in suspended NTs the screening of Coulomb 

interactions is strongly reduced and the one-dimensional confinement potential for 

electrons or holes can be shaped with gate electrodes. This ability to control the confining 

potential is critical because it allows one to distinguish between extrinsic electrostatic 

effects that spatially separate the two electrons and intrinsic separation driven by their 

repulsion. Furthermore, in addition to the conventional two-fold spin degeneracy in other 

semiconductors, electrons in NTs possess a two-fold orbital degeneracy (isospin), 

forming a four-fold spin-isospin subspace. Recent experiments
10

 have shown that the 

electrons’ spin and isospin in NTs are easily polarized by magnetic fields, which has been 

interpreted as an indication of Wigner-crystal order. However, more recently single-

particle spin-orbit coupling has been found in this system
11,17,18

, which similarly to 

interactions can also preferentially align the spins and isospins. In an attempt to 
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unambiguously identify the effects of interactions, recent theoretical works have focused 

on the case of two electrons, and have demonstrated that the role of interactions can be 

directly determined by measuring the excitation spectrum
19–23

. Two-electron excitations 

also play a key role in making quantum bits in NTs
24

. However, since interactions may 

hinder qubit implementation by suppressing Pauli-blockade physics
12,19,23

, experiments so 

far have been done in the non-interacting regime (due to geometry, dielectric 

environment, and level spacing)
18,25–28

. A measurement of the excitation spectrum of two 

electrons in the opposite regime of strong interactions has so far been missing, and holds 

the key for determining the strongly-interacting nature of this system. 

In this work we probe the excitation spectrum of two carriers, electrons or holes, 

confined to a NT quantum-dot by transport spectroscopy. We identify seven low-energy 

quantum states that fall into two multiplets that are symmetric or anti-symmetric under 

particle exchange in real space. We find that a single-particle description of the two-

electron system with spin-orbit coupling captures well the energy spectrum within each 

multiplet. Interestingly, however, the energy splitting between the two multiplets is 

quenched by an order of magnitude compared to its non-interacting value. We show that 

this quenching is a direct manifestation of the formation of a Wigner-molecule state. By 

measuring similar spectra for electrons and holes, having opposite response to disorder 

potential, we demonstrate the generality of our observation and the irrelevance of 

disorder. 

Our device, used previously to study spin-orbit coupling of one electron (1e) in a 

single quantum dot, is now used to study two-electron (2e) states in a molecular regime. 

We obtain essentially identical results for two holes (Supplementary S5). The device 

consists of a NT suspended above a pair of split-gate electrodes and contacted by source 

and drain electrodes (Fig. 1a). The charge stability diagram, measured as a function of the 

common voltage on the gates,   , and their difference (detuning),  , (Fig. 1b) shows a 

rounded honeycomb structure, similar to that of a strongly tunnel-coupled double dot. 

This molecular configuration allows us to continuously transform between two different 

2e configurations: In one, the electrons are localized in different sites near the two ends 

of the NT (the (1,1) configuration), whereas in the other, both electrons occupy the same 
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site (the (0,2) configuration). Figures 1c and 1d show the measurement of the 2e 

excitation spectra in these two configurations. For each configuration we measure the 

conductance as a function of source-drain bias,    , and   . The parallel lines observed 

within these “Coulomb diamonds” correspond to the individual 2e excited states. Below 

we will show that the different excitation spectra, observed in these two configurations 

that differ by the detuning, provide crucial information for understanding the role of 

interactions in these molecular states. 

The interacting nature of two-electron states is expected to be clearly imprinted on 

their detuning-dependent energy spectrum, shown schematically for the non-interacting 

case in Fig. 2a, and for the strongly-interacting Wigner-molecule case in Fig. 2b. On the 

left side of the figure (low detuning) the two electrons are in the (1,1) molecular 

configuration, separated to the two sides of the NT. On the right side, the two electrons 

are in (0,2) molecular configuration, both occupying the same side. Since detuning 

increases the energy of the left side with respect to that of the right side, each state in the 

(1,1) configuration rises in energy with detuning, whereas each state in the (0,2) 

configuration falls in energy. In the figure we color the 2e states according to their 

symmetry with respect to electron exchange in real space: The ground state is always 

symmetric (S) in real space (red) whereas the first excited state is anti-symmetric (AS) in 

real space (blue). In the non-interacting limit and when the two electrons are on the same 

side (right side of Fig. 2a) in a spatially symmetric 2e wavefunction the two electrons can 

both occupy the lowest particle-in-a-box level, whereas in a spatially anti-symmetric 

wavefunction one electron must occupy the next particle-in-a-box level. Thus, in the non-

interacting limit there is a large symmetric – anti-symmetric splitting,      , equal to the 

single-particle level spacing,    . The situation is very different in the presence of strong 

interactions (Fig. 2b), which drive the two electrons apart in real space. Such electronic 

separation has very little effect on the anti-symmetric state, where the electrons are 

already separated in real space by virtue of symmetry, but it has a dramatic effect on the 

symmetric ground-state, in which in the absence of interactions both electrons strongly 

overlap. Interactions drive the density profile of the symmetric and antisymmetric states 

to be essentially identical (Fig. 2b), and correspondingly, their energy splitting becomes 
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strongly suppressed,          . The symmetric – anti-symmetric splitting,      , thus 

serves as a quantitative measure of the interaction strength and the real-space separation 

of a Wigner molecule. 

The same reasoning holds regardless of whether the two electrons occupy the (1,1) 

or (0,2) configuration. In fact, in the (1,1) case the suppression of       should be even 

more dramatic than for the (0,2) case. As will be shown below we indeed measure, as in 

previous works
13,16

 suppressed       for the (1,1) configuration. We note, however, that 

in the (1,1) configuration each electron is near an edge, and as such it is inherently 

attracted to its image charge in the metallic contact, effectively creating an artificial 

double-dot potential. This effect is as large as the repulsion between the electrons 

themselves and would act similarly to separate them in space. To critically test the effect 

of interactions between the electrons we must therefore localize them near one edge, 

effectively in a single dot. Then the attraction to an image charge on the same edge has an 

opposite effect than the electronic repulsion. The ability to squeeze the electrons to one 

side of the tube, used in this work, is thus fundamental for pinpointing the effects of their 

mutual repulsion.  

To adapt the above picture to a NT we need to recall that for each particle-in-a-box 

state along the NT there are four possible spin-isospin combinations, whose degeneracy 

is broken by spin-orbit interactions
11

. Correspondingly, states of two electrons have 

       possible spin-isospin combinations, 6 of them are spatially symmetric and 10 

are spatially anti-symmetric (Supplementary S1). Thus each line in the schematic 

diagrams of Figs. 2a or 2b should appear in multiple copies. However, only some copies 

should be visible in transport experiments that probe 1e-2e transitions, as illustrated in 

Figs. 2c and 2d. In all cases the system starts with one electron in the lowest single-

particle state (gray symbol) and a second electron hops in and out, providing a 

conductance signal. When the two electrons form a symmetric state in real space they 

cannot occupy the same spin-isospin state (Supplementary S1), leaving only the three 

high-lying states for the added electron (Fig. 2d). When they form an anti-symmetric 

state in real space all four states are available (Fig. 2c). Thus in total, seven out of the 

sixteen 2e states should appear in transport. 
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A clear way to experimentally distinguish the symmetric and anti-symmetric 

multiplets is by their magnetic-field fingerprints. A magnetic field parallel to the tube 

axis,   , couples to both the orbital and spin magnetic moments of the electron (up and 

down arrows in Figs. 2e-f) and shifts the energy of each spin-isospin state with a unique 

slope. As was previously demonstrated
11

, for a single electron this results in a 

characteristic “double-cross” structure, split at      by spin-orbit coupling,    . For 

two electrons in the non-interacting framework the addition spectrum measured by 

transport amounts to the energy of the added electron, resulting again in simple 

fingerprints: In the 2e anti-symmetric multiplet the added electron can populate all four 

spin-isospin states and thus the corresponding addition energies will have a double-cross 

pattern (Fig. 2e) identical to that of a single electron. In the 2e symmetric multiplet the 

lowest state is forbidden, leading to a double-cross without the lowest line (Fig. 2f), 

having a distinctive cusp at     . As a function of detuning these multiplets should 

evolve, depending on the strength of interactions, either like the non-interacting case 

(Fig. 2a) or as the strongly interacting case (Fig. 2b), only that now even at      we 

should see two copies of each line, split by     (Fig. 2g). Using the above identification 

tools we can proceed to experimentally study the 2e excitations. We start by measuring 

their dependence on    at three different detunings: in the (1,1) configuration (Fig. 3a), 

the (0,2) configuration (Fig. 3c), and at the crossover between them (Fig. 3b). In all 

figures we plot the conductance, measured at a finite    , as a function of    and    

(converted to energy on the right axis). Each line of enhanced conductance arises from a 

2e state, giving directly the magnetic-field dependence of the 2e energy spectrum. 

Looking first at the (1,1) configuration (Fig. 3a) we identify four lines, two with positive 

slopes and two with negative slopes. Notably, the magnetic moments and the zero-field 

splitting (              at     ) in this 2e spectrum are identical to those in the 

one-electron double-cross spectrum we reported earlier
11

  showing that the observed 

splitting is due to spin-orbit coupling (Supplementary S3). This allows us to clearly 

identify the spin and isospin quantum numbers of each state. At higher detuning (Fig. 3b) 

we observe additional excitations, most apparent as a cusp at     . Finally at even 

higher detuning in the (0,2) configuration (Fig. 3c), the double-cross (visible at    meV 



   

7 

 

above the ground state) remains the strongest feature, while the additional multiplet with 

a zero-field cusp fully emerges at low energies. 

The measured magnetic fingerprints (Figs. 3a-c) show remarkable similarity to the 

predicted ones (Figs. 3d-f) based on the non-interacting theory (Figs. 2e-f). The low-

energy, cusped multiplet observed at high detuning (Fig. 3c) can thus be identified with 

the symmetric multiplet (red lines, Fig. 3f), and the double-cross at higher energies with 

the anti-symmetric multiplet (blue lines, Fig. 3f). Experimentally, we observe one 

additional cross between the multiplets (Fig. 3c, at      meV above the ground state), 

which we associate with inter-valley backscattering processes (Supplementary S4). 

However, apart from it, the non-interacting framework quantitatively describes the entire 

structure within each multiplet. With decreasing detuning, the splitting between the 

multiplets decreases (Fig. 3b), until they fully overlap in the (1,1) configuration (Fig. 3a). 

We observe a spectrum identical in all of the above details for two holes (Supplementary 

S5), demonstrating that all these observations are generic. 

The crucial role played by interactions is unraveled when we measure the detuning 

dependence of the excitations (Fig. 4a). This figure plots the conductance at      as a 

function of   and    (converted to energy on the right y-axis). The lowest line 

corresponds to the 2e ground state. A parallel line, at energy      above it (labeled  ), 

arises from the width of our spectroscopic window set by          . The lines in 

between are the 2e excitations. These excitations are visible in this figure mostly at high 

detuning due to asymmetric coupling to the leads, while measurements at opposite     

(Supplementary S6) reveal their complementary dependence at low detuning, and the 

dashed guiding lines fit the data from both. By associating each excitation with its 

magnetic fingerprint in Fig. 3 we identify the pair of symmetric lines (red dashed), the 

pair of anti-symmetric lines (blue dashed) and the single line in between (due to inter-

valley backscattering, Supplementary S4). Notably all the excitation lines evolve from an 

up-going slope at low detuning to a down-going slope at high detuning, clearly indicating 

that all of them completely evolve from the (1,1) to the (0,2) configuration. The spectrum 

measured at high detuning shown in Fig. 3c is thus a direct observations of the energy 

spectrum of two electrons in a single dot (similarly for two holes in Supplementary Fig. 
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S4). As explained above, in the absence of interactions, the splitting between symmetric 

and anti-symmetric states should amount to the single-particle level spacing,    . In 

Supplementary S2 we directly extract this single-particle spacing from measurements of 

the 1e spectrum to be                . Remarkably, if we compare this spacing with 

the symmetric to anti-symmetric splitting in the 2e spectra we see that this 2e excitation 

energy is quenched by almost an order of magnitude compared to its non-interacting 

value. 

The drastic quenching of the symmetric – anti-symmetric excitation energy as 

compared to the non-interacting picture attests to the effect of strong electron-electron 

interactions. To better understand the role of interactions we performed an exact-

diagonalization calculation
29

 of the excitation spectrum (Supplementary S7) 

corresponding to the parameters of our 2e dot, as a function of the dimensionless 

interaction strength       
 ⁄ , where   

  is the effective Bohr radius and   is the length 

scale of the harmonic oscillator potential. Without interactions (    ) the ground state 

is of the symmetric multiplet, and the anti-symmetric multiplet is higher in energy by 

           . With increasing   , the anti-symmetric states drop in energy, becoming 

degenerate with the symmetric states for large   . In this limit the two electrons form a 

Wigner molecule, the transition to this state being continuous due to the one-

dimensionality and small number of electrons. Our experimental observation of a ten-fold 

quenching corresponds to the         case (arrow, Fig. 4b). As explained above, the 

quenching follows from the spatial separation of the two electrons. This becomes 

apparent by comparing the calculated electronic charge-density profiles along the NT in 

both multiplets for the non-interacting (Fig. 4c) and interacting (Fig. 4d) cases. Indeed, 

the density profiles calculated for the observed quenching are nearly identical for the two 

multiplets, demonstrating the strongly-interacting nature of this two-electron Wigner 

molecule. 

In summary, using transport spectroscopy of ultra-clean NT quantum dots we 

measure directly the excitation spectrum of two interacting electrons or holes. By tuning 

the 1D confinement potential we go between a state where the electrons are artificially 

separated by the confining potential to one where their separation is determined solely by 
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their interactions. In the latter case we observe seven quantum states, grouped into two 

multiplets according to spin-isospin symmetry. The magnetic fingerprint within each 

multiplet is reproduced by the non-interacting picture. Remarkably, however, the 

fundamental excitation involving a change in symmetry is dramatically quenched in 

energy compared to its non-interacting value. Using exact-diagonalization calculations 

we demonstrate that such quenching is a fundamental signature of a strongly-interacting 

Wigner molecule, in which electrons are spatially separated by their mutual repulsion. 

The spectroscopy of the NT Wigner-molecule, provided here for the first time, directly 

shows that suspended carbon NTs can host strongly-interacting ground states and opens 

the way for studies of a wider variety of strongly-interacting multi-electron states 

predicted to exist in one-dimensional systems.  

 

Methods 

Devices were fabricated from degenerately doped silicon-on-insulator wafers, with 

a 1.5-µm-thick device layer on top of a 2-µm buried oxide. Using dry etching and 

thermal oxidation (thickness 100 nm) we isolated two electrically-independent mesas 

from the device layer that served as bottom gates to the NT. Gate contacts (2/50 nm 

Ti/Pt), source and drain electrodes (5/25 nm Cr/Pt) and catalyst pads were patterned using 

electron-beam lithography. Nanotubes were grown after completing all patterning to 

produce clean devices. All measurements were performed in a dilution refrigerator with a 

base temperature of      mK. The electron temperature extracted from the width of 

the Coulomb peaks was         mK. The conductance was measured using standard 

lock-in techniques with small excitations (typically        ).  
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Figure 1: Excitation spectra of a two-electron molecular state in an ultra-clean 

carbon nanotube (NT). a, Device schematic. A single ultra-clean NT is contacted by 

source and drain electrodes separated by 500 nm and suspended over two gate electrodes. 

The two gates induce a controllable electrostatic potential along the tube, as depicted by 

the energy band diagram. b, Measured charge stability diagram of the device. The 

differential conductance of the device,   
  

    
 (where   is the current and     is the 

source-drain bias), is plotted as a function of common voltage    
          

   
 and 

detuning   
       

   
 (    and     are the right and left gate voltages). Index pairs (   ) 

denote the charge configuration, where   ( ) is the number of electrons on the left (right) 

side of the NT. c, Conductance through the NT measured as a function of    and    , 

around the transition between (0,1) and (1,1) configurations (circle in panel b). The two 

parallel lines on the top left correspond to the 2e states and the one on the right, marked 

W, corresponds to the edge of the spectroscopic window. d, Similar measurement around 

the transition between (0,1) and (0,2) configurations (star in panel b). More 2e states are 

observed in this case as compared to panel c. 

Figure 2: Energy spectra predicted for two non-interacting and two strongly-

interacting electrons in a NT. a, Addition energy of the two lowest 2e states as a 

function of detuning in the non-interacting limit. On the left side the electrons populate 

the entire NT ((1,1) configuration) and on the right they are localized on one side ((0,2) 

configuration). Colors correspond to the symmetry of 2e states in real space (see labels). 

On the (0,2) side the splitting of these states,      , is equal to the single-particle level 

spacing,    . Side insets: charge density profiles calculated for the 2e states in the (0,2) 

configuration. b, Same, but for the strongly interacting (Wigner molecule) limit c, Spin-

isospin states contributing to the transport around the 1e to 2e Coulomb blockade 

transition, for a spatially anti-symmetric 2e state. The gray symbol is the starting 1e state 

and the blue symbols are the possible states for the added electron. Spin and isospin are 

denoted by the thin and thick arrows. d, Same for spatially symmetric 2e states. e, 

Addition energies of the spatially anti-symmetric 2e multiplet as a function of magnetic 

field parallel to the tube axis,   . The resulting magnetic fingerprint features a double-
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cross pattern, split at      by the spin-orbit coupling,    . f, Same, but for the 

symmetric multiplet. In this case a characteristic cusp is visible at     . g, The 

expected spectrum of 2e states in a NT at     , which should be similar either to that in 

panel a or to that in panel b, depending on the strength of interactions, but should also 

have two copies of each line due to the spin-isospin degrees of freedom. Numbers above 

the lines denote their      degeneracy. 

Figure 3: Magnetic-dependent spectra of the two-electron molecular states at 

different detunings. a-c, G measured as a function of    and    (converted to energy on 

the right axis) around the 1e to 2e transition. Lines of enhanced conductance correspond 

to tunneling via 2e states. Panel a is measured in the (1,1) configuration (      , 

       ), panel c is in the (0,2) configuration (      ,           ) and panel 

b corresponds to a detuning in between these configurations (      ,         )  . 

The line labeled W in panel c corresponds to a similarly labeled line, e.g. in Fig. 1d, 

representing the edge of the spectroscopic measurement window. In panel c we use the 

symbols from Figs. 2e-f to specify the spin and isospin content of each 2e state.  d-f, 

Theoretically calculated addition energies as a function of magnetic field for the 

detunings in panels a-c. Energies of the spatially symmetric states (red) and spatially anti-

symmetric states (blue) are calculated with the measured spin and orbital magnetic 

moments. The splitting between the symmetric and anti-symmetric multiplets in each 

panel is chosen to fit the measurement. 

Figure 4: Quenching of excitation energies in a Wigner molecule. a, G measured as 

a function of    and   at      and          , giving the detuning dependence of 

the NT 2e states. To enhance the visibility of individual states we plot the G normalized 

by its maximal value for every  . Dashed lines: guidelines marking the position of the 

anti-symmetric states (blue) and symmetric states (red), based also on a measurement at 

an opposite bias (Supplementary S6). Full lines: The non-interacting prediction for the 

energy of the anti-symmetric states (see Fig. 2a).      
(   )

 labels the splitting between the 

symmetric and anti-symmetric multiplets at large detuning (accurately extracted from 

Fig. 3c). The W-label line gives the edge of the spectroscopic window. b, Exact 

diagonalization calculation of the excitation energies of the symmetric multiplet (red) and 
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anti-symmetric multiplet (blue) in the (0,2) charge configuration as a function of 

interaction parameter   . An arrow marks the spectrum that best fits the experimental data 

(       ). States which do not appear in transport are omitted. c, Exact diagonalization 

calculation of the charge density as a function of position along the tube  ,  ( ), in the 

ground state of the symmetric (red) and anti-symmetric (blue) multiplets for       . d, 

Same, but for        . 
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 Symmetries of two-electron states in carbon nanotubes S1.

Electronic wavefunctions in carbon NTs consist of three components: a real-space 

component along the tube, a spin component, and an ‘isospin’ component related to the 

clockwise or counter-clockwise motion of the electron around the tube’s circumference
†
. 

Although the isospin is formally also a spatial degree of freedom, energetically it is well 

decoupled from the spatial component along the tube and is in fact strongly coupled to 

the spin degree of freedom via spin-orbit coupling. Thus, the total wavefunction is 

naturally decomposed into a spatial and a spin-isospin components:  

(                        . For a single electron, for each particle-in-a-box level in 

real space there are four possible spin-isospin combinations. Correspondingly, for two 

electrons there are         spin-isospin combinations. In this section we show how 

these states fall into multiplets with distinct symmetries and highlight which of these 

states should be visible in tunneling spectroscopy. 

Since the total wavefunction of two electrons has to be anti-symmetric under exchange 

of electrons, the behavior in the spatial and the spin-isospin subspaces is anti-correlated: 

If the wave function is symmetric (S) in real-space it must be anti-symmetric (-) in spin-

isospin space. Similarly, if it anti-symmetric (AS) in real-space, it has to be symmetric 

(+) in spin-isospin space. Note that throughout the main text we refer to the 2e states 

through their symmetry in real-space (S or AS), since this is the degree of freedom that 

naturally couples to Coulomb interactions. 

The breakdown of the 16 two-electron spin-isospin combinations according to their 

symmetries is as follows: To form a ‘singlet-like’ (-) state in spin-isospin subspace we 

can combine a singlet in spin with a triplet in isospin and vice versa, yielding in total of 

           states. To form a ‘triplet-like’ (+) state in spin-isospin subspace we 

can combine a spin triplet state with an isospin triplet state or a spin singlet state with an 

isospin singlet state, giving in total            states. 

                                                 
†
 We note that both the spin and isospin degrees of freedom couple to a magnetic field, and in this work 

we use the terms “spin” and “isopin” to refer to the spin and isospin magnetic moments (which are the 

observables in our experiments) opposed to the angular momenta (which strictly speaking cease to be good 

quantum numbers in the presence of spin-orbit coupling and K-K’ scattering). 
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To define more specifically these different states we denote the isospin of each 

electron by   (  ) and its spin by   ( ), where the spin quantization is along the tube 

axis. One-electron states then read as |  ⟩, |   ⟩, |  ⟩, and |   ⟩, while the non-

symmetrized two-electron states read as |  ⟩ | 
  ⟩ , |   ⟩ | 

  ⟩ , etc., where the 

index refers to the first and second electron. After symmetrization or anti-symmetrization 

the relevant states become, for example:  

|     ⟩   
 

√ 
 |  ⟩ | 

  ⟩   |   ⟩ |  ⟩   

In the absence of spin-orbit coupling and electron-electron interactions all the states 

within the (+) or (-) multiplets are degenerate. However, in the presence of spin-orbit 

interactions the states split according to the relative alignment of their spin and isospin. 

For two electrons there are three different energetic configurations: If both electrons have 

parallel spin and isospin the energy is      , if one has parallel alignment and another 

antiparallel alignment than the energy is zero, and if both are antiparallel than the energy 

is     (where we assumed that the sign of the spin-orbit interactions prefers to parallel 

alignment of spin and isospin) (see Fig. 3 in Ref. 1). 

In transport experiment that probe the 1e to 2e transition, only 7 out of the 16 states 

are visible due to selection rules imposed by sequential tunneling. Assuming that a single 

electron initially occupies the ground state |  ⟩, a second electron can be added to any 

of the four spin-isospin states if the total wavefunction is spatially anti-symmetric, but 

can only occupy the other three spin-isospin states, if it is spatially symmetric, namely: 

 Spatially Spatially 

 Anti-Symmetric Symmetric 

|  ⟩  |  ⟩  |    ⟩  

|  ⟩  |   ⟩  |     ⟩        |     ⟩  

|  ⟩  |  ⟩  |    ⟩         |    ⟩  

|  ⟩  |   ⟩  |     ⟩        |     ⟩  

In comparison, transitions such as |  ⟩  |    ⟩ are not allowed, as they involve a 

change in the spin or isospin of both electrons simultaneously. Thus, if transport starts 
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from one electron in the ground states then there are four anti-symmetric and three 

symmetric possible end states. The counting is summarized in table S1. 

Table S1 Counting the two-electron states according to their symmetries in real space. 

 Direct measurement of the single-particle level spacing S2.

In order to estimate the effect of interactions in our two-electron system, we compare 

in the main text the splitting between the symmetric and anti-symmetric multiplets, 

     , with the single-particle level spacing of the right dot,    . In this section we 

demonstrate how this level spacing is directly determined from the excitation spectrum of 

a single electron. 

Figure S1a shows the conductance,  , measured as a function of gate voltage,   , and 

source-drain bias,    , at the             transition at       . This measurement 

directly reflects the energy spectrum of a single electron in the right dot. Three pairs of 

excitation lines, apparent as lines of high conductance, are visible: A low-energy pair 

(labeled      ) a pair at intermediate energies (labeled       ) and a pair at high 

energies, whose splitting is barely visible (labeled      ). The states             can be 

directly associated with the four spin-isospin states of the lowest particle-in-a-box level. 

In fact, their energies perfectly fit the magnetic-field dependence of the states, shown as 

an orange double-cross in Fig. S1b: The lowest states correspond to |  ⟩ and |  ⟩ and 

their extracted splitting,                , matches well the expected splitting: 

                          (s is the spin contribution to the magnetic 

moment). States of opposite isospin are split by the magnetic field by        

              (     is the orbital contribution to the magnetic moment) matching 

the observed splitting between the         pair and the         pair. Finally, the high-

energy pair of    states is expected to be split by                           , 

also faintly observed in the measurement. This clearly demonstrates that the four 

Real-Space Spin    Isospin Total 
Should appear in 

transport 

Symmetric - 6 3 

Anti-Symmetric + 10 4 
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excitations             are the four spin-isospin states of a single electron in the lowest 

particle in a box level. 

The remaining pair of lines at intermediate energies         are separated from the 

low-energy pair by       
 

 
(       )  

 

 
(       )                , 

and so their isospin must be parallel to the field    . This pair must then correspond to 

the first excited level, which for a single electron corresponds to the second particle-in-a-

box state. Its corresponding magnetic field dependence is shown in purple in Fig S1b. 

Specifically we see that the splitting between the states      ,                 fits 

well the predicted one                 . 

  

Figure S1: Measurement of the single particle level spacing of the right dot. a. One-electron excitation 

spectrum at the transition (0,0)-(0,1). Conductance G is plotted as a function of gate voltage     and source-drain bias 

    at magnetic field        featuring parallel lines corresponding to 1e excitations. b. Predicted magnetic-field 

dependence of the 1e spectrum allowing identification of excitation in a. Spin (green) and isospin (magenta) are 

illustrated by up- and down-pointing arrows. States of the first (second) particle-in-a-box state appear in orange 

(purple). 

Having identified all the states, we can unambiguously determine the single-particle 

level spacing of the right dot from the energy difference between the         and 

         pairs. The level spacing is thus            . 

 Comparison of one-electron and two-electron excitation spectra. S3.

In the main text we classify the 2e states by their symmetry properties according to 

magnetic-field fingerprints based on the single-particle magnetic properties (Fig. 3). In 

this section we quantitatively compare the 1e spectrum (Fig. S2a) reported before
2
 and 
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the 2e spectrum at the transition to the (1,1) configuration (Fig. S2b, duplicating Fig. 3a 

in the main text). The two spectra are found to be practically identical, supporting the use 

of single-particle magnetic properties in the main text. 

 

Figure S2: Comparison of one-electron and two-electron excitation spectra. a, One-electron and b, Two-

electron magnetic-field dependence of the excitation spectrum: G is plotted as a function of     and    at finite bias 

(                                       . Lines of enhanced conductance correspond to tunneling via 1e (a) 

and 2e (b) states. Panel b reproduces Fig. 3a of the main text. 

We start by comparing the magnetic moments in the two spectra. From the 2e 

spectrum we extract               and               for the lower and upper 

crosses respectively. The average moment corresponds to the orbital contribution to the 

moment,                , whereas the difference corresponds to Zeeman splitting, 

giving the gyromagnetic factor          , both in good agreement with 1e moments 

reported before                      . This allows us to attribute the splitting at 

     to spin-orbit coupling, which measures to be                  , in 

excellent agreement with the 1e spin-orbit coupling                  . 

 Inter-valley Coulomb interactions in the observed excitation spectrum S4.

The measured excitation spectra of two electrons (Fig. 3c) or two holes (Fig. S4a) in a 

single dot, feature two more lines in addition to the seven states described in the main 

text. In this section we show how interactions, combined with long-lived excited states, 

may lead to the two extra lines that are not captured by the non-interacting picture. This 

section starts by describing the effect of inter-valley Coulomb interactions on the 
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complete two-electron excitation spectrum. We then describe how all the lines in the 

measured spectra can be accounted for by non-equilibrium transport. 

We define as inter-valley backscattering (VBS) the Coulomb-interaction process that 

exchanges the isospins of two interacting electrons (or holes) having opposite isospins. 

We first note that the effect of VBS is generally small with respect to forward scattering, 

i.e. Coulomb-interaction processes which do not involve valley exchange, such as inter-

valley Hartree-like interactions and all kinds of intra-valley interactions. This allows us to 

treat VBS within first-order perturbation theory. Forward scattering and quantum 

confinement then determine the energy splitting between the symmetric and anti-

symmetric multiplets, as described in the main text, whereas VBS and spin-orbit 

interaction determine the splitting within each multiplet, as we describe below. Second, 

qualitatively speaking, the effect of VBS scattering is short ranged, since it involves large 

momentum transfer between the scattered particles. It therefore has negligible effect on 

the spatially anti-symmetric multiplet, where the two electrons have small probability to 

be one close to the other along the nanotube axis. 

By including the effect of VBS in our exact-diagonalization calculation we obtain the 

2e spatially symmetric spectrum presented in Fig. S3b. The calculation shows two main 

differences compared to the non-interacting spectrum (Fig. S3a): First, the four-fold 

degeneracy of the central line at      is broken by     . Second, the apparent spin-

orbit gap is enhanced        
  √   

      
 . The magnetic fingerprint of the 

symmetric multiplet is therefore slightly altered by interactions. 



8 

 

 

Figure S3 Predicted effect of inter-valley backward scattering on the spatially symmetric 2e excitation 

spectrum. a. Schematic energy spectrum of symmetric 2e states as a function of    in the non-interacting picture. The 

states are split at      by spin-orbit coupling    . b. same as a in the presence of inter-valley backward scattering. 

The four-fold degeneracy as      is lifted by      and     is replaced by    
  √   

      
 . 

Whereas VBS leads to energy shifts in the 2e spectrum, interactions alone do not fully 

account for the measured spectrum. As long as transport starts and ends with a single 

electron occupying the ground state of the dot, as described in the main text, it leads to 7 

spectroscopic lines. However, additional lines would appear if the starting electron 

occupied instead a metastable state having a long lifetime. A natural candidate for such a 

metastable state is |   ⟩, which has spin and isospin opposite to the ground state |  ⟩ 

leading to long expected relaxation times. Table S2 lists all the processes starting in the 

|   ⟩ state and ending in spatially symmetric 2e states, along with their corresponding 

addition energies in both the non-interacting and interacting cases. The table enumerates 

three additional 2e states that are now accessible, two of which (lines 4-5 in the table) 

result in extra lines in the spectrum, whereas the last one does not appear in the transport 

as it lies in the Coulomb-blockaded region (addition energies listed in Table S2 should 

not be confused with 2e energies plotted in Fig. S3). 

The measured spectra fully agree with the above picture and from them we extract 

                  for the 2e molecule, in agreement with the enhanced    
  

        , and                   for the 2h molecule, in agreement with    
  

        . It is interesting to note, however, that whereas the calculations agree 

qualitatively with the data and its symmetries, they yield     smaller by an order of 
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magnitude and opposite in sign compared to the value extracted from the experiment. 

This remaining puzzle is a challenge for future theories trying to understand the finer 

effects of interactions in this system. 

# Initial 1e state 
Final 2e 

state 

Addition energy 
Appears in 

transport? 
Non-

Interacting 

VBS induced 

shift 

1 
|  ⟩ 

(ground state) 

|     ⟩              
  Yes 

2 |    ⟩        Yes 

3 |     ⟩            Yes 

4 

|   ⟩ 
(metastable) 

|     ⟩           Yes 

5 |      ⟩       0 Yes 

6 |     ⟩             
  

No (In  

blockaded region) 
Table S2 Spectroscopic lines of the spatially symmetric multiplet taking into account the metastable state  

|   ⟩ and backward scattering. Lines 1-3 correspond to the three lines discussed in the main text. Lines 4-6 

correspond to three additional lines. Lines 1-5 lie within the spectroscopic window and thus appear in transport. 

 

 Excitation spectrum and detuning dependence of two holes in a single dot. S5.

In the main text we present spectroscopic evidence for the formation of a 2e Wigner-

molecule state. In this section we present the detuning dependence and magnetic-field 

dependence of 2h excitations, both remarkably similar in all aspects to the 2e data. This 

demonstrates that all the observations presented for electrons in the main paper are in fact 

generic and do not depend on details such as the charge of the carriers, disorder, and the 

strength or sign of spin-orbit coupling. 
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Figure S4: Excitation spectrum of a two-hole Wigner molecule. a. Magnetic-field depedent spectrum in the 

(2h,0) configuration. G is plotted as a function of    and   .                       b. Detuning dependence 

of the spectrum at      and         . Dashed lines in a and b – guides to the eye following the spatially anti-

symmetric (blue) and symmetric (red) multiplets and the spectroscopic window (black, W). The inter-multiplet splitting 

      is extracted from a.  

Figure S4a presents the magnetic-field dependent 2h excitation spectrum at the 

transition              . The conductance measured with             is plotted 

as a function of    and     (converted to energy on the right y-axis). The lines are 

matched with the magnetic-field fingerprints: The cusp at      and the cross above it 

are identified with the 2h symmetric multiplet, whereas the top-most double-cross is 

identified with the anti-symmetric multiplet. The remaining line is due to inter-valley 

interactions, as described in section S4 above. The data compares very well to the 1h 

magnetic-field dependence reported before
2
: The slopes match the 1h magnetic moments, 

and the      splitting agrees in sign and magnitude with the 1h spin-orbit coupling 

(                  in the symmetric multiplet and                   in the 

anti-symmetric). Finally, the avoided crossing between the |    ⟩ and |     ⟩ 

states seen in both multiplets at           matches the 1h disorder-induced valley 

mixing               . 

Figure S4b presents the detuning-dependent excitation spectrum at the 1h-2h 

transition. The conductance is plotted as a function of     (converted to energy on the 

right y-axis) and   at      and          . Five lines are seen within the 
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spectroscopic window (labeled W). From their magnetic-field dependence we identify the 

two bottom-most lines as the symmetric multiplet and the two top-most lines as the anti-

symmetric multiplet, while the remaining line is a result of inter-valley interactions (see 

S4). Both multiplets undergo a transition from the (1h,1h) charge configuration (up-going 

slope) to the (2h,0) configuration (down-going slope) as a function of detuning. The 2h 

spectrum presented in Fig. S4a (measured at         ) therefore corresponds to two 

holes in a single dot. Similar to the (0,2e) configuration, the multiplet splitting in the 

(2h,0) configuration, measured to be      
                    , is quenched by an order 

of magnitude with respect to the single-particle level spacing measured in the (1h,0) 

configuration
2
    

      
       . 

We conclude that the 2h system presents quenching of the inter-multiplet splitting, 

similar to that of the 2e system, even though the two systems differ considerably in spin-

orbit coupling (holes feature half as strong coupling of opposite sign compared to 

electrons, favoring anti-parallel spin and isospin compared to parallel in electrons) and in 

disorder-induced valley mixing (holes feature twice as strong mixing), have opposite 

charges, and sit in different dots. This supports that the formation of a Wigner-molecule 

state, manifested by the inter-multiplet excitation energy quenching, is indeed a generic 

phenomenon which does not depend on the above details of the system. 

 The complete detuning dependence of excited-state spectra from positive and S6.

negative bias measurements. 

Due to asymmetric coupling of the double dot to the two leads, excitations may appear 

stronger or weaker depending on the bias direction. In general, transport via excited states 

that have a strong tunneling barrier to the drain (source) is more visible for positive 

(negative) bias. Therefore the process                   is more visible in positive 

bias (Fig. 1c) while                   is more visible in negative bias (Fig. 1d).  The 

detuning dependent spectrum presented in the main text (Fig. S5a, duplicating Fig. 4a in 

the main text) was measured at negative bias, and its low-detuning excitations are thus 

very faint. However, the missing lines appear clearly at positive bias (Fig. S5b), and the 

spectrum is seen to continuously evolve with detuning. This is demonstrated by plotting 
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the same dashed guidelines on top of the two spectra, taking into account gating effects 

induced by the opposite source-drain bias. 

 

Figure S5: Complete detuning dependence of the 2e excitation spectrum. a. Measurement at negative bias 

          (duplicating Fig. 4a in the main text) G is plotted as a function of   and    (converted to energy on the 

right y-axis). b. same as a with           showing the low-detuning part of the spectrum that is missing on a. 

Identical guidelines are plotted on top of the two measured spectra, following the symmetric (red) and anti-symmetric 

(blue) multiplets and the spectroscopic window (black, W). The guidelines are shifted by          and    

       due to gating by the source-drain bias. 

 Exact diagonalization S7.

 In the main text we show the evolution with rs of two-electron excitation energies in a 

NT quantum dot (Fig. 4b), together with selected charge-density profiles (Figs. 4c and 

4d). These results are obtained by means of the exact-diagonalization method, also 

known as full configuration interaction. In this section we briefly review the key steps of 

the calculation. An overview of the method is reported in Ref. 3 and full details on its 

application to carbon NTs are provided in Ref. 4. With respect to Ref. 4, here we have 

improved our treatment of VBS interaction.  

Since the quantum-dot confinement potential is soft, being induced by electric gates, 

its generic low-energy dependence on the NT-axis coordinate x is quadratic. Therefore, 

within the envelope-function and effective-mass approximation, the one-electron 

wavefunction ),( srn


  may be written as 

),()()()()(),( srsrxAFsr nnn   

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where A is a normalization constant, )(xFn  is the envelope-function nth eigenstate of the 

one-dimensional harmonic oscillator (n = 0,1,2,), slowly varying with respect to the 

graphene lattice constant, )(s  is the electron spinor (with 1  being equal to the 

third component of spin, in units of 2/ ), and )(r


  is the bulk Bloch state whose wave 

vector is located at the bottom of conduction-band valley  in reciprocal space (valley   

if 1 , valley    if 1 , the quantum number   being the isospin). The one-

electron energy En is 

  ,2/2/1 so0  BBnE orbsn    

where the harmonic-oscillator energy quantum 8.70   meV is equal to the observed 

level spacing ls.  

Using ),( srn


  as one-electron basis set, the interacting Hamiltonian Ĥ  in second-

quantization acquires the form  

.ˆˆˆˆ
BWFWSP VVHH   

The single-particle term SPĤ  is 

,ˆˆˆ  




n

nnnSP ccEH  

where the fermionic operator 

nĉ ( nĉ ) creates (destroys) an electron with spin  and 

isospin  in the nth level of the harmonic oscillator. The forward-scattering (FS) term 

  
'''''' ''

''''''''''

''

''''''
ˆˆˆˆ

2

1ˆ

nnnn

nnnnnnnnFS ccccVV





 

includes all intra-valley scattering processes due to Coulomb interaction as well as 

Hartree-like inter-valley scattering terms. The FS matrix element  

)()'()'()'()(' ''''''

*

''

*''

'''''' rrrrUrrrdrdV nnnnnnnn




     



14 

 

depends on the static dielectric constant r of the electrostatic environment, here treated 

as a free parameter, through the so-called Ohno potential,  

,
'/

)'(
222

0

4

2

rrUe

e
rrU

r








 

which interpolates the two limits of Coulomb-like long range and Hubbard-like short 

range interactions (with Hubbard pz-site parameter U0 = 15 eV). The six-dimensional 

integral  ''

'''''' nnnnV  is evaluated by neglecting the overlap of pz orbitals on different sites and 

using the slow variation in space of the envelope function Fn(x).  

Backward interactions are included in the term  

,ˆˆˆˆ
2

1ˆ

'''''' '

''''''''''''''  






nnnn

nnnnnnnnVBS ccccVV






 

which exchanges the valleys of two scattering electrons when they have opposite 

isospins, otherwise it has no effect. The evaluation of VBS matrix elements  

)()'()'()'()(' '''''

*

'

*

'''''' rrrrUrrrdrdV nnnnnnnn




  

  
 

lies outside the range of applicability of the standard envelope-function theory. We will 

show elsewhere that such matrix elements contain the short-range part of interaction, 

weakly depend on the unknown NT chirality, and are smaller by orders of magnitude 

than FS matrix elements. On the other hand, FS matrix elements depend only on 

macroscopic NT parameters such as the radius R, which is deduced by the measured 

value of orb.   

We exactly diagonalize the FS Hamiltonian  

,ˆˆ
FSSP VH 

 



15 

 

which is a matrix in the Fock space of Slater determinants |i > that are obtained by 

filling with two electrons in all possible ways the lowest 50 one-electron orbitals n(r) 

(two-fold spin degenerate at B = 0). Both ground and excited two-electron states, |n >, 

expanded on the basis of Slater determinants, 

, 
i

i

n

in c

 

are obtained numerically, together with their energies, by means of the parallel home-

built code DonRodrigo. The diagonalization proceeds in each Hilbert-space sector 

labeled by the total spin component along the NT axis, total isospin, and parity under 

mirror reflection with respect to a plane perpendicular to the NT axis, placed in the 

middle of the quantum dot. The effect of VBS terms on eigenstates |n > of FS 

Hamiltonian is considered at the level of first-order degenerate perturbation theory. 

The code output (i.e., the expansion coefficients ci) is post-processed in order to obtain 

the charge density (x) for the nth excited state at given rs, 

.ˆˆ)()()( '''

''

**   

ij

immm

mm

mj

n

j

n

i ccxFxFccx 





 

The density parameter rs is estimated as the ratio of the characteristic harmonic oscillator 

length to the effective Bohr radius aB*, 

 
 

,
*2

** 2/1

0

2/3

2/12
1

2

2
2/1

0 r

r
s

me

emm
r





 

























 

where the electron effective mass m* is obtained through the formula 

,
3

*
2

R
m



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with  = 0.54 eV nm  being the graphene -band parameter.
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