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Abstract

Reconstructing gene regulatory networks from high-throughput data is a long-standing problem. 

Through the DREAM project (Dialogue on Reverse Engineering Assessment and Methods), we 

performed a comprehensive blind assessment of over thirty network inference methods on 

Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae, and in silico microarray data. 

We characterize performance, data requirements, and inherent biases of different inference 

approaches offering guidelines for both algorithm application and development. We observe that 

no single inference method performs optimally across all datasets. In contrast, integration of 

predictions from multiple inference methods shows robust and high performance across diverse 

datasets. Thereby, we construct high-confidence networks for E. coli and S. aureus, each 

comprising ~1700 transcriptional interactions at an estimated precision of 50%. We 

experimentally test 53 novel interactions in E. coli, of which 23 were supported (43%). Our results 

establish community-based methods as a powerful and robust tool for the inference of 

transcriptional gene regulatory networks.
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Introduction

“The wisdom of crowds,” refers to the phenomenon in which the collective knowledge of a 

community is greater than the knowledge of any individual1. Based on this concept, we 

developed a community approach to address one of the long-standing challenges in 

molecular and computational biology, which is to uncover and model gene regulatory 

networks. Genome-scale inference of transcriptional gene regulation has become possible 

with the advent of high-throughput technologies such as microarrays and RNA sequencing, 

as they provide snapshots of the transcriptome under many tested experimental conditions. 

From these data, the challenge is to computationally predict direct regulatory interactions 

between a transcription factor and its target genes; the aggregate of all predicted interactions 

comprise the gene regulatory network. A wide range of network inference methods have 

been developed to address this challenge, from those exclusive to gene expression data2,3 to 

methods that integrate multiple classes of data4–7. These approaches have been successfully 

used to address many biological problems8–11, yet when applied to the same data, they can 

generate quite disparate sets of predicted interactions2,3.

Understanding the advantages and limitations of different network inference methods is 

critical for their effective application in a given biological context. The DREAM project has 

been established as a framework to enable such an assessment through standardized 

performance metrics and common benchmarks12 (www.the-dream-project.org). DREAM is 

organized around annual challenges, whereby the community of network inference experts 

is solicited to run their algorithms on benchmark datasets, participating teams submit their 

solutions to the challenge, and the submissions are evaluated12–14.

Here, we present the results for the transcriptional network inference challenge from 

DREAM5, the fifth annual set of DREAM systems biology challenges. The community of 

network inference experts was invited to infer genome-scale transcriptional regulatory 

networks from gene expression microarray datasets for a prokaryotic model organism (E. 

coli), a eukaryotic model organism (S. cerevisiae), a human pathogen (S. aureus), as well as 

an in silico benchmark (Fig. 1).

The predictions made from this challenge enable the first comprehensive characterization of 

network inference methods across different species and datasets, providing insights into 

method performance, data requirements, and inherent biases. We find that the performance 

of inference methods varies strongly, with a different method performing best in each 

setting. Taking advantage of variation, we integrate predictions across inference methods 

and demonstrate that the resulting community-based consensus networks are robust across 

species and datasets, achieving by far the best overall performance. Finally, we construct 

high-confidence consensus networks for E. coli and S. aureus, and experimentally test novel 

regulatory interactions in E. coli.

We make all benchmark datasets and team predictions, along with the integrated community 

predictions available as a public resource (Supplementary Data 1–5). In addition, we provide 

a web interface through the GenePattern genomic analysis platform15 (GP-DREAM, http://
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dream.broadinstitute.org), which allows researchers to apply top performing inference 

methods and construct consensus networks.

Results

Network inference methods

Based on the DREAM5 challenge (Supplementary Notes 1–3), we compared 35 individual 

methods for inference of gene regulatory networks: 29 submitted by participants and an 

additional 6 commonly used “off-the-shelf” tools (Table 1). Based on descriptions provided 

by participants, the methods were classified into six categories: Regression, Mutual 

information, Correlation, Bayesian networks, Meta (methods that combine several different 

approaches), and Other (methods that do not belong to any of the previous categories) 

(Table 1).

Performance of network inference methods

We used three gold standards for performance evaluation: experimentally validated 

interactions from a curated database (RegulonDB16) for E. coli; a high-confidence set of 

interactions supported by genome-wide transcription factor binding data17 (ChIP-chip) and 

evolutionarily conserved binding motifs18 for S. cerevisiae; and the known network for the 

in silico dataset (Methods). Performance on S. aureus was evaluated separately (see below) 

as there currently does not exist a sufficiently large set of experimentally validated 

interactions.

We assessed method performance for the E. coli, S. cerevisiae, and in silico datasets using 

the area under the precision-recall (AUPR) and receiver operating characteristic (AUROC) 

curves14, and an overall score that summarizes the performance across the three networks 

(Methods and Supplementary Note 4). Figure 2a shows the overall score and the 

performance on each network for all applied inference methods. On average, regulatory 

interactions were recovered much more reliably for the in silico and E. coli datasets 

compared to S. cerevisiae.

Interestingly, well-established “off-the-shelf” inference methods, such as CLR11 and 

ARACNE9 (Mutual Information 1 and 3), were significantly outperformed by several teams. 

The two teams with the best overall score used novel inference approaches based on random 

forests19 and ANOVA20 (Other 1 and 2), respectively (Table 1). However, when 

considering the performance on individual networks, these two inference methods only 

performed best for E. coli. Two regression methods achieved the best AUPR for the in silico 

benchmark (Regression 1 and 2) and two meta predictors for S. cerevisiae (Meta 1 and 5).

There was also strong variation of performance within each category of inference methods 

(Fig. 2a). For example, the overall scores obtained by regression methods range from the 

third best of the challenge, down to the fourth lowest. A similar spread in performance can 

be observed for other categories. We conclude that there is no superior category of inference 

methods and that performance depends largely on the specific implementation of each 

individual method. For example, several inference methods used the same sparse linear 
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regression approach (lasso21), but exhibited large variation in performance because they 

implemented different data resampling strategies (Table 1 and Fig. 2a).

Complementarity of different inference methods

To examine the observed variation in performance, we analyzed complementary advantages 

and limitations of the different methods. As a first step, we explored the predicted 

interactions of all assessed methods by principal component analysis (Methods). The top 

principal components reveal four clusters of inference methods, which coincide with the 

major categories of inference approaches (Fig. 2b). Even though the prediction accuracy of 

methods from the same category varied strongly (Fig. 2a), PCA revealed they have an 

intrinsic bias to predict similar interactions.

We next analyzed how method-specific biases influenced the recovery of different 

connectivity patterns (network motifs), which revealed characteristic trends for different 

method categories (Fig. 2c). For example, feed-forward loops were most reliably recovered 

by mutual information and correlation-based methods, whereas sparse regression and 

Bayesian network methods performed worse at this task. The reason for this is the latter 

approaches preferentially select regulators that independently contribute to the expression of 

target genes. However, the assumption of independence is violated for genes regulated by 

mutually dependent transcription factors, as in the case of feed-forward loops. Indeed, linear 

cascades were more accurately predicted by regression and Bayesian network methods. This 

shows that current methods trade performance on cascades for performance on feed-forward 

loops (or vice versa).

For a subset of the transcription factors contained in the gold standards, knockout or 

overexpression experiments were supplied to DREAM5 participants, and a number of 

inference methods explicitly used this information. Consequently, these methods recovered 

target genes of deleted transcription factors more reliably than the inference methods that 

did not leverage this information (Fig. 2c). Explicit use of such knockouts also helped 

methods to more reliably draw the direction of edges between transcription factors. These 

observations suggest that measurements of transcription factor knockouts can be very 

informative for network reconstruction. In particular, this is the case for the E. coli dataset, 

which contained the largest number of such experiments (see Methods). To further explore 

the information content of different experiments, we employed a machine learning 

framework22 to systematically analyze the information gain from microarrays grouped 

according to the type of experimental perturbation (knockouts, drug perturbations, 

environmental perturbations, and time series; Supplementary Note 5). We found that 

experimental conditions independent of transcription factor knockout and overexpression 

also provide information, though at a reduced level.

Community networks outperform individual inference methods

Network inference methods have complementary advantages and limitations under different 

contexts, which suggests that combining the results of multiple inference methods could be a 

good strategy for improving predictions. We therefore integrated the predictions of all 

participating teams to construct community networks by re-scoring interactions according to 
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their average rank across all methods (Supplementary Note 6). The integrated community 

network ranks 1st for in silico, 3rd for E. coli, and 6th for S. cerevisiae out of the 35 applied 

inference methods, which shows that the community network is consistently as good or 

better than the top individual methods (Fig. 2a). Thus, it has by far the best performance 

reflected in the overall score. We stress that, even though top-performing methods for a 

given network are competitive with the integrated community method, the performance of 

individual methods does not generalize across networks. Given the biological variation 

between organisms and the experimental variation between gene expression datasets, it is 

difficult to determine beforehand which methods will perform optimally for reconstructing 

an unknown regulatory network. In contrast, the community approach performs robustly 

across diverse datasets.

We next analyzed how the number of integrated methods affects the performance of 

community predictions by examining randomly sampled combinations of individual 

methods. On average, community methods perform better than individual inference methods 

even when integrating small sets of individual predictions, e.g., just five teams (Fig. 3a). 

Performance increases further with the number of integrated methods. For instance, given 

twenty inference methods, their integration ranks first or second 98% of the cases (Fig. 3b). 

We also found that the performance of the community network can be improved by 

increasing the diversity of the underlying inference methods. Consensus predictions from 

teams utilizing similar methodologies were outperformed by consensus predictions from 

diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robustness to the inclusion of a 

limited subset (up to ~20%) of poorly performing inference methods (Fig. 3d). Poor 

predictors essentially contributed noise, but this did not affect the performance of the 

community approach as a whole. This finding is crucial because the performance of 

individual methods when inferring regulatory networks for poorly studied organisms is not 

known a priori and is hard to evaluate empirically — even top performers on a benchmark 

network (e.g. E. coli) have varied performance when inferring a new, unknown network 

(e.g. S. aureus). On the other hand, adding good performers substantially increased the 

performance of the community approach (Fig. 3d), which highlights the importance of 

developing high quality individual inference methods.

E. coli and S. aureus community networks

To gain insights into transcriptional gene regulation for two bacteria, E. coli and S. aureus, 

we constructed networks for both organisms by integrating the predictions of all teams using 

the average rank method. Figure 4 shows the community networks for both organisms at a 

cutoff of 1,688 edges, which corresponds to an estimated precision of 50% for the E. coli 

network based on the gold standard of experimentally validated interactions from 

RegulonDB (Methods). At this cutoff, 50% of the de novo predicted regulatory edges were 

recovered known interactions; the remaining 50% may be false positives or newly 

discovered true interactions.

The precision of the S. aureus network cannot be measured accurately because there are 

comparatively few experimentally supported interactions available. Nevertheless, we 
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confirmed the robustness of the consensus predictions by evaluating the network using the 

largely computationally-derived interactions from the RegPrecise database23 

(Supplementary Note 7).

We found that the E. coli and S. aureus networks both have a modular structure24; that is, 

they comprise clusters of genes that are more densely connected amongst themselves than 

with other parts of the network. After identifying these modules24, we tested them for 

enrichment of Gene Ontology terms (Supplementary Note 7). Network modules are strongly 

enriched for very specific biological processes. This allowed us to assign unique functions to 

most of the identified modules in both networks (Fig. 4 and Supplementary Data 6). As a 

specific example of an enriched module, 27 genes in S. aureus are highly enriched for 

pathogenic genes (Fig. 4b). These include exotoxins (set7, set8, set11, set14), genes 

responsible for biofilm formation (tcaR) and antibiotic metabolism (tetR), as well as a cell 

surface protein (fnb). The remaining 20 genes of this module are uncharacterized, but the 

predicted connections suggest their role in pathogenesis. This example illustrates how the 

inferred networks generate specific hypotheses regarding both the regulation and function of 

uncharacterized genes, enabling targeted validation efforts.

Experimental support of novel interactions

In addition to validation against known interactions from the RegulonDB gold standard, we 

experimentally tested a subset of novel predictions from the E. coli community network 

described above. We selected 5 transcription factors (rhaR, cueR, purR, mprA, and gadE), 

and then individually tested each of the 53 corresponding target gene predictions 

(Supplementary Note 8). Using qPCR, we measured the expression of each predicted target 

gene in the absence and presence of a chemical inducer known to activate the corresponding 

transcription factor (rhamnose for rhaR, copper sulfate for cueR, adenine for purR, carbonyl 

cyanide m-chlorophenylhydrazone for mprA, and hydrogen chloride for gadE). To control 

for possible indirect transcriptional responses, we also measured target gene expression in 

transcription factor deletion strains, again in the absence and presence of the chemical 

inducer. Putative targets were considered confirmed if they showed (1) strong response to 

the inducer of the respective transcription factor in the wild type and (2) no response to the 

inducer in the transcription factor deletion strain. We observed a clear difference between 

the two responses (>1.8 fold) for 23 novel targets out of 53 tested (Fig. 4c); this corresponds 

to a precision of ~40% for novel interactions, which is in line with our estimate of ~50% 

precision based on known interactions from RegulonDB. We note that these data support a 

direct regulatory effect of the tested transcription factor on the target gene, but chromatin 

immunoprecipitation experiments would be required to determine physical binding.

We observe a large variation in experimental validation among individual transcription 

factors (Fig. 4c). For purR, a key regulator in purine nucleotide metabolism, 10 of the 12 

predicted target genes were experimentally supported. Nucleotide metabolism is a 

fundamental biological process that is affected across multiple conditions, thus purR 

regulation is well sampled across the E. coli dataset. However, in the case of rhaR, a key 

regulator in L-rhamnose degradation, none of the novel target gene predictions showed signs 

of regulation. L-rhamnose degradation is a specialized process that is only activated in the 
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presence of L-rhamnose, and there were no conditions in the E. coli dataset where L-

rhamnose degradation was explicitly tested. In the instance of cueR, a transcriptional 

regulator activated in the presence of copper, 4 out of 7 novel target gene predictions were 

confirmed. As with rhaR, there were no conditions in the dataset that explicitly tested copper 

regulation, yet unlike rhaR, network inference methods were able to identify true positive 

cueR regulatory interactions. These results suggest that while the overall precision for the 

network is high, the reliability of predictions for individual transcription factors can vary. 

When constructing a compendium of microarrays for global network inference, biases 

towards oversampling a narrow set of experimental conditions should thus be avoided.

Discussion

The DREAM project provides a unique framework where network inference methods from a 

community of experts are collected and impartially assessed on benchmark datasets. The 

collection of 35 inference methods assessed here itself constitutes a unique resource, as it 

spans all commonly used approaches in the field. In addition, the collection includes novel 

approaches (including the two best individual team performers of the challenge), 

representing a snapshot of the latest developments in the field.

Our analyses revealed specific advantages and limitations of different inference approaches 

(see Supplementary Note 9 and the full description of approaches in Supplementary Note 

10). Sparse linear regression methods performed well, but only when data resampling 

strategies such as bootstrapping were used (the best performing regression methods all used 

data resampling, while the worst performing methods did not). Sparsity constraints 

employed by these methods effectively increased performance for cascade motifs, at the cost 

of missing interactions in feed-forward loops, fan-in, and fan-out motifs. Bayesian network 

methods exhibited below-average performance in this challenge, likely because they use 

heuristic searches, which are often too costly for systematic data resampling and may be 

better suited for smaller networks. Information theoretic methods performed better than 

correlation-based methods, but the two approaches had similar biases in predicting 

regulatory relationships. Compared to regression and Bayesian network methods, they 

perform better on feed-forward loops, fan-ins, and fan-outs (the more densely connected 

parts of the network), but have an increased rate of false positives for cascades. Meta 

predictors performed more robustly across datasets than other categories of methods, 

however, they could not match the robustness and performance of the community 

predictions, likely because they combine methods that do not provide sufficient diversity. 

Among all categories, methods that made explicit use of direct transcription factor 

perturbations (knockout or overexpression) greatly improved prediction accuracy for 

downstream targets (albeit at an increased false positive rate for cascades). For improving 

individual inference approaches we suggest the following: (1) optimally exploit direct 

transcription factor perturbations; (2) employ strategies to avoid over-fitting, such as data 

resampling; (3) develop more effective approaches to distinguish direct from indirect 

regulation (feed-forward loops vs. cascades).

Overall, methods performed well for the in silico and prokaryotic (E. coli) datasets; 

however, inferring gene regulatory networks from the eukaryotic (S. cerevisiae) dataset 
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proved to be a greater challenge. A fundamental assumption of network inference algorithms 

is that mRNA levels of transcription factors and their targets tend to be correlated — we 

found that this is true for E. coli, but not for S. cerevisiae (Supplementary Note 5). While the 

lower coverage of S. cerevisiae gold standards may also play a role (E. coli has the best-

known regulatory network of any free-living organism16), the poor correlation at the mRNA 

level in S. cerevisiae is likely due to the increased regulatory complexity and prevalence of 

post-transcriptional regulation in eukaryotes, suggesting that accurate inference of 

eukaryotic regulatory networks requires additional inputs, such as promoter sequences, 

transcription factor binding, and chromatin modification datasets7.

Individual studies that introduce a novel inference method naturally tend to focus on its 

advantages in a particular application, which can paint an over-optimistic picture of 

performance13. While previous studies have explored strengths and weaknesses of inference 

approaches2,3, the present assessment further shows that method performance is not robust 

across species and varies greatly even in the same category of inference methods (Table 1). 

This implies that performance is more related to the details of implementation, rather than 

the choice of the underlying methodology.

In network inference, variation in performance presents a problem, but at the same time 

offers a solution. By integrating the predictions from individual methods into community 

networks, we show that advantages of different methods complement each other, while 

limitations tend to be cancelled out. Instead of relying on a single inference method with 

uncertain performance on a previously unseen network, integrating predictions across 

inference methods becomes the best strategy. We note that not all of the 29 methods are 

required for enhanced performance. By considering complementary methods, we have 

shown that performance can be significantly improved with as few as three methods (Fig. 

3c).

Ensemble-based methods have a storied past, with applications ranging from economics1 to 

machine learning25. In systems biology, robust models are often constructed from ensembles 

of instances (e.g., different parameterizations or model structures) that are derived from 

experimental data via a single approach26–30, such as Monte Carlo sampling. In contrast, we 

formed consensus predictions from a large array of heterogeneous inference approaches. 

These “meta predictors” have been successful in other machine learning competitions31,32. 

We have observed from previous DREAM challenges anecdotal evidence that community 

predictions can rank amongst the top performers13, but we did not previously attempt a 

systematic study of prediction integration for network inference. Here we established, 

through rigorous assessments and experimentally derived datasets, the performance 

robustness of prediction integration for transcriptional gene network inference.

The shortcomings of individual methods revealed in our assessment present many 

opportunities for improving these methods. We also expect further improvements in 

performance from advanced community approaches that: (i) actively leverage the method-

specific advantages with regard to the datasets and networks of interest; (ii) optimize 

diversity in the ensemble, e.g., by weighting methods so as to balance the contribution of 

different method categories or PCA clusters; and (iii) employ more sophisticated voting 
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schemes to negotiate consensus networks. To help spur developments in these areas, we 

provide the GP-DREAM web platform for the community to develop and apply network 

inference and consensus methods (http://dream.broadinstitute.org). We will continue to 

expand this free toolkit with top performing methods from the DREAM challenges, as well 

as other methods contributed by the community.

Methods

Expression data and gold standards

The design of the DREAM5 network inference challenge is outlined in Figure 1 (full 

description in Supplementary Note 1). Affymetrix gene expression datasets were compiled 

for E. coli, S. aureus, and S. cerevisiae from the Gene Expression Omnibus (GEO) 

database50. Microarray datasets were uniformly normalized using Robust Multichip 

Averaging (RMA)51. Each dataset queries the underlying regulatory network in hundreds of 

different conditions, ranging from time courses to gene, drug, and environmental 

perturbations. Note that the number of measurements of transcription factor specific 

perturbations varies among the datasets (S. aureus: 0/161, E. coli: 67/806 and yeast: 3/537). 

The fourth dataset is an in silico counterpart to the E. coli dataset, generated using 

GeneNetWeaver52,53 (version 4.0). The structure of the in silico network corresponds to the 

E. coli transcriptional regulatory network from RegulonDB16 (10% random edges were 

added, resulting in 3,940 interactions). In addition to the gene expression data, we provide a 

list of putative transcription factors for each dataset and a number of descriptive features for 

each microarray experiment (e.g., the target of a gene deletion, or the time point of a time-

series experiment). It is important to note that the identity of the organisms from which the 

data was generated was unknown to the participants. This was achieved by encrypting 

certain aspects of the data, and by anonymizing gene names.

Participants were presented the challenge to infer direct regulatory interactions between 

transcription factors and target genes from the given gene expression datasets. The 

submission format was a ranked list of predicted regulatory relationships for each network3.

The gold standard set of known transcriptional interactions for E. coli was obtained from 

RegulonDB16. We only included well-established interactions annotated with “strong 

evidence” according to RegulonDB evidence classification (2,066 interactions). For S. 

cerevisiae, we considered several alternative gold standards derived from orthogonal 

datasets, namely ChIP binding data and evolutionary conserved transcription factor binding 

motifs18, as well as systematic transcription factor deletions54 (Supplementary Note 3). For 

the results reported in the main text, we used the most stringent gold standard, which 

includes only interactions that have both strong evidence of binding and conservation18.

All data and scripts are available in Supplementary Data 1 and at the DREAM website: 

http://wiki.c2b2.columbia.edu/dream/index.php/D5c4. The original microarray datasets are 

also publically available at the Many Microbe Microarrays Database55 (M3D, http://

m3d.bu.edu/dream).
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Performance metrics

A detailed description of all performance metrics is given in Supplementary Note 4. Briefly, 

transcription factor-target predictions were evaluated as a binary classification task. The 

gold-standard networks represent the true positive interactions; the remaining pairs are 

considered negatives. Only the top 100,000 edge predictions were accepted. Pairs of nodes 

not part of the submitted list were considered to appear randomly ordered at the end of the 

list. Performance was assessed using the area under the ROC curve (AUROC) and the area 

under the precision vs. recall curve (AUPR)14. Note that predictions for genes that are not 

part of the gold standard, i.e., for which no experimentally supported interactions exist, were 

ignored in this evaluation.

AUROC and AUPR were separately transformed into p-values by simulating a null 

distribution for 25,000 random networks. Random edge lists were constructed by sampling 

edges from the submitted edge lists of the participants and assigning these edges random 

ranks between 1 and 100,000. The histogram of randomly obtained AUROC and AUPR 

values was fit using stretched exponentials to extrapolate the distribution to values beyond 

the immediate range of the histogram14. To compute an overall score that summarizes the 

performance over the three networks with available gold standards (E. coli, S. cerevisiae and 

in silico), we used the same metric as in the previous two editions of the challenge3,14, 

which is defined as the mean of the (log-transformed) network specific p-values:

Clustering of inference approaches by principal component analysis (PCA)

We constructed a prediction matrix P, where rows correspond to edges (transcription factor-

target pairs) and columns to inference methods. The element pi,j of this matrix is thus the 

rank assigned to edge i by inference method j. We only considered edges that figured in the 

top 100,000 predicted edges of at least three inference methods, yielding 1,175,525 

interactions across the four datasets. Note that knowledge of a gold standard network is not 

required for the PCA, thus the S. aureus predictions were included in this analysis. The 

dimensionality of the combined prediction matrix (including the predictions for all four 

datasets) was reduced by PCA using SVDLIBC with standard parameters (http://

tedlab.mit.edu/~dr/SVDLIBC). Results are consistent when performing PCA for each of the 

four datasets separately (Supplementary Note 4).

Network motif analysis

The goal of the network motif analysis is to evaluate, for a given network inference method, 

whether some types of edges of motifs are systematically predicted less (or more) reliably 

than expected3. We considered the six motif types illustrated in Figure 2. For each type of 

motif m, we identified all instances in the gold standard network and determined the average 

rank rm̄ assigned to its edges by the inference method. We further determined the average 
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rank assigned to all edges that are not part of this motif type. The prediction bias is given by 

the difference rm.– rm̄ See Supplementary Note 4 for details.

Experimental materials and design

Novel predictions were selected from the E. coli community network with greater than 50% 

predicted precision. Transcription factors with at least 8 novel predictions were selected, 

including rhaR, cueR, purR, mprA, and gadE (note that the dataset supplied to the DREAM5 

participants did not contain any knockout measurement for these transcription factors). 

Primers were designed for all novel target gene predictions after accounting for operon 

structure and at least 1 known target of the transcription factor was included as a positive 

control. A total of 53 predictions and 6 positive controls were tested.

For each transcription factor, a knockout strain was generated from the background E. coli 

strain BW25113. Each transcription factor was induced by a different stimulus: rhamnose 

for rhaR, copper sulfate for cueR, adenine for purR, carbonyl cyanide m-

chlorophenylhydrazone for mprA, and HCl for gadE. Four experimental conditions were 

used for each transcription factor: background strain without inducer (WT(−)), background 

strain with inducer (WT(+)), deletion strain without inducer (Δ(−)), and deletion strain with 

inducer (Δ(+)). Three biological replicates were generated for all experimental conditions. 

Cultures were grown in LB media or minimal media (Supplementary Note 8), and 

incubation was performed in darkened shakers (300 RPM) at 37°C. PCR primers were 

designed for all target genes. Target genes were quantified through qPCR using LightCycler 

480 SYBR Green I Master Kit (Roche Applied Science). True positive interactions were 

expected to meet two criteria: (1) a strong response to the TF inducer in wild type, and (2) 

no or weak response to the TF inducer in the TF-deletion strain. Target gene interactions 

were considered to have “strong support” if the ratio of criteria 1 to criteria 2, (WT(+)/

WT(−)) / (Δ(+)/Δ(−)), was greater than two and “weak support” if the ratio was greater than 

1.8 (Supplementary Data 7).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The DREAM5 network inference challenge
Assessment involved the following steps (from left to right). (1) Participants were 

challenged to infer the genome-wide transcriptional regulatory networks of E. coli, S. 

cerevisiae, and S. aureus, as well as an in silico (simulated) network. (2) Gene expression 

datasets for a wide range of experimental conditions were compiled. Anonymized datasets 

were released to the community, hiding the identities of the genes. (3) 29 participating teams 

inferred gene regulatory networks. In addition, we applied 6 “off-the-shelf” inference 

methods. (4) Network predictions from individual teams were integrated to form community 

networks. (5) Network predictions were assessed using experimentally supported 

interactions from E. coli and S. cerevisae, as well as the known in silico network.
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Figure 2. Evaluation of network inference methods
Inference methods are indexed according to Table 1. (a) The plots depict the performance 

for the individual networks (area under precision-recall curve, AUPR) and the overall score 

summarizing the performance across networks (Methods). R indicates performance of 

random predictions. C indicates performance of the integrated community predictions. (b) 

Methods are grouped according to the similarity of their predictions via principal component 

analysis. Shown are the 2nd vs. 3rd principal components; the 1st principal component 

accounts mainly for the overall performance (Supplementary Note 4). (c) The heatmap 

depicts method-specific biases in predicting network motifs. Rows represent individual 

methods and columns represent different types of regulatory motifs. Red and blue show 

interactions that are easier and harder to detect, respectively.
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Figure 3. Analysis of community networks vs. individual inference methods
(a) The plot shows the overall score, which summarizes performance across the E. coli, S. 

cerevisiae, and in silico networks, for individual inference methods or various combinations 

of integrated methods. The first boxplot depicts the performance distribution of individual 

inference methods (K=1). Subsequent boxplots show the performance when integrating K>1 

randomly sampled methods. The red bar shows the performance when integrating all 

methods (K=29). Boxplots depict performance distributions with respect to the minimum, 

the maximum and the three quartiles. (b) The probability that the community network ranks 

among the top x% of the K individual methods used to construct the community network. 

The diagonal shows the expected performance when choosing an individual method (K=1). 

(c) The integration of complementary methods is particularly beneficial. The first boxplot 

shows the performance of individual methods from clusters 1–3 (as defined in Fig. 2b). The 

second and third boxplots show performance of community networks obtained by 

integrating three randomly selected inference methods: (i) from the same cluster, or (ii) from 

different clusters. (d) The plots show the overall score for an initial community network 

formed by integrating all individual methods (open circles, blue) except for the best five and 

worst five. One-by-one the worst five (left panel) and best five (right panel) methods are 

added to form additional community networks (filled circles, red).

Marbach et al. Page 18

Nat Methods. Author manuscript; available in PMC 2013 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. E. coli and S. aureus community networks
(a, b) At a cutoff of 1688 edges, the (a) E. coli community network connects 1,505 genes 

(including 204 transcription factors, shown as diamonds), and the (b) S. aureus network 

connects 1,084 genes (85 transcription factors). Network modules were identified and tested 

for Gene Ontology term enrichment, as indicated (grey colored genes do not show 

enrichment). A network module enriched for Gene Ontology terms related to pathogenesis is 

highlighted in the S. aureus network. (c) The schematics depict newly predicted E. coli 

regulatory interactions that were experimentally tested. The pie chart depicts the breakdown 
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of strongly and weakly supported targets (Methods). The positive controls were six known 

interactions from RegulonDB.
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Table 1

Network inference methods.

ID Synopsis Reference

Regression: Transcription factors are selected by target gene specific (1) sparse linear regression and (2) data resampling approaches.

1 Trustful Inference of Gene REgulation using Stability Selection (TIGRESS): (1) Lasso; (2) the regularization parameter 
selects five transcription factors per target gene in each bootstrap sample.

33a

2 (1) Steady state and time series data are combined by group lasso; (2) bootstrapping. 34a

3 Combination of lasso and Bayesian linear regression models learned using Reversible Jump Markov Chain Monte Carlo 
simulations.

35a

4 (1) Lasso; (2) bootstrapping. 36

5 (1) Lasso; (2) area under the stability selection curve. 36

6 Application of the Lasso toolbox GENLAB using standard parameters. 37

7 Lasso models are combined by the maximum regularization parameter selecting a given edge for the first time. 36a

8 Linear regression determines the contribution of transcription factors to the expression of target genes. —a,b

Mutual Information: Edges are (1) ranked based on variants of mutual information and (2) filtered for causal relationships.

1 Context likelihood of relatedness (CLR): (1) Spline estimation of mutual information; (2) the likelihood of each mutual 
information score is computed based on its local network context.

11a,b

2 (1) Mutual information is computed from discretized expression values. 38a,b

3 Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE): (1) kernel estimation of mutual information; 
(2) the data processing inequality is used to identify direct interactions.

9a,b

4 (1) Fast kernel-based estimation of mutual information; (2) Bayesian Local Causal Discovery (BLCD) and Markov blanket 
(HITON-PC) algorithm to identify direct interactions.

39a

5 (1) Mutual information and Pearson’s correlation are combined; (2) BLCD and HITON-PC algorithm. 39a

Correlation: Edges are ranked based on variants of correlation.

1 Absolute value of Pearson’s correlation coefficient. 38

2 Signed value of Pearson’s correlation coefficient. 38a,b

3 Signed value of Spearman’s correlation coefficient. 38a,b

Bayesian networks optimize posterior probabilities by different heuristic searches.

1 Simulated annealing (catnet R package, http://cran.r-project.org/web/packages/catnet), aggregation of three runs. —

2 Simulated annealing (catnet R package, http://cran.r-project.org/web/packages/catnet). —

3 Max-Min Parent and Children algorithm (MMPC), bootstrapped datasets. 40

4 Markov blanket algorithm (HITON-PC), bootstrapped datasets. 41

5 Markov boundary induction algorithm (TIE*), bootstrapped datasets. 42

6 Models transcription factor perturbation data and time series using dynamic Bayesian networks (Infer.NET toolbox, http://
research.microsoft.com/infernet).

—a

Other Approaches: Network inference by heterogeneous and novel methods.

1 Genie3: A random forest is trained to predict target gene expression. Putative transcription factors are selected as tree 
nodes if they consistently reduce the variance of the target.

19a

2 Co-dependencies between transcription factors and target genes are detected by the non-linear correlation coefficient η2 

(two-way ANOVA). Transcription factor perturbation data are up-weighted.
20a

3 Transcription factors are selected maximizing the conditional entropy for target genes, which are represented as Boolean 
vectors with probabilities to avoid discretization.

43a

Nat Methods. Author manuscript; available in PMC 2013 February 01.

http://cran.r-project.org/web/packages/catnet
http://cran.r-project.org/web/packages/catnet
http://research.microsoft.com/infernet
http://research.microsoft.com/infernet


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marbach et al. Page 22

ID Synopsis Reference

4 Transcription factors are preselected from transcription factor perturbation data or by Pearson’s correlation and then tested 
by iterative Bayesian Model Averaging (BMA).

44

5 A Gaussian noise model is used to estimate if the expression of a target gene changes in transcription factor perturbation 
measurements.

45

6 After scaling, target genes are clustered by Pearson’s correlation. A neural network is trained (genetic algorithm) and 
parameterized (back-propagation).

46a

7 Data is discretized by Gaussian mixture models and clustering (Ckmeans); Interactions are detected by generalized logical 
network modeling (χ2 test).

47a

8 The χ2 test is applied to evaluate the probability of a shift in transcription factor and target gene expression in transcription 
factor perturbation experiments.

47a

Meta predictors (1) apply multiple inference approaches and (2) compute aggregate scores.

1 (1) Z-scores for target genes in transcription factor knockout data, time-lagged CLR for time series, and linear ordinary 
differential equation models constrained by lasso (Inferelator); (2) resampling approach.

48a

2 (1) Pearson’s correlation, mutual information, and CLR; (2) rank average. —

3 (1) Calculates target gene responses in transcription factor knockout data, applies full-order, partial correlation and 
transcription factor-target co-deviation analysis; (2) weighted average with weights trained on simulated data.

—a

4 (1) CLR filtered by negative Pearson’s correlation, least angle regression (LARS) of time series, and transcription factor 
perturbation data; (2) combination by z-scores.

49

5 (1) Pearson’s correlation, differential expression (limma), and time series analysis (maSigPro); (2) Naïve Bayes. —a

Methods have been manually categorized based on participant-supplied descriptions. Within each class, methods are sorted by overall performance 
(see Figure 2a). Note that generic references have been used if more specific ones were not available.

a
Detailed method description included in Supplementary Note 10;

b
Off-the-shelf algorithm applied by challenge organizers.
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