
LETTERS
PUBLISHED ONLINE: 15 JANUARY 2012 | DOI: 10.1038/NPHYS2194

Experimental demonstration of a universally
valid error–disturbance uncertainty relation
in spin measurements
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The uncertainty principle generally prohibits simultaneous
measurements of certain pairs of observables and forms the
basis of indeterminacy in quantum mechanics1. Heisenberg’s
original formulation, illustrated by the famous γ-ray micro-
scope, sets a lower bound for the product of the measurement
error and the disturbance2. Later, the uncertainty relation
was reformulated in terms of standard deviations3–5, where
the focus was exclusively on the indeterminacy of predic-
tions, whereas the unavoidable recoil in measuring devices has
been ignored6. A correct formulation of the error–disturbance
uncertainty relation, taking recoil into account, is essential
for a deeper understanding of the uncertainty principle, as
Heisenberg’s original relation is valid only under specific
circumstances7–10. A new error–disturbance relation, derived
using the theory of general quantum measurements, has been
claimed to be universally valid11–14. Here, we report a neutron-
optical experiment that records the error of a spin-component
measurement as well as the disturbance caused on another
spin-component. The results confirm that both error and dis-
turbance obey the new relation but violate the old one in a wide
range of an experimental parameter.

The uncertainty relation was first proposed by Heisenberg2 in
1927 as a limitation of simultaneous measurements of canonically
conjugate variables owing to the back-action of the measurement:
the measurement of the position Q of the electron with the error
ε(Q), or ‘the mean error’, induces the disturbance η(P), or ‘the
discontinuous change’, of the momentum P so that they always
satisfy the relation

ε(Q)η(P)∼
h̄
2

(1)

where h̄ is Planck’s constant divided by 2π (here, we use h̄/2 for
consistency withmodern treatments). In amathematical derivation
of the above relation from the commutation relationQP−PQ= ih̄,
Heisenberg2 used the reciprocal relation σ (Q)σ (P) ≥ h̄/2 for
standard deviations σ (Q), σ (P) of position andmomentum, which
was proved shortly afterwards in ref. 3 for arbitrary wavefunctions.
This relation was generalized to arbitrary pairs of observables A,
B by Robertson4 as

σ (A)σ (B)≥
1
2
|〈ψ |[A,B]|ψ〉| (2)

in any states |ψ〉 with σ (A),σ (B)<∞. Here, [A,B] represents the
commutator [A,B]=AB−BA and the standard deviation is defined

1Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria, 2Graduate School of Information Science, Nagoya University,
Chikusa-ku, Nagoya 464-8601, Japan. *e-mail: Hasegawa@ati.ac.at.

as σ (A)2 = 〈ψ |A2
|ψ〉 − 〈ψ |A|ψ〉2. Note that a positive definite

covariance term can be added to the right-hand side of equation (2),
if squared, as discussed by Schrödinger5. For our experimental
setting, this term vanishes. Robertson’s relation (equation (2)) for
standard deviations has been confirmed by many different experi-
ments. In a single-slit diffraction experiment15 the uncertainty rela-
tion, as expressed in equation (2), has been confirmed. A trade-off
relation appears in squeezing coherent states of radiation fields16,
andmany experimental demonstrations have been carried out17.

Robertson’s relation (equation (2)) has amathematical basis, but
has no immediate implications for limitations on measurements.
This relation is naturally understood as limitations on state
preparation or limitations on prediction from the past. On the
other hand, the proof of the reciprocal relation for the error ε(A)
of an A measurement and the disturbance η(B) on observable B
caused by the measurement, in a general form of Heisenberg’s
error–disturbance relation

ε(A)η(B)≥
1
2
|〈ψ |[A,B]|ψ〉| (3)

is not straightforward, as Heisenberg’s proof2 used an unsupported
assumption on the state just after the measurement12, despite
successful justifications for the Heisenberg-type relation for
unbiased joint measurements8–10. Recently, rigorous and general
theoretical treatments of quantummeasurements have revealed the
failure of Heisenberg’s relation (equation (1)), and derived a new
universally valid relation11–14 given by

ε(A)η(B)+ε(A)σ (B)+σ (A)η(B)≥
1
2
|〈ψ |[A,B]|ψ〉| (4)

Here, the error ε(A) is defined as the root mean squared (r.m.s.) of
the difference between the output operator OA actually measured
and the observable A to be measured, whereas the disturbance
η(B) is defined as the r.m.s. of the change in observable B during
the measurement11,13 (see Methods, ‘Universally valid uncertainty
relation’, for details). The additional second and third terms
result mathematically from non-commutativity between B (A) and
the error (disturbance) operator (Equation (235) in ref. 13) and
imply a new accuracy limit ε(A)≥ (1/2)|〈ψ |[A,B]|ψ〉|σ (B)−1 for
non-disturbing (η(B)= 0) measurements and a new disturbance
limit η(B)≥ (1/2)|〈ψ |[A,B]|ψ〉|σ (A)−1 for noise-free (ε(A)= 0)
measurements, instead of ε(A) ∼ ∞ or η(B) ∼ ∞ as derived
from the Heisenberg-type relation (equation (3)). Note that the
above relations (equations (3) and (4)) are based on the state-
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Figure 1 | Concept of the experiment. A successive measurement scheme
of observables A and B is exploited for the demonstration of the
error–disturbance uncertainty relation. After preparing an initial state |ψ〉,
apparatus M1 is assumed to measure an observable A (red region). The
error ε(A) and the disturbance η(B) are experimentally controlled by
detuning apparatus M1 to make a projective measurement of OA instead of
A (light red). The disturbance η(B) on the observable B is caused by the
measurement made by apparatus M1, which randomly projects the state
onto one of the eigenstates of OA, and is quantified using the
B measurement carried out by apparatus M2 (yellow region). The
successive measurements of OA and B result in four possible outcomes,
denoted as (++), (+−), (−+) and (−−), from which error ε(A) and
disturbance η(B) are quantitatively determined.

dependent formulation of error and disturbance for arbitrary
observables. For the position–momentum case, there are different
approaches based on the state-independent formulation18–20, where
the lower bound for error–disturbance inequality depends strongly
on the measures used.

We have experimentally tested the universally valid error–
disturbance relation (equation (4)) for neutron-spinmeasurements21.

We set A and B as the x and y components of the neutron 1/2 spin.
(For simplicity, h̄/2 is omitted for each spin component.) The
error ε(A) and the disturbance η(B) are defined for a measuring
apparatus called M1, so that apparatus M1measures the observable
A = σx with error ε(A) and disturbs the observable B = σy with
disturbance η(B) during the measurement, where σx and σy denote
the Pauli matrices. To control the error ε(A) and the disturbance
η(B), apparatus M1 is designed to actually carry out the projective
measurement of OA = σφ = σx cosφ + σy sinφ instead of exactly
measuring A=σx by detuning the azimuthal angle φ of σφ between
0 and π/2, which is an experimentally controlled parameter, so that
ε(A) and η(B) are determined as a function of φ (see Methods
for details). As the output operator OA and the observable A to
be measured are not simultaneously measurable, their difference is
not a directly detectable quantity, and neither is the change of the
observable B. On this ground, the notions of the error ε(A) and
the disturbance η(B) have been often claimed to be experimentally
inaccessible19,22. To overcome this difficulty, we use the method
proposed in ref. 13 to determine the error ε(A) and the disturbance
η(B) from experimentally available data (see Methods for details).
A different method for the experimental demonstration of the same
relation (equation (4)), which exploits the weak-measurement
technique used for measuring momentum transfer in ref. 23, was
recently proposed in ref. 24.

In our experiment, a neutron beam passes a preparation
stage of the initial state |ψ〉. The error ε(A) is determined by
the data from the apparatus M1, and the disturbance η(B) is
determined by the data from another apparatus called M2, which
carries out the projective measurement of B on the state just
after the M1 measurement. Thus, the experiment is based on
the successive projective measurements of two non-commuting
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Figure 2 | Illustration of the experimental apparatus. The set-up is designed for demonstration of the universally valid uncertainty relation for error
and disturbance in neutron spin measurements. The neutron optical set-up consists of three stages: preparation (blue region), apparatus M1 making the
measurement of observable OA=σφ (red region) and apparatus M2 carrying out the measurement of observable B=σy (yellow region). A monochromatic
neutron beam is polarized in the+z direction by passing through a supermirror spin polarizer. By combining the action of four d.c. coils, the magnetic
guide field B0 and the analysing supermirrors, the successive measurements of σφ and σy are made for the required states (see Methods for details).
The error ε(A) and the disturbance η(B), as well as the standard deviations of σ (A) and σ (B), are determined from the expectation values of the
successive measurements.

186 NATURE PHYSICS | VOL 8 | MARCH 2012 | www.nature.com/naturephysics

© 2012 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys2194
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2194 LETTERS

Combined outcomes of M1 and M2 

= 0°

= 40°

= 90°

N
or

m
al

iz
ed

 in
te

ns
ity

 
(a

.u
.)

N
or

m
al

iz
ed

 in
te

ns
ity

 
(a

.u
.)

N
or

m
al

iz
ed

 in
te

ns
ity

 
(a

.u
.)

(++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬)

Combined outcomes of M1 and M2 

(++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬)

Combined outcomes of M1 and M2 

(++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬) (++) (+¬) (¬+) (¬¬)

φ

φ

φ

|+z 〈 |¬z 〈 |+x 〈 |+y 〈

|+z 〈 |¬z 〈 |+x 〈 |+y 〈

|+z 〈 |¬z 〈 |+x 〈 |+y 〈

1.00

0

0.50

0.75

0.25

1.00

0

0.50

0.75

0.25

1.00

0

0.50

0.75

0.25

Figure 3 | Experimental results. Normalized intensity of the successive
measurements carried out by apparatus M1 and M2. The successive
measurements of M1 and M2 have four outcomes, denoted as (++),
(+−), (−+) and (−−). Intensities, according to the corresponding
outcomes, are depicted for each initial state, that is |+z〉, |−z〉, |+x〉 and
|+y〉. Three sets for detuning parameter φ=0◦,40◦ and 90◦ are plotted.
The error ε(A) and the disturbance η(B) are determined from these 16
intensities, for each setting of the detuning parameter φ. Error bars
represent±1 s.d. of the normalized intensities. Some error bars are smaller
than the size of the markers.

observables OA in M1 and B in M2 as depicted in Fig. 1. The
apparatus M1 has two possible outcomes, that is +1 and −1,
corresponding to measurement operators Eφ(±1)= (1/2)(I±σφ).
The apparatus M2 also yields either +1 or −1, corresponding
to measurement operators Ey(±1) = (1/2)(I ± σy). Thus, the
successive measurements carried out by M1 and M2 finally result
in four intensities denoted as (++), (+−), (−+) and (−−).
The set-up of the neutron spin experiment is depicted in Fig. 2.
In the actual experiment the spin analysers select only one spin
component. Hence, the four possible outcomes are recorded
not at the same time, as in an ideal projective measurement,
but one after the other. As seen from equations (7) and (8),
error ε(A) and disturbance η(B) for the state |ψ〉 = |+z〉 are
obtained by making the successive measurements of OA and B
on the state |ψ〉 = |+z〉 as well as the auxiliary states |−z〉,
|+x〉 and

∣∣+y 〉.
The experiment was carried out at the research reactor facility

TRIGA Mark II of the Vienna University of Technology. The
monochromatic neutron beam with a mean wavelength of 1.96Å
propagates in the +y direction. The beam is approximately 99%
polarized crossing a bent Co–Ti supermirror array (polarizer)25.
Two analysing supermirrors (analysers) are adjusted to higher
incident angles so that the second-order harmonics in the incident
beam are suppressed. The final intensity was about 90 neutrons s−1
at a beam cross-section of 10 (vertical) × 5 (horizontal) mm2. A
3Hemonitor detector is used for normalization to correct statistical
fluctuations evoked by the reactor power. A BF3 detector with
high efficiency (more than 99%) is used for the experiment. To
avoid unwanted depolarization, a static guide field pointing in
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Figure 4 | Trade-off relation between error and disturbance. a,b, Error
ε(A) (a) and disturbance η(B) (b) both as a function of the detuning angle
φ with the plots of the values determined by the experiment. The theory
predicts ε(A)= 2sin(φ/2) and η(B)=

√
2cosφ. The experimental data are

in good agreement with theory, showing the trade-off: the less the error, the
more the disturbance. Error bars represent±1 s.d.

the +z direction with a strength of about 10 Gauss permeates
rectangular Helmholtz coils. In addition, the guide field induces
Larmor precession, which, together with four appropriately placed
d.c. spin rotator coils, enables state preparation and projective
measurements ofOA inM1 andB inM2 (seeMethods for details).

To test the universally valid uncertainty relation stated in
equation (4), the standard deviations σ (A) and σ (B), the error ε(A)
and the disturbance η(B) are determined. The measurements of the
standard deviations σ (A) and σ (B) are carried out by M1 and M2
separately, whereas error ε(A) and disturbance η(B) are determined
by successive projectivemeasurements usingM1 andM2.

Typical experimental data sets, for miscellaneous detuning
angles φ, are depicted in Fig. 3. The resulting values of ε(A) and
η(B), together with the theoretical predictions ε(A) = 2sin(φ/2)
and η(B)=

√
2cosφ (Methods), are plotted as a function of the

detuning parameter φ in Fig. 4. The trade-off relation of ε(A)
and η(B) is in good agreement with theory: when one observable
is measured more precisely, the other is more disturbed. The
calculated expectation values are normalized owing to the limiting
efficiency of the entire apparatus (∼96%), so that expectation
values are bounded between ±1 (Methods). Errors are calculated
using error propagation from the standard deviation of the count
rates and considering inaccuracies of the Larmor precession angles
(∼1.5◦): the latter stem mainly from inhomogeneity of the guide
field along the beam.

From the terms obtained above (error ε(A), disturbance η(B),
standard deviations σ (A) and σ (B)), the Heisenberg error–
disturbance product ε(A)η(B) and the universally valid expression
ε(A)η(B)+ ε(A)σ (B)+ σ (A)η(B), that is, the left-hand side of
(equation (4)), are plotted as a function of the detuned azimuthal
angle φ in Fig. 5a. This figure illustrates the fact that the
Heisenberg product is always below the calculated limit, and that
the universally valid expression is always larger than the limit in
the scanned range of φ.

The invalidity of the naive Heisenberg limit for projective mea-
surements of bounded observables, as in the present experiment,
has been discussed in ref. 14. In fact, the projective measurements
of A and B achieve ε(A)= 0 and η(B)= 0, respectively, whereas
we have 0 ≤ η(B),ε(A) ≤ 2 for any measurement. Thus, at least
some region around these points (φ=0 and φ=π/2) is expected to
exhibit the violation of equation (3).Moreover, owing to our choice
of observables and the initial state, we keep the Heisenberg product
ε(A)η(B) below the limit throughout the entire range ofφ.

Although the error is experimentally controlled by a single
parameter here, it is easily extendable for uncontrolled and
fluctuating parameters.Here, we concentrate on the situationwhere
the full trade-off relation between error ε(A) and disturbance η(B)
occurs. It is worth noting that the mean value of the observable
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Figure 5 | Experimentally determined values of the universally valid
uncertainty relation. a, The universally valid expression
ε(A)η(B)+ε(A)σ (B)+σ (A)η(B) (orange) and the actual Heisenberg
product ε(A)η(B) (red) as a function of the detuning angle φ with
theoretical predictions. The Heisenberg product is always smaller than the
calculated limit (1/2)|〈ψ |[A,B]|ψ〉| = 1 (depicted as the dashed line). In
contrast, the universally valid expression is always larger than the limit.
b, The two additional product terms σ (A)η(B) (green) and ε(A)σ (B) (blue)
in the universally valid expression together with the theoretical predictions.
ε(A), η(B) and σ (A) (σ (B)) represent error, disturbance and standard
deviations, respectively. Error bars represent±1 s.d.

A is correctly reproduced for any detuning angle φ, that is,
〈+z |OA|+z〉= 〈+z |A|+z〉, so that the projective measurement of
OA reproduces the correct probability distribution of A, whereas
we can detect the non-zero r.m.s. error ε(A) for φ 6= 0. What
has been shown by the uncertainty principle is the existence
of an unavoidable trade-off between measurement accuracy and
disturbance, but this principle has eluded a satisfactory quantitative
description for a long time. Our demonstration is the first evidence
for the validity of the new relation (equation (4)) proposed as
a universally valid error–disturbance relation11–14; moreover the

failure of the old relation (equation (3)) is also illustrated. Our
result demonstrates that the new relation solves a long-standing
problem of describing the relation between measurement accuracy
and disturbance, and sheds light on fundamental limitations of
quantummeasurements, for instance on the debate of the standard
quantum limit formonitoring free-mass position26–28.

Methods
Universally valid uncertainty relation. Any measuring apparatus M is, in
principle, modelled by the unitary operator U describing the time evolution of
the composite system of the measured object S and the probe system P during the
measuring interaction and the meter observable M of P actually measured after
the measuring interaction13. If the initial states of the object and the apparatus
are |ψ〉 and |ξ〉, respectively, the r.m.s. error ε(A) of M for measuring an
observable A of S and the r.m.s. disturbance η(B) of M caused on an observable
B of S are defined as

ε(A)=‖[U †(I⊗M )U −A⊗ I ]|ψ〉|ξ〉‖

η(B)=‖[U †(B⊗ I )U −B⊗ I ]|ψ〉|ξ〉‖

where ‖···‖ denotes the norm of the state vector and I stands for the identity
operator. Then, it is mathematically proved11,13 that equation (4) holds for any
unitary operator U for S+P, observableM of P and state vectors |ψ〉 of S and |ξ〉
of P. Suppose that the apparatusM has a family {Mm} of measurement operators29.
This means that the measuring apparatus M has possible outcomes m with
probability p(m)=‖Mm |ψ〉‖

2 and the state of the object S after the measurement
with outcome m is Mm |ψ〉/‖Mm |ψ〉‖. In this case, the r.m.s. error and r.m.s.
disturbance are given by14

ε(A)2=
∑
m

‖Mm(m−A)|ψ〉‖2 (5)

η(B)2=
∑
m

‖[Mm,B]|ψ〉‖2 (6)

If {Mm} consists of mutually orthogonal projections, the measurement is
called a projective measurement. In this case, equation (5) can be simplified as
ε(A)=‖(OA−A)|ψ〉‖ by the Pythagorean theorem, where OA =

∑
mmMm is

called the output operator.

Error and disturbance in spin measurements: theoretical determination. In the
experiment, we test the universally valid uncertainty relation (equation (4)) for
observables A=σx and B=σy , where the initial state |ψ〉 is |+z〉 and the measuring
apparatus M=M1 is considered to carry out the projective measurement of
OA = σφ = cosφσx+ sinφσy . Thus, the apparatus M1 is described by measurement
operators Eφ(+1)= (1+σφ)/2 and Eφ(−1)= (1−σφ)/2 withOA=

∑
x=±1xE

φ(x).
From equations (5) and (6), we have

ε(A)=‖(σφ−σx )|ψ〉‖= 2sin
φ

2

η(B)=
√
2‖[σφ/2,σy ]|ψ〉‖=

√
2cosφ

Experimental determination of error and disturbance. In the experiment,
we determine ε(A) and η(B) from statistically available data obtained by
successive neutron spin measurements. According to the former theoretical
analysis (refs. 13, p. 387), the error ε(A) is determined by mean values of OA in
three different states as

ε(A)2 = 〈ψ |A2
|ψ〉+〈ψ |O2

A|ψ〉+〈ψ |OA|ψ〉+〈ψ |AOAA|ψ〉
− 〈ψ |(A+ I )OA(A+ I )|ψ〉

= 2+〈ψ |OA|ψ〉+〈Aψ |OA|Aψ〉−〈(A+ I )ψ |OA|(A+ I )ψ〉
(7)

where we have used the following abbreviations: |Aψ〉 = A |ψ〉 and
|(A+ I )ψ〉= (A+ I )|ψ〉. As apparatus M1 carries out the projective measurement
of OA, to determine ε(A) for the basic initial state |ψ〉 we need only to measure
the intensities from apparatus M1 in the three auxiliary incident states of M1
corresponding to |ψ〉,A|ψ〉,(A+ I )|ψ〉. The expectation values expressed in
equation (7) are calculated from themeasured intensities, depicted in Fig. 3, using

〈ψ |OA|ψ〉=
(I+ ++ I+ −)− (I− ++ I− −)
I+ ++ I+ −+ I− ++ I− −

To detect the disturbance on B caused by apparatus M1, apparatus M2 carries
out the projective measurement of B in the state just after the M1 measurement.
The modified output operators of apparatus M2 for the initial state of M1 are given
by OB =

∑
x E

φ(x)BEφ(x) and O(2)
B =

∑
x E

φ(x)B2Eφ(x), which describe the mean
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and the second moment of the M2 measurement for the initial state of M1. Then,
from Eqs. (189) and (227) of ref. 13 the disturbance η(B) is also determined by
mean values ofOB in three different states as

η(B)2 = 〈ψ |B2
|ψ〉+〈ψ |O(2)

B |ψ〉+〈ψ |OB|ψ〉+〈Bψ |OB|Bψ〉
− 〈(B+ I )ψ |OB|(B+ I )ψ〉

= 2+〈ψ |OB|ψ〉+〈Bψ |OB|Bψ〉−〈(B+ I )ψ |OB|(B+ I )ψ〉
(8)

where the similar notations |Bψ〉 and |(B+ I )ψ〉 are used as before and the
expectation values are given by

〈ψ |OB|ψ〉=
(I+ ++ I− +)− (I+ −+ I− −)
I+ ++ I+ −+ I− ++ I− −

Thus η(B) is determined in the same manner as ε(A). By the relations |ψ〉= |+z〉,
A|ψ〉 = |−z〉, B|ψ〉 = i|−z〉, (A+ I )|ψ〉 =

√
2|+x〉, and (B+ I )|ψ〉 =

√
2
∣∣+y 〉,

where we set |+x〉 = (|+z〉+ |−z〉)/
√
2 and

∣∣+y 〉= (|+z〉+ i|−z〉)/
√
2, the

required states in equations (7) and (8) are generated by spinor rotations in the
experiment (Fig. 2); the normalization factors are confirmed experimentally in
spin-rotation measurement. Note that for a general observable X the state X |ψ〉
can be prepared with success probability ‖X |ψ〉‖2/‖X‖2 by applying a ‘completely
positive operation’30. Thus, the states A|ψ〉,(A+I )|ψ〉,B|ψ〉 and (B+I )|ψ〉 can be
prepared in principle without knowing what the state |ψ〉 is.

State preparation and successive neutron spin measurements. By using a
supermirror polarizer, the incoming monochromatic neutron beam (1λ/λ' 0.02)
is highly polarized (∼99%) in the +z direction. The state of the neutrons is
controlled basically by four d.c. coil spin-turners (Fig. 2). The first d.c. coil (d.c.-1)
produces a magnetic field in the x direction (Bx ), which can be used to rotate the
inital polarization vector about the x axis. By further exploiting Larmor precession
about the +z axis, induced by the static guide field present throughout the entire
set-up, and varying the position of d.c.-1, arbitrary initial states can be produced
at the end of the preparation stage (up to an irrelevant phase factor). In our
particular configuration the required states are |+z〉,|−z〉,

∣∣+y 〉 and |+x〉. For the
generation of |+z〉 d.c.-1 is switched off, whereas the spin is flipped by d.c.-1 for
|−z〉 preparation. The state

∣∣+y 〉 is generated by applying a π/2 rotation around
the x axis and the |+x〉 state is produced by further moving the position of d.c.-1
by one-quarter of the Larmor rotation period. The projective measurement of
observable OA is realized by similar mechanisms: the prepared state rotates about
the z axis owing to Larmor precession. Hence, by properly placing the d.c.-2 coil,
the spin component to be measured can be projected towards the +z direction,
where it is reflected by the supermirror analyser-1. After passing through this first
analyser in the +z state, d.c.-3 produces the eigenstate |±φ〉 = Eφ(±1)|ψ〉 of σφ
so that the apparatus M1 makes the projective measurement of OA to obtain the
mean values of OA in equation (7). In the same manner, apparatus M2 makes the
measurement of observable B on the eigenstate |±φ〉, which detects the disturbance
on the observable B. Hence we obtain the mean values of OB in equation (8) from
apparatus M2. The combination of the projective measurements of σφ and σy gives
four count rates at the neutron detector in the downstream of the beam. Note that
the measurement made by apparatus M2 is the error-free B measurement on the
state just after the measurement carried out byM1.
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In the version of this Letter originally published, in the Methods section under the heading ‘Error and disturbance in spin measurements: 
theoretical determination’ the equation defining η(B) was incorrect — the term σϕ should have been divided by 2 as shown below. This 
error has been corrected in the HTML and PDF versions of the Letter.
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