Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels

Abstract

Tonic neurotransmitter release at sensory cell ribbon synapses is mediated by calcium (Ca2+) influx through L-type voltage-gated Ca2+ channels. This tonic release requires the channels to inactivate slower than in other tissues. Cav1.4 L-type voltage-gated Ca2+ channels (LTCCs) are found at high densities in photoreceptor terminals, and α1 subunit mutations cause human congenital stationary night blindness type-2 (CSNB2). Cav1.4 voltage-dependent inactivation is slow and Ca2+-dependent inactivation (CDI) is absent. We show that removal of the last 55 or 122 (C122) C-terminal amino acid residues of the human α1 subunit restores calmodulin-dependent CDI and shifts voltage of half-maximal activation to more negative potentials. The C terminus must therefore form part of a mechanism that prevents calmodulin-dependent CDI of Cav1.4 and controls voltage-dependent activation. Fluorescence resonance energy transfer experiments in living cells revealed binding of C122 to C-terminal motifs mediating CDI in other Ca2+ channels. The absence of this modulatory mechanism in the CSNB2 truncation mutant K1591X underlines its importance for normal retinal function in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation and inactivation properties of mutant K1591X α1 subunits.
Figure 2: Inactivation properties of mutant K1591X α1 subunits at physiologically relevant potentials.
Figure 3: Properties of CDI of K1591X channels.
Figure 4: Gating modulation of Cav1.3 by C-terminal Cav1.4 sequence in chimeric channel constructs.
Figure 5: Activation and inactivation properties of Cav1.4ΔC122.
Figure 6: Effects of peptide C122 on the activation and inactivation properties of Cav1.4ΔC122.
Figure 7: Activation and inactivation properties of C-terminal truncation mutants Cav1.4ΔC55 and Cav1.4ΔC32.
Figure 8: FRET analysis of the binding of peptide C122 and CaM to various fragments of the Cav1.4 C terminus.

Similar content being viewed by others

References

  1. Catterall, W.A., Perez-Reyes, E., Snutch, T.P. & Striessnig, J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  Google Scholar 

  2. Lipscombe, D., Pan, J.Q. & Gray, A.C. Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Cavα1. Mol. Neurobiol. 26, 21–44 (2002).

    Article  CAS  Google Scholar 

  3. Soldatov, N.M., Zühlke, R.D., Bouron, A. & Reuter, H. Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40–42 in α1 subunit in the kinetics and Ca2+ dependence of inactivation. J. Biol. Chem. 272, 3560–3566 (1997).

    Article  CAS  Google Scholar 

  4. Zuhlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  CAS  Google Scholar 

  5. Lee., A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).

    Article  CAS  Google Scholar 

  6. Peterson, B.Z., DeMaria, C.D., Adelman, J.P. & Yue, D.T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  Google Scholar 

  7. Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl. Acad. Sci. USA 96, 2435–2438 (1999).

    Article  CAS  Google Scholar 

  8. Pitt, G.S. et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem. 276, 30794–30802 (2001).

    Article  CAS  Google Scholar 

  9. Erickson, M.G., Liang, H., Mori, M.X. & Yue, D.T. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39, 97–107 (2003).

    Article  CAS  Google Scholar 

  10. Van Petegem, F., Chatelain, F.C. & Minor, D.L., Jr . Insights into voltage-gated calcium channel regulation from the structure of the Cav1.2 IQ domain-Ca2+/calmodulin complex. Nat. Struct. Mol. Biol. 12, 1108–1115 (2005).

    Article  CAS  Google Scholar 

  11. Fallon, J.L., Halling, D.B., Hamilton, S.L. & Quiocho, F.A. Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Cav1.2 calcium channel. Structure 13, 1881–1886 (2005).

    Article  CAS  Google Scholar 

  12. Peterson, B.Z. et al. Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophys. J. 78, 1906–1920 (2000).

    Article  CAS  Google Scholar 

  13. Lee, A. et al. Differential modulation of Cav2.1 channels by calmodulin and Ca2+- binding protein 1. Nat. Neurosci. 5, 210–217 (2002).

    Article  CAS  Google Scholar 

  14. Chaudhuri, D. et al. Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels. J. Neurosci. 24, 6334–6342 (2004).

    Article  CAS  Google Scholar 

  15. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–489 (2001).

    Article  CAS  Google Scholar 

  16. Alseikhan, B.A., DeMaria, C.D., Colecraft, H.M. & Yue, D.T. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc. Natl. Acad. Sci. USA 99, 17185–17190 (2002).

    Article  CAS  Google Scholar 

  17. Platzer, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89–97 (2000).

    Article  CAS  Google Scholar 

  18. Corey, D.P., Dubinsky, J.M. & Schwartz, E.A. The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J. Physiol. (Lond.) 354, 557–575 (1984).

    Article  CAS  Google Scholar 

  19. Thoreson, W.B., Rabl, K., Townes-Anderson, E. & Heidelberger, R. A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42, 595–605 (2004).

    Article  CAS  Google Scholar 

  20. Wilkinson, M.F. & Barnes, S. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J. Gen. Physiol. 107, 621–630 (1996).

    Article  CAS  Google Scholar 

  21. Barnes, S. & Kelly, M.E. Calcium channels at the photoreceptor synapse. Adv. Exp. Med. Biol. 514, 465–476 (2002).

    Article  CAS  Google Scholar 

  22. Rabl, K. & Thoreson, W.B. Calcium-dependent inactivation and depletion of synaptic cleft calcium ions combine to regulate rod calcium currents under physiological conditions. Eur. J. Neurosci. 16, 2070–2077 (2002).

    Article  Google Scholar 

  23. von Gersdorff, H. & Matthews, G. Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons. J. Neurosci. 16, 115–122 (1996).

    Article  CAS  Google Scholar 

  24. Morgans, C.W. Neurotransmitter release at ribbon synapses in the retina. Immunol. Cell Biol. 78, 442–446 (2000).

    Article  CAS  Google Scholar 

  25. Mangoni, M.E. et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc. Natl. Acad. Sci. USA 100, 5543–5548 (2003).

    Article  CAS  Google Scholar 

  26. Koschak, A. et al. α1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J. Biol. Chem. 276, 22100–22106 (2001).

    Article  CAS  Google Scholar 

  27. Xu, W. & Lipscombe, D. Neuronal Cav1.3α1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  Google Scholar 

  28. Wilkinson, M.F. & Barnes, S. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J. Gen. Physiol. 107, 621–630 (1996).

    Article  CAS  Google Scholar 

  29. Firth, S.I., Morgan, I.G., Boelen, M.K. & Morgans, C.W. Localization of voltage-sensitive L-type calcium channels in the chicken retina. Clin. Experiment. Ophthalmol. 29, 183–187 (2001).

    Article  CAS  Google Scholar 

  30. Morgans, C.W. Localization of the α1F calcium channel subunit in the rat retina. Invest. Ophthalmol. Vis. Sci. 42, 2414–2418 (2001).

    CAS  PubMed  Google Scholar 

  31. Mansergh, F. et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum. Mol. Genet. 14, 3035–3046 (2005).

    Article  CAS  Google Scholar 

  32. McRory, J.E. et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J. Neurosci. 24, 1707–1718 (2004).

    Article  CAS  Google Scholar 

  33. Koschak, A. et al. Cav1.4α1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J. Neurosci. 23, 6041–6049 (2003).

    Article  CAS  Google Scholar 

  34. Baumann, L., Gerstner, A., Zong, X., Biel, M. & Wahl-Schott, C. Functional characterization of the L-type Ca2+ channel Cav1.4α1 from mouse retina. Invest. Ophthalmol. Vis. Sci. 45, 708–713 (2004).

    Article  Google Scholar 

  35. Striessnig, J. et al. L-type Ca2+ channels in Ca2+ channelopathies. Biochem. Biophys. Res. Commun. 322, 1341–1346 (2004).

    Article  CAS  Google Scholar 

  36. Hoda, J.C., Zaghetto, F., Koschak, A. & Striessnig, J. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Cav1.4 L-type Ca2+ channels. J. Neurosci. 25, 252–259 (2005).

    Article  CAS  Google Scholar 

  37. Hoda, J.C., Zaghetto, F., Singh, A., Koschak, A. & Striessnig, J. Effects of congenital stationary night blindness type 2 mutations R508Q and L1364H on Cav1.4 L-type Ca2+ channel function and expression. J. Neurochem. 96, 1648–1658 (2006).

    Article  CAS  Google Scholar 

  38. Strom, T.M. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 260–263 (1998).

    Article  CAS  Google Scholar 

  39. Pate, P. et al. Determinants for calmodulin binding on voltage-dependent Ca2+ channels. J. Biol. Chem. 275, 39786–39792 (2000).

    Article  CAS  Google Scholar 

  40. Romanin, C. et al. Ca2+ sensors of L-type Ca2+ channel. FEBS Lett. 487, 301–306 (2000).

    Article  CAS  Google Scholar 

  41. Boycott, K.M., Pearce, W.G. & Bech-Hansen, N.T. Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Can. J. Ophthalmol. 35, 204–213 (2000).

    Article  CAS  Google Scholar 

  42. Tremblay, F., Laroche, R.G. & De Becker, I. The electroretinographic diagnosis of the incomplete form of congenital stationary night blindness. Vision Res. 35, 2383–2393 (1995).

    Article  CAS  Google Scholar 

  43. Witkovsky, P., Schmitz, Y., Akopian, A., Krizaj, D. & Tranchina, D. Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current. J. Neurosci. 17, 7297–7306 (1997).

    Article  CAS  Google Scholar 

  44. Hulme, J.T., Yarov-Yarovoy, V., Lin, T.W., Scheuer, T. & Catterall, W.A. Autoinhibitory control of the Cav1.2 channel by its proteolytically processed distal C-terminal domain. J. Physiol., published online 29 June 2006 (doi:10.1113/jphysiol.2006.111799). (2006).

  45. Haeseleer, F. et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat. Neurosci. 7, 1079–1087 (2004).

    Article  CAS  Google Scholar 

  46. Kahr, H. et al. CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells. J. Physiol. (Lond.) 557, 121–132 (2004).

    Article  CAS  Google Scholar 

  47. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402 (2001).

    Article  CAS  Google Scholar 

  48. Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Strauß for comments on the manuscript, and G. Pelster and J. Aldrian for technical assistance. Wild-type and mutant calmodulin were gifts from J. Adelman (Vollum Institute, Portland, Oregon). This work was supported by the Austrian Science Funds (P-17109 and P-17159 to J.S.; P-15387 and P-16537 to C.R.) and by the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Striessnig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of C-terminal tails of neuronal Cav1 L-type channels. (PDF 578 kb)

Supplementary Fig. 2

Comparison of K1591X channels containing β2a or β3 subunits. (PDF 110 kb)

Supplementary Fig. 3

Inactivation properties of Cav 1.4ΔC122. (PDF 98 kb)

Supplementary Fig. 4

Ca2+ dependence of C122-CFP binding to peptide YFP-PreIQ-IQ-PostIQ in intact HEK-293 cells. (PDF 74 kb)

Supplementary Fig. 5

Potential molecular mechanism for CDI modulation by C122. (PDF 45 kb)

Supplementary Methods (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Hamedinger, D., Hoda, JC. et al. C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels. Nat Neurosci 9, 1108–1116 (2006). https://doi.org/10.1038/nn1751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing