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Introduction: 11 

 12 

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable 13 

properties such as the capacity to protect quantum information from decoherence. While 14 

their featureless ground states have precluded their straightforward experimental 15 

identification, excited states are more revealing and particularly interesting due to the 16 

emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of 17 

these excitations are inelastic neutron scattering experiments. These we report here for a 18 

ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on 19 

iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev 20 

honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit 21 
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coupling and low-temperature magnetic order matching predictions proximate to the QSL. 1 

We find stacking faults, inherent to the highly two-dimensional nature of the material, 2 

resolve an outstanding puzzle. Crucially, dynamical response measurements above 3 

interlayer energy scales are naturally accounted for in terms of deconfinement physics 4 

expected for QSLs.  Comparing these with recent dynamical calculations involving gauge 5 

flux excitations and Majorana fermions of the pure Kitaev model, we propose the 6 

excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.   7 

 8 

Main Text:  9 

 10 

Exotic physics associated with frustrated quantum magnets is an enduring theme in condensed 11 

matter research.  The formation of quantum spin liquids (QSL) in such systems can give rise to 12 

topological states of matter with fractional excitations1,2,3,4. Fractionalization describes the 13 

counterintuitive phenomenon where an electron breaks apart into well-defined independent 14 

quasiparticles. The realization of this physics in real materials is an exciting prospect that may 15 

provide a path to a robust quantum computing technology5.   Fractional excitations in the form of 16 

pairs of S=1/2 spinons are observed in quasi-one-dimensional (1D) materials containing S=1/2 17 

Heisenberg antiferromagnetic chains6. Recent evidence for the 2D QSL state, in the form of 18 

possible spinon excitations, has been found in quantum antiferromagnets on triangular3 and 19 

Kagome7 lattices.  The exactly solvable Kitaev model on the honeycomb lattice8 represents a 20 

class of 2D QSL that supports two different emergent fractionalized excitations: Majorana 21 

fermions and gauge fluxes9,10. The comparatively simple gauge flux can be visualized as a spin-22 
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orbit coupled version of a plaquette observable like a resonance energy.  The Majorana 1 

Fermions, in general, do not have a straightforward real-space representation since they are not 2 

associated with any real-space spin or charge density. An idea of their nature can be gleaned in 3 

the strongly anisotropic limit of weakly coupled Ising dimers, where they can be thought of as 4 

excitations taking the form of misaligned nearest-neighbor spin pairs on top of a ground state 5 

consisting of a coherent superposition of satisfied dimers.  How to observe such ephemeral 6 

entities is one of the central challenges of condensed matter and materials physics today. It has 7 

turned out that the signature of the Majorana fermion in the response function measured via 8 

inelastic neutron scattering is perhaps one of the most direct ways of pinning down the 9 

excitation’s existence10. This manuscript reports precisely such a measurement. 10 

The Kitaev model consists of a set of spin-1/2 moments �𝑆 ���⃗ 𝑖� arrayed on a honeycomb lattice.  11 

The Kitaev couplings, of strength K in eqn. (1) are highly anisotropic with a different spin 12 

component interacting for each of the three bonds of the honeycomb lattice. In actual materials a 13 

Heisenberg interaction (J) is also generally expected to be present, giving rise to the Heisenberg-14 

Kitaev (H-K) Hamiltonian11,12.   15 

 16 

ℋ = ∑ �𝐾𝑆𝑖𝑚𝑆𝑗𝑚 + 𝐽𝑆𝚤���⃗ . 𝑆𝚥���⃗ �𝑖,𝑗              eqn. (1) 17 

 18 

where m is the component of the spin directed along the bond connecting spins (i,j). The QSL 19 

phase of the pure Kitaev model (J=0), for both ferromagnetic and antiferromagnetic K, is stable 20 

for weak Heisenberg perturbations.   21 
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Remarkably the Hamiltonian (1) has been proposed to accurately describe edge-shared 1 

octahedrally-coordinated magnetic systems, shown in Fig. 1a, with dominant spin-orbit 2 

coupling11,12.  The focus to date has centered largely on Ir4+ compounds13-19, however attempts to 3 

measure the dynamical response15 via inelastic neutron scattering (INS) have met with limited 4 

success, due to the unfavorable magnetic form factor and strong absorption cross-section of the 5 

Ir ions.  Resonant inelastic x-ray scattering (RIXS) has provided important information 6 

concerning higher energy excitations in the iridates18 but cannot provide the meV energy 7 

resolution necessary to provide a robust experimental signature of collective fractional 8 

excitations that are expected to occur at energy scales of order 1 – 10 meV15. 9 

An alternative approach is to explore materials with Ru3+ ions20. The realization that the material 10 

α-RuCl3
20-22 also has the requisite honeycomb lattice and strong spin-orbit coupling has 11 

stimulated a groundswell of recent investigations23 - 29. Whilst these studies lend support to the 12 

material as a potential Kitaev material, conflicting results centering on the low temperature 13 

magnetic properties have hindered progress. To resolve this, we undertake a comprehensive 14 

evaluation of the magnetic and spin-orbit properties of α-RuCl3, and further measure the 15 

dynamical response establishing this material as proximate to the widely searched for QSL.   16 

We begin by investigating the crystal and magnetic structure of α-RuCl3. The layered structure 17 

of the material is shown in Fig. 1a.  Figures 1b,c show the ABCABC stacking arrangement of the 18 

layers expected in the trigonal structure (space group P3112). That the layers are weakly bonded 19 

to each other, similar to graphite, is demonstrated by the lattice specific heat (shown for a 20 

powder in Fig. 1d). This displays a tell-tale T2 behavior characteristic of highly 2D bonded 21 
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systems30 rather than the usual T3 observed in conventional 3D solids. Since the 2D layers are 1 

weakly coupled the inter-layer magnetic exchanges will also be rather weak. In addition, 2 

stacking faults are formed easily and significant regions of the sample can crystallize in 3 

alternative stacking structures, for example ABAB25 (See Supplementary Fig. 2).  4 

 5 

Neutron diffraction shows low temperature magnetic order.  The temperature dependence of the 6 

strongest magnetic powder peak, with TN ≈ 14 K, is shown in Fig. 1e.  Figure 1f shows the 7 

temperature dependence of magnetic peaks in one 22.5 mg single-crystal, revealing two ordered 8 

phases.  The first, which orders below TN ≈ 14 K, is characterized by a wave-vector of q1 = (1/2 9 

0 3/2) (indexed according to the trigonal structure), whilst the other phase (q2 = (1/2, 0 1)) orders 10 

below 8 K (See also Supplementary Fig.3).    These temperatures correspond precisely to 11 

anomalies observed in the specific heat and magnetic susceptibility25,26,29 (Supplementary Fig. 12 

1).  This is readily explained as the observed L =3/2 phase corresponds naturally to a stacking 13 

order of ABAB type along the c-axis, and the L = 1 corresponds to ABCABC stacking.  Indeed, 14 

the difference in 3D transitions is a residual effect of different interlayer bonding influencing the 15 

ordering. Further, a comparison of intensities at (1/2 0 L) with (3/2 0 L)16 shows both phases 16 

share identical zig-zag (ZZ) spin ordering in the honeycomb layers; a phase of the H-K model 17 

adjacent to the spin liquid11 (See Supplementary Table 1). By calibrating to structural Bragg 18 

peaks the ordered moments are measured to be exceptionally low, with an upper bound of µ=0.4 19 

± 0.1 µB .  This is at most only 35% of the full moment determined from bulk 20 

measurements22,25,27 suggesting strong spin fluctuations consistent with a near liquid-like 21 

quantum state in the material. (See Supplementary Information for more detail.) 22 
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 1 

Having established the structural and magnetic properties of α-RuCl3, we probe the nature of the 2 

single-ion states to confirm the presence of strong spin-orbit coupling, which is required to 3 

generate the Kitaev term K in (1). By using Ei = 1.5 eV incident neutrons to measure the transition 4 

from the Ru3+ electronic ground state to its excited state the spin-orbit coupling λ is extracted.  In 5 

the octahedral environment shown in Fig. 1 the ground state is a low-spin (J=1/2) state. The next 6 

excited state (J=3/2) is separated by 3λ/2. Neutrons can activate it by a spin-flip process and the 7 

transition is seen in Fig. 2 at 195 ± 11 meV implying that λ ≈ 130 meV (also see Supplementary 8 

Fig. 4 and Supplementary Information). This is close to the expected free-ion value (λfree ≈ 150 9 

meV20,31) and the predictions of recent ab-initio calculations26.  The J=3/2 state will be split into 10 

two Kramers doublets by small distortions of the octahedron32,33.   The resolution limited line-11 

width suggests that such a splitting is relatively small, certainly less than the HWHM of 48 meV.  12 

In any case, as the higher levels are too energetic to play any role, only the lowest lying doublet 13 

needs to be considered.   Projecting the inter-Ru3+ couplings into this doublet results in Kitaev 14 

terms as included in eqn. (1).  15 

 16 

The above results indicate that the H-K Hamiltonian (1) can indeed satisfactorily capture the 17 

interactions between Ru3+ moments. If this is the case, then given the highly reduced ordered 18 

moment and the extended QSL region close to the observed zigzag AFM phase, it is tempting to 19 

speculate that signatures of fractionalization characteristic of QSLs will be manifest in the 20 

collective magnetic excitations.  Fig. 3 shows data for α-RuCl3 powder measured using neutrons 21 

of Ei = 25 meV.   The scattering in the magnetically ordered state is shown in Fig. 3a for T = 5 22 
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K.  Two distinct features are clearly visible spanning different energy ranges.  The lower among 1 

them, M1, is centered near 4 meV and shows a minimum near Q = 0.62 Å-1, which notably 2 

corresponds to the M point of the honeycomb lattice as expected for a quasi-2D magnetic system 3 

(for 3D behavior a wave-vector Q = 0.81 Å-1 is anticipated). The white arrow draws attention to 4 

the concave shape of the edge of the scattering, which is expected for magnon excitations in a ZZ 5 

ordered state15. This firmly establishes the nature of magnetic order and differentiates it from 6 

other potential states such as a stripy ground state.  The second feature is at a higher energy, M2, 7 

centered near 6.5 meV.   8 

 9 

Both features M1 and M2 correspond to powder averaged modes which are of magnetic origin as 10 

identified by their wave-vector and temperature dependence. The thermal behavior of these 11 

magnetic modes differs significantly from one to the other. Figure 3b shows the scattering at T = 12 

15 K, just above TN.  It is seen that M1 softens dramatically and the intensity shifts towards Q = 13 

0.  Conversely, M2 is essentially unaffected.  Constant Q cuts through the data are displayed in 14 

Fig. 3c.  The centers are at the positions indicated by the labeled dashed lines in Fig. 3a and 3b.  15 

Comparing cuts (A,B) with (C,D) reinforces the collapse and shift of intensity for M1 above TN. 16 

Cut B clearly shows two peaks implying that the density of states sampled by the powder 17 

average at T = 5 K has two maxima.  The average peak energies determined by fits of the data to 18 

Gaussian peaks are given by Ε1 = 4.1(1) meV and Ε2 = 6.5(1) meV.   Figure 3d shows constant 19 

energy cuts integrated over the range [2.5, 3.0] meV, near the lower edge of M1.  It is seen that at 20 

low temperature M1 is structured with low energy features showing up as peaks in cut E.  These 21 

are centered at Q1 = 0.62(3) Å-1 and Q2 = 1.7(1) Å-1.  Above TN this structure disappears, and the 22 
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broad scattering shifts dramatically to lower Q.  Fitting the T = 15 K data (cut F) to a Lorentzian 1 

with the center fixed at Q = 0 yields a HWHM of roughly 0.6 Å-1, suggesting that above TN 2 

spatial correlations of the spin fluctuations are extremely short ranged.  3 

 4 

To gain further insight into the magnetic couplings we compare the INS data to the solution of 5 

(1) using conventional linear spin wave theory (SWT) for ZZ order34,35.  The SWT provides a 6 

quasi-classical approximation which works reasonably well when quantum fluctuations are 7 

weak.  Although strictly speaking it is inapplicable for strongly quantum fluctuating systems, it 8 

provides a first starting point for estimating the approximate and relative strengths of the 9 

couplings.  In the honeycomb lattice appropriate for α-RuCl3, SWT predicts four branches, two 10 

of which disperse from zero energy at the M point (½, 0) to doubly degenerate energies 𝜔1 =11 

�𝐾(𝐾 + 𝐽) and 𝜔2 = |𝐽|√2  respectively at the Γ point (0,0)34.  A large density of states in the 12 

form of van Hove singularities is expected near ω1 and ω2.  Figure 4a shows the SWT and Fig. 13 

4b the calculated powder averaged neutron scattering. Equating ω1 and ω2 with the peaks E1 and 14 

E2 yields K and J values of (K=7.0, J=-4.6) meV (shown in Figure 4) or (K=8.1, J=-2.9) meV 15 

(shown in Supplementary Fig. 5) depending on whether ω1 corresponds to E1 or E2.  These two 16 

possibilities lie on either side of the symmetric point K=-2J, where ω1 = ω2.  The inset of Fig. 4d 17 

shows each of these possibilities on the H-K phase diagram34. Either way the Kitaev term is 18 

stronger and antiferromagnetic, while the Heisenberg term is ferromagnetic; again consistent 19 

with ab-initio calculations26.  20 

 21 
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We note that the M1 mode has a gap of at least 1.7 meV near the M point (see Fig. 5a) that is not 1 

exhibited in the above SWT calculations. While such a gapless spectrum is a known artifact of 2 

linear SWT for the H-K model34, the experimentally observed gap is too large to be accounted 3 

for within systematic 1/S corrections.  Extending the Hamiltonian to include further terms can 4 

lead to a gap forming within SWT.  However, calculations of the SW spectrum (See 5 

Supplementary Fig. 5 and Supplementary Information) with additional terms in the Hamiltonian 6 

(such as Γ and/or Γ’ terms35-39), when sufficient to generate the observed gap, show features in 7 

the powder averaged scattering that are inconsistent with the observations.  Within the SW 8 

approximation a gap can also be generated by adding an additional Ising-like anisotropy, perhaps 9 

at the level of 15% of J, which is also equivalent to an anisotropic Kitaev interaction.  As 10 

discussed below, the resulting SWT is still incompatible with the data.  11 

 12 

Although the SWT calculation reproduces many of the features of the observed dynamical 13 

response, crucial qualitative disagreements remain.  Most importantly, the observed dependence 14 

of the M2 mode on temperature and energy is incompatible with linear SWT.   The constant 15 

wave-vector cuts shown in Fig. 3c show that M2 maintains a totally consistent peak shape and 16 

intensity above and below TN.  Moreover, for temperatures well above TN to at least 40 K the 17 

intensity for all measured wave-vectors is essentially unchanged as shown by Fig. 5b, which is a 18 

plot of the M2 intensity as a function of Q for several temperatures.  In fact a well-defined M2 19 

peak persists with a similar Q dependence up to at least 70 K corresponding to T ~ 5TN.   This is 20 

in sharp contrast to the typical behavior of spin waves in conventional magnets, which generally 21 

exhibit a dramatic decrease of intensity above the ordering temperature.    It should also be noted 22 
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that in the ordered state the energy width of M2 is much broader than the SW calculation over the 1 

observed range of Q.  Fig. 5c, shows a constant Q cut around the M2 mode (blue triangles).  The 2 

red line shows the equivalent powder averaged SWT calculation (Fig. 4b), broadened by the 3 

instrumental energy resolution (marked “R”) and scaled so that the intensity matches the height 4 

of the M2 scattering. The low energy side of the calculation is affected by the lower mode and 5 

therefore cannot be directly compared with the data, however it is clear from the high energy 6 

side that there is considerable extra scattering (indicated by the shading) that is not captured by 7 

SWT.  As discussed in the supplementary information, the smooth drop off of intensity on the 8 

high energy side of the M2 peak argues against the extra width arising from additional features in 9 

the spin wave spectrum that can be achieved by adding extra terms to eqn. (1).  Finally, as 10 

discussed in the supplementary information, for temperatures above TN the detailed wave-vector 11 

dependence of the scattering is not what is expected from conventional SWT. 12 

 13 

The SWT is a quantization of harmonic excitations from classical order. Moreover, the low 14 

ordered moment observed in α-RuCl3 indicates that linear SWT is inadequate.   Indeed, we argue 15 

that the behavior of the observed higher energy mode M2 – which because of its short-time scale 16 

is least sensitive to 3D couplings –is naturally accounted for via the QSL phase proximate in the 17 

H-K phase diagram40.  18 

 19 

This QSL viewpoint has the strong quantum limit as its starting point. It can avail itself of the 20 

recently computed exact dynamical structure factor of the pure Kitaev model, in which spin 21 

excitations fractionalize into static Ising fluxes and propagating Majorana fermions minimally 22 
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coupled to a Z2 gauge field10.  Powder averaged results of the scattering10 expected for the 1 

isotropic antiferromagnetic Kitaev model is shown in Fig. 5d.  Although the QSL is gapless, the 2 

structure factor of its excitations shown in Fig. 5d does show a gap.  This is due to the fact that a 3 

spin flip always excites both quasiparticles - gapless Majorana fermions and a pair of Ising 4 

fluxes, the latter with a nonzero excitation gap10.  This results in a low energy band from 0.125-5 

0.5 K with a peak of intensity near the M point in the Brillouin zone for an antiferromagnetic K.  6 

Most interestingly, in addition, a second very broad and non-dispersing high energy band 7 

appears, centered at an energy that corresponds approximately to the Kitaev exchange scale, K. 8 

(For a similar calculation on the ferromagnetic Kitaev model, and a general discussion, see 9 

Supplementary Fig. 6. and Supplementary Information)   The intensity of the upper band is 10 

strongest at Q = 0 and decreases with increasing Q.  11 

 12 

With the Kitaev interaction dominant it is reasonable to expect that α-RuCl3 is proximate to the 13 

QSL phase. The additional non-Kitaev interactions lead to long-range order at low temperatures 14 

and strongly affect the low energy excitations, which then exhibit spin-wave behavior.  15 

Conversely, the high energy spin fluctuations native to the proximate quantum ground state are 16 

more immune, and can persist even in the ordered state.   This behavior is well known in coupled 17 

S=1/2 antiferromagnetic Heisenberg chains6, where at energies large compared to the interchain 18 

coupling the spectrum of fractionalized excitations (spinons) of the pure chain dominates the 19 

response above and below the magnetic ordering temperature.  This leads to a natural 20 

interpretation of the M2 mode as having the same origin as the upper mode of the Kitaev QSL. 21 

The broad width of the M2 mode as seen in the measurements can be naturally explained in terms 22 
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of the fractionalized Majorana fermion excitations.  The green line in Fig. 5c shows the 1 

calculated powder averaged QSL scattering including the effects of instrumental resolution, with 2 

the value K = 5.5 meV chosen to match the experimental peak position of M2 and the overall 3 

height chosen to match the observed scattering.  The calculated QSL scattering profile is well-4 

matched to the observed additional width of the M2 scattering on the high energy side.  This 5 

value of K is somewhat smaller than that inferred from SWT, but it is very reasonable to expect 6 

that the quantum description requires a renormalized parameter.  The large energy width is 7 

expected for a fractionalized system because several excitations are excited in a single spin flip 8 

process.   Moreover, the Q dependence of the intensity of the M2 mode (Fig. 5b) strikingly 9 

resembles that of the upper band in the pure Kitaev model.  The feature is broad in momentum 10 

since the real-space spin correlations of a QSL are short-ranged.  For convenience, a side-by-side 11 

comparison of the Q dependence of the data and the scattering calculated for SWT and a pure 12 

Kitaev model is presented in Supplementary Fig. 7. 13 

 14 

The fact that M2 survives well above TN, even if M1 is completely washed out, indicates that the 15 

M2 mode is not directly connected to the existence of long range magnetic order.  In the strictly 16 

2D Kitaev model there is no true phase transition from the QSL to the high temperature 17 

paramagnet41.   However, recent Monte Carlo calculations at finite temperature suggest that high 18 

energy Majorana fermions, thus the M2 mode, remain stable up to the highest cross over 19 

temperature at an energy scale of K42, consistent with the observations reported here.   20 

 21 
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Taken together, the qualitative features from a complete quantum calculation using a Majorana 1 

fermion treatment can successfully provide a broadly consistent account of the inelastic neutron 2 

scattering data.  This makes α-RuCl3 a prime candidate for realizing Kitaev and QSL physics.   3 

Further support for the presence of Kitaev QSL physics in α-RuCl3 is seen in recent Raman 4 

scattering measurements24 which show broad response similar to that calculated for the pure 5 

Kitaev model17 with a value of K = 8 meV, of the same order as that derived here. The Raman 6 

continuum also persists to temperatures well above TN.  Much more detailed information on the 7 

structure of the response functions will require INS in single-crystals of both α-RuCl3 and other 8 

relevant compounds, some of which are 3D43,44.    The most instructive measurements on α-9 

RuCl3 should use single crystals free of the complications induced by stacking faults.    10 

 11 

Ideally, a single fully quantum theoretical treatment should capture the microscopic behavior 12 

across all energy and length scales; however, such a treatment is unavailable for the full 13 

Hamiltonian describing the magnetic properties of α-RuCl3.  Here, we have used the insight that 14 

the high-energy short-range spin-liquid physics is well-captured by a pure Kitaev model which 15 

permits an analytic treatment, but misses the weak ordering tendency due to perturbations to the 16 

simple model Hamiltonian. These, however, and their concomitant low-energy spin wave 17 

excitations can be approximately captured by SWT. Considering the usual renormalizations 18 

inherent in semiclassical descriptions of quantum excitations, these two approximation schemes 19 

for different parts of the spectrum can be described by similar microscopic parameters, 20 

suggesting that the absence of a full treatment of the complete H-K model is a technical rather 21 

than conceptual issue.  22 
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 1 

Looking forward, it will also be of great interest to systematically investigate the effects of 2 

disorder and doping in these materials45, and there is also the hope of generating a genuinely 3 

two-dimensional system by exfoliation techniques.  4 

 5 

Methods:  6 

Synthesis and bulk measurements: Commercial-RuCl3 powder was purified in-house to a 7 

mixture of α-RuCl3 and β-RuCl3, and converted to 99.9% phase pure α-RuCl3 by annealing at 8 

500 °C.   Single-crystals of α-RuCl3 were grown using vapor transport with TeCl4 as the 9 

transport agent.  The crystals exhibit an anisotropic mosaic for in-plane peaks, indicative of 10 

stacking faults, as shown in Supplementary Fig. 2.  Samples were characterized by standard bulk 11 

techniques (see Supplementary Fig. 1).  X-ray powder diffraction was carried out at room 12 

temperature using a Panalytical Empyrian diffractometer employing Cu Kα radiation.   13 

The structure was found to be consistent with the trigonal space group P3112 (No. 151) with 14 

room-temperature lattice constants a=b=5.9783(2) Å, c=17.170(1) Å with χ2 = 13.7 and wRp = 15 

5.16.  For C2/m the corresponding fits are worse, with a = 5.982(1), b=10.3530(7), c=6.0611(5), 16 

β=109.177(7) with χ2 = 16.9, wRp = 6.33. In addition, powder neutron diffraction was carried 17 

out at 10 K.  For the fit and the lattice constants at T = 10 K refer to Supplementary Fig. 2 and 18 

Supplementary Table 2.  Magnetic properties were measured with a Quantum Design (QD) 19 

Magnetic Property Measurement System in the temperature interval 1.8 K ≤ T ≤ 300 K. 20 

Temperature-dependent specific heat data were collected using a 14 T QD Physical Property 21 
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Measurement System (PPMS) in the temperature range from 1.9 to 200 K.  Our measurements of 1 

the susceptibility (see Supplementary Fig. 1) are consistent with existing literature22,25,27.  The 2 

magnetic susceptibility of powders fits a Curie-Weiss law over the range above 150 K, with a 3 

temperature intercept of θ ≈ 32 K and a single-ion Ru effective moment of 2.2 µB.  Magnetic 4 

order appears for T ≤ 15 K leading to a broad specific heat anomaly.  The detailed specific heat 5 

of single-crystal specimens is sample dependent, but consistent with other groups25,27,29, and 6 

shows the onset of a broad anomaly near 14 K, and a sharper peak near 8 K, possibly with 7 

additional structure in between those temperatures. This complicated behavior is a consequence 8 

of stacking faults (see main text). 9 

Neutron Diffraction: Neutron diffraction data for structural refinement on a 5.1 g powder 10 

sample of α-RuCl3 were collected at the POWGEN beamline at the Spallation Neutron Source 11 

(SNS), at Oak Ridge National Laboratory (ORNL).  The sample was loaded in a vanadium 12 

sample can under helium, and measured at T ≈ 10 K.  Neutron diffraction measurements to 13 

characterize the magnetic Bragg peaks in both powder and single-crystals was performed at the 14 

HB-1A Fixed Incident Energy (FIE-TAX, Ei = 14.68 meV) triple-axis instrument at the High-15 

Flux Isotope Reactor at ORNL.   For powder diffraction, 4.7 g of powder was packed into a 16 

cylindrical aluminum canister. For single-crystal diffraction, one ~0.7 x 1.0 cm2, 22.5 mg crystal 17 

was attached to a flat aluminum shim using Cytop-M glue. It was then sealed with indium into an 18 

aluminum canister with helium exchange gas and then aligned and confirmed to be a single-19 

domain sample using neutrons. This was attached to the cold-finger of a 4 K closed-cycle 20 

refrigerator for performing the temperature scans. 21 

 22 
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Inelastic neutron scattering: Inelastic neutron scattering of powder α-RuCl3 was performed 1 

using the SEQUOIA chopper spectrometer at the SNS46.   The sample (5.3 grams) was sealed at 2 

room temperature in a 5 x 5 x 0.2 cm3 flat aluminum sample can using helium exchange gas for 3 

thermal contact.  This was mounted to the cold finger of a closed cycle helium refrigerator for 4 

temperature control.  Empty can measurements were performed under the same conditions as the 5 

sample measurements. All inelastic data have been normalized to the incident proton charge and 6 

have the empty can background subtracted. Measurements were made with Ei=8, 25, and 1500 7 

meV for the neutron incident energies.  The Ei=8 and 25 meV measurements were performed 8 

using the fine resolution 100 meV Fermi chopper slit package spinning at 180 Hz and the T0 9 

chopper spinning at 30 Hz.  The Ei=1500 meV measurements used the 700 meV coarse 10 

resolution Fermi chopper spinning at 600 Hz and the T0 chopper spinning at 180 Hz47.   The 11 

Ei=1500 meV configuration yields a calculated full width at half maximum (FWHM) energy 12 

resolution of approximately 97 meV at 200 meV energy transfer.  The FWHM elastic energy 13 

resolution is calculated to be 0.19 and 0.64 meV for the Ei = 8 and 25 meV configurations 14 

respectively.  Care was taken to minimize the exposure of the sample to air, and after every 15 

exposure the sample was pumped for at least 30 minutes to remove adsorbed moisture. Structural 16 

refinements confirmed the purity of the powder sample. Spin wave simulations were performed 17 

using SpinW codes48 (Version 235) and used the nominal symmetric honeycomb structure for α-18 

RuCl3
21,22. The SWT powder average was performed with 3000 random points distributed over 19 

the Brillouin zone. The Ru3+ form factor utilized was interpolated using the results of relativistic 20 

Dirac-Slater wave functions49.  21 

 22 
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Figure 1: Structure and Bulk properties of 2D layered α-RuCl3. a-c, The structure of α-

RuCl3 (space group No. 151, P3112).  a, In-plane honeycomb structure showing edge-sharing 

RuCl6 octahedra and the unit cell of the honeycomb lattice.  b, View along the c axis showing the 

stacking of honeycomb layers in the unit cell, with Ru atoms in each layer denoted by the colors 

red, blue or green.   The different intra-layer Ru-Ru bonds, corresponding to the index “m” in 

equation (1), are labeled in the red layer as α, β, or γ, each with distance a/ √3.  The two-

dimensional zig-zag magnetic structure is illustrated by the black spins on the red layer.  c, Side 

view of the unit cell showing the offsets along the c axis.  Values noted are for room temperature 

lattice constants.  d, Specific heat of powder α-RuCl3.  The solid red line is a fit of the data 

following the two-dimensional Debye model  𝐶𝑝(𝑇) = 𝐴𝐴𝐴 � 𝑇
𝜃𝐷
�
2
∫ 𝑥2

𝑒𝑥−1
𝑑𝑑

𝜃𝐷
𝑇
0  for T > 16 K, and 

for T < 16 K an empirical function describing the anomaly associated with magnetic order.  The 

inset in Fig. 1d shows a close-up of the anomaly associated with the low temperature magnetic 

ordering transition at TN ≈ 14 K in powder samples.  (See Extended Data Fig. 1 for more details 

of thermodynamic measurements). e, Order parameter plot of the (1/2 0 3/2) magnetic Bragg 

peak (Q= 0.81 Å-1) in powder samples. The solid blue line is a power-law fit to the data above 9 

K yielding TN = 14.6(3) K, with β = 0.37(3). f, Similar plot for single-crystals showing two 

coexisting ordering wave-vectors (1/2 0 1) with TN1 = 7.6(2) K (green) and (1/2 0 3/2) with TN2 = 

14.2(8) K (blue). Note that the (1/2 0 1) peak loses intensity sharply, as compared to the (1/2 0 

3/2). Inset: picture of the single-crystal (22.5 mg) used in these measurements.  
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Figure 2: Spin-orbit coupling mode in α-RuCl3, measured at T = 5K with incident energy 

Ei = 1.5 eV.  a, Difference between data integrated over the ranges Q = [2.5, 4.0] Å-1 and [4.5, 

6.0] Å-1 shown in Extended Data Fig. 4, subtracted point by point, illustrating the enhanced 

signal at low Q.  The solid line is a fit to a background plus a Gaussian peak centered at 195 ± 11 

meV with HWHM 48 ± 6 meV.  With the settings used for the measurement the width is 

resolution limited.  b,  Intensity for various values of wave-vector integrated over the energy 

range [150, 250] meV (each point represents a summation in Q over 0.5 Å-1 except for the first 

point which is over 0.26 Å-1).   The solid line shows a two parameter fit of the data to the 

equation  𝐴 ∙ |𝑓𝑚𝑚𝑚(𝑄)|2 + 𝐵, where fmag(Q) is the Ru3+ magnetic form factor in the spherical 

approximation.  The shaded area represents the contribution arising from magnetic scattering.   

Inset: A schematic of the single-ion energy levels for d5 electrons in the strong octahedral field 

(i.e., low spin) limit with spin-orbit coupling showing the J1/2 to J3/2 transition at energy 3λ/2.  
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Figure 3: Collective magnetic modes measured using 25 meV incident neutrons.  a, False 

color plot of the data at T = 5 K showing magnetic modes (M1 and M2) with band centers near E 

= 4 and 6 meV. M1 shows an apparent minimum near Q = 0.62 Å-1, close to the magnitude of the 

M point of the honeycomb reciprocal lattice.  The white arrow shows the concave lower edge of 

the M1 mode. The yellow “P” denotes a phonon that contributes to the scattering at an energy 

near that of M2, but at higher wave-vectors of Q > 2 Å-1. b, The corresponding plot above TN at 

T = 15 K shows that M1 has disappeared leaving strong quasi-elastic scattering at lower values of 

Q and E.  c, Constant-Q cuts through the scattering depicted in Fig. 3a and 3b centered at wave-

vectors indicated by the dashed lines.  The cuts A and C are summed over the range [0.5, 0.8] Å-1 

which includes the M point of the 2D reciprocal lattice, while B and D span [1.0, 1.5] Å-1. The 

data from 2 – 8 meV in cut B is fit (solid blue line) to a pair of Gaussians yielding peak energies 

E1 = 4.1(1) meV and E2 = 6.5(1) meV. The solid lines through cuts A, C and D are guides to the 

eye. d, Constant-E cuts integrated over the energy range [2.5, 3.0] meV, at 4 K (E) and 15 K (F).  

See text for detail. All intensities are in arbitrary units in all panels.   
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Figure 4: Spin Wave Theory calculations. a, Spin wave simulation for H-K model with (K, J) 

= (7.0, -4.6) meV with a ZZ ground state.  The lattice is the honeycomb plane appropriate for the 

P3112 space group.  b, The calculated powder averaged scattering including the magnetic form 

factor. The white arrow shows the concave nature of the edge of the lower mode in (Q, E) space, 

similar to the data in Fig. 3a.  c, Cuts through the data of Fig. 3a integrated over 0.2 Å-1 wide 

bands of wave-vector centered at the values shown.  Lines are guides to the eye.  Note that actual 

data includes a large elastic response from Bragg and incoherent scattering. d, The same cuts, 

through the calculated scattering shown in Fig. 4b.  Inset:  Phase diagram of the H-K model, after 

Ref. 33.  The various phases are denoted by different colors: spin liquid (SL, blue), 

antiferromagnetic (AFM, light violet), stripy (ST, green), ferromagnetic (FM, orange), and zig-

zag (ZZ, red).  The red dots represent the two solutions for α-RuCl3 as determined by the zone 

center spin wave mode energies.  
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Figure 5: Disagreements with classical SWT and agreement with QSL calculations. a, 

Scattering from mode M1 measured at T = 5 K using Ei = 8 meV. Lower panel shows constant 

energy cuts over the energy ranges shown, centered at the locations labeled (G,H) in the upper 

panel.  The absence of structured scattering below 2 meV confirms the gap in the magnetic 

excitation spectrum. b, Constant-E cuts of the data through the upper mode at four different 

temperatures, of which one curve at T = 5 K is below TN (red squares) and rest above TN. The 

lines are guides to the eye.  c,  A constant-Q cut of the Ei = 25 meV, T = 5 K data in the Q range 

shown.  The blue triangles show the M2 portion of the cut B in Fig. 3c, but with the linear 

background term subtracted, and the blue line is a fit to a Gaussian peak.  As discussed in the 

text, the red line shows simulated SWT scattering and the green line shows the scattering 

calculated from a Kitaev QSL response function.   The shaded area represents magnetic 

scattering that is not captured by the SWT.  The double-ended arrow marked “R” shows the 

FWHM of the instrumental resolution of 0.5 meV at 6.5 meV. d, The powder average scattering 

calculated from a 2D isotropic Kitaev model, with antiferromagnetic K, using the results of Ref. 

10, including the magnetic form factor.  The upper feature is broad in energy and decreases in 

strength largely monotonically as Q increases. 

 



Stacking (H K L) Stripy ZZ Data 

AB-AB 
(1/2 0 3/2) 25 ± 2 
(3/2 0 1/2) 1 ±2 

Ratio 0.44 0 0.02 ± 0.07 

ABC-ABC 
(1/2 0 1) 50 ± 4 
(3/2 0 1) 4 ± 4 

Ratio 0.47 0 0.09 ± 0.07 

Supplementary Table 1 



Supplementary Table 1: Comparison of the expected intensities from a stripy and zig-zag 

order, with the observed intensities from single-crystal diffraction. The ratio of the 

calculated intensities at the (1/2 0 L) positions with the (3/2 0 L) positions for L = 1 and 3/2 are 

shown for zig-zag and stripy orders, corrected for both the Lorentz factor and the Ru3+ form 

factor. For the zig-zag order in a perfect honeycomb lattice, the shown (3/2 0 L) locations are 

forbidden15. The observed neutron diffraction intensities are shown. The observed neutron 

diffraction intensity ratio for the (1/2 0 L) and (3/2 0 L) locations are almost zero, which suggests 

zig-zag ordering.  

 



Space group   P31 12 C2/m 

Lattice parameters a (Å) 5.9632(1) 5.9230(3) 

  

b (Å) 5.9632(1) 10.3291(4) 
c (Å) 17.033(7) 6.011(3) 
β (º) 90 109.14(5) 

V (Å3) 524.56(4) 349.72(3) 
      

Fractional 
Coordinates Ru1 x 0.221(1) 0 

  

Ru1 y 0.443(2) 0.1677(4) 
Ru1 z 1\6 0 
Ru2 x 0.559(2)   
Ru2 y 0.117(3)   
Ru2 z 1\6   
Cl1 x 0.214(2) 0.2300(6) 
Cl1 y 0.453(1) 0 
Cl1 z 0.4224(2) 0.2340(6) 
Cl2 x 0.562 0.2492(4) 
Cl2 y 0.108 0.1718(2) 
Cl2 z 0.422 -0.2337(3) 
Cl3 x 0.870(2)   
Cl3 y 0.764(1)   
Cl3 z 0.4220(2)   

      
wRp   5.41 5.31 
χ2   35.71 34.33 
        

ADP (Uiso) Ru1 0.0002(3) 0.0004(2) 

  

Ru2 0.0002(3)   
Cl1 0.0026(2) 0.0031(1) 
Cl2 0.0026(2) 0.0031(1) 
Cl3 0.0026(2)   

      

. 

Supplementary Table 2 



Supplementary Table 2: Rietveld refinement results for both P3112 and C2/m structural 

models of α-RuCl3 at low temperature. The fitted parameters obtained using GSAS are shown 

for the data obtained on the POWGEN beamline of SNS for Bank 2 (TOF data using λcenter = 

1.066 Å) at T = 10 K.  The systematic uncertainties introduced by stacking faults prevent the 

GSAS refinements from distinguishing between the two models. While the differentiation of the 

structural model is not definitive, the sample is shown to be phase pure by the absence of any 

impurity reflections. Parameters are fixed where no errors are given.   
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Supplementary Figure 1: The magnetic susceptibility and heat capacity of single-crystal 

and powder α-RuCl3. a, The magnetic susceptibility χ for powder α-RuCl3 showing only one 

anomaly at TN ≈14 K. b, The 1/χ plotted versus temperature. The data between 100 and 273 K 

fits to a straight line which yields θ ≈ 32 K, and µeff ≈ 2.2 µB. c-d, The magnetic susceptibility 

with H||c  = 0.1 Tesla and the heat capacity with H=0 of the single-crystals of α-RuCl3 are 

shown. Both shows at least two distinct anomalies - the 8 K (sharper, red arrow) and the 14 K 

(broader, green arrow) corresponding to Neel transitions of the (1/2, 0, 1) and (1/2, 0, 3/2) 

antiferromagnetic orders respectively, as shown in Fig. 1d,e in main text and Extended Data Fig. 

3 below. 
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Supplementary Figure 2: Powder diffraction data and single-crystal rocking curves. a-b. 

Powder neutron diffraction pattern obtained at the POWGEN beamline at SNS at 10 K. The 

Rietveld analysis of the data is performed using GSAS for both the P31 12 (a) and C2/m (b) 

space groups. All the sample peaks are accounted for by the Rietveld analysis, which thus exhibit 

the phase purity of the powder sample. The fitted lattice parameters are in Supplementary Table 

2. c.Neutron diffraction data on a single-crystal showing in-plane versus out-of-plane rocking 

curves for a (3 0 0) order Bragg peak. In-plane rocking scans are illustrated for two equivalent 

Bragg reflections, and in each case the in-plane mosaicity is resolution limited (FWHM~0.3°), 

proving a high degree of in-plane order.  Conversely the out-of-plane mosaicity is broad 

(FWHM~4°) pointing to presence of structural disorder arising from stacking faults. 
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Supplementary Figure 3:  Magnetic Bragg peaks in α-RuCl3.  a, Neutron diffraction raw data 

from 5.3 grams of powder sample at T = 4 K and 20 K revealing magnetic Bragg peak at Q ≈ 

0.81 Å-1. b,  Point by point difference plot (4 K minus 20 K) of the data in a. The solid purple 

line shows a Gaussian fit revealing the magnetic Bragg peak at Q = 0.81(1) Å -1. This 

corresponds to the (1/2 0 3/2) wave-vector. c-d, Radial scans on a 22.5 mg single-crystal of 

RuCl3 through the (1/2 0 1) peak  (c) and the (1/2 0 3/2) peak (d). Note that the (1/2 0 1) order 

vanishes by T = 9 K, unlike the (1/2 0 3/2) order. This confirms that the two magnetic orders 

with the same in-plane (1/2, 0), but different out of plane wave-vectors (L = 1 and 3/2) exist, and 

are responsible for the magnetic anomalies observed in the magnetic susceptibility and heat 

capacity.  
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Supplementary Figure 4: Raw data for Ei = 1.5 eV at two wave-vectors. The constant Q cuts 

through the empty-can subtracted inelastic neutron powder data taken at SEQUOIA chopper 

spectrometer with Ei = 1.5 eV for two representative Q ranges one at low Q and the other at high 

Q as shown. The lower Q cut shows a higher intensity than the higher Q cut which represents 

magnetic scattering from the spin orbit coupling mediated J1/2  J3/2 transition. The difference 

between these two cuts is the peak shown in Fig. 2a in main text.  
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Supplementary Figure 5: Spin Wave Theory calculations and corresponding powder 

averages. a, Zig-zag and b, stripy structures. For each spin two-thirds of the nearest neighbors 

are co-aligned in the zig-zag, and anti-aligned in the stripy magnetic structures. c, The nominal 

in-plane honeycomb reciprocal lattice. The values noted are for the room temperature lattice 

constants for α-RuCl3. d-e, The SW spectrum for the parameters corresponding to (K, J) = (8.1, -

2.9) meV with a zig-zag ground state, and the corresponding powder averaged scattering cross-

section yields intensity bands at 4 and 6.5 meV.  We note that this solution corresponds to an 

alternate choice of ω1 and ω2 compared to that shown in Fig. 4 of the main text.  This choice 

gives a much worse description of the observed intensity of the lower mode.  f-g, The SW 

spectrum for a stripy ground state with parameters (K, J) = (-9.4, 2.2) meV chosen to match the 

energies E1 and E2. The corresponding powder averaged pattern does not match the data in Fig. 

3a. h-i, The SW spectrum for the J-K-Γ model33-37 with parameters corresponding to (K, J, Γ) = 

(7.8, -4.8, ±1.45) meV with a zig-zag ground state and a gap of roughly 2 meV at the M point of 

the reciprocal lattice. Corresponding powder averaged pattern yields additional intensity bands 

(orange arrows) arising from broken band degeneracy not seen in our data in Fig. 3a. j-k, The 

spin wave spectrum for the H-K model plus an additional Ising term DSzSz, with parameters (K, 

J, D) = (6.4, -4.2, -0.6) meV with a zig-zag ground state showing a gap of roughly 2 meV at the 

M point.  Note that the anisotropic H-K model with parameter set Kαα = Kββ = Kγγ/1.1 = 6.4 

meV, and J = -4.2 meV also shows a similar gapped spectrum.  l-m A solution with K = -2J 

shows only one mode at the position of M1, here illustrated with parameters (K, J) = (6.0, -3.0) 

meV.  n-o Adding an Ising term when K=-2J introduces a gap but does not break the band 

degeneracy, shown here with (K, J, D) = (5.5, -2.75, -0.75) meV leading to a gap of roughly 2 

meV.  In all cases, the scattering cross-section includes the single-ion Ru3+ form factor46. The 



white arrows in the powder averaged spectra indicate the shapes of the edge of the lower modes. 

Experimental results shown in Fig. 3a are compatible with the zig-zag, but not the stripy, ground 

state. The chosen ranges of the reciprocal lattice plotted are the same as those in Ref. 38. 
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Supplementary Figure 6: Powder averaged simulations of the isotropic pure-Kitaev 

calculations following Ref.  10. a, The powder averaged pattern with isotropic ferromagnetic 

Kitaev interactions. b, The constant Q cuts with Q = [1.0, 1.5] Å-1 for the antiferromagnetic  and 

ferromagnetic Kitaev interactions show similar intensities for both the upper and the lower 

modes. The upper mode is broad in both cases.  
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Supplementary Fig. 7. Visual synopsis of Q and E dependence of the scattering: We show 

the data obtained with Ei = 25 meV at T = 5 K (Fig. 3a) side-by-side with the SWT result (Fig. 

4a) and pure Kitaev QSL predictions (Fig. 5d). The comparison provides a visual synopsis of the 

main result of this paper.  We note that the energy width and wavevector dependence of the M2 

mode is inconsistent with the SWT calculation, but in fact is accounted for rather well by the 

Kitaev calculation.    The solution set (K, J) = (7.0, -4.6) meV is chosen for the SWT as these 

parameters give the best quantitative description of the lower mode within a SW calculation of 

the H-K model. 
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Supplementary Information:  1 

 2 

Susceptibility and Heat Capacity measurements: See Supplementary Figure 1. The ratio of 3 

the intensities for the TN1 = 8 K and TN2 = 14 K Neel transitions varies from crystal to crystal 4 

depending on growth conditions. These have previously been suggested to be signatures of 5 

different27, or possibly exotic25,29, phase transitions in the system.  The present work shows that 6 

they arise from domains with different stacking orders in a highly two-dimensional system.  This 7 

also naturally explains the sample to sample variation of the bulk measurements. The single-ion 8 

effective moment is estimated (see Supplementary Fig. 1) to be 2.2 µB, which in susceptibility 9 

measurements correspond to�𝐽(𝐽 + 1)𝑔, where g is the Lande g factor. 10 

 11 

Neutron Diffraction and Magnetic Bragg peaks: Powder neutron diffraction data was 12 

obtained at the POWGEN TOF neutron diffraction beamline at SNS in a standard sample-13 

changer fitted to a 10 K cryostat. Supplementary figures 2a and 2b show the data obtained at 14 

Bank-2 of the beamline and their refinement using GSAS. The structural parameters at 10 K are 15 

shown in Supplementary Table 2.  The structure is found consistent with the polytypes P31 16 

1222,23,S1, as well as C2/mS2 at low temperature, both showing comparable fit quality. Both 17 

refinements contain the RuCl3 phase and a vanadium phase to account for weak peaks from the 18 

vanadium sample can. We observed that stacking faults affect most of the (H00) and (H01) type 19 

peaks, which showed a saw-tooth like Warren line shape. GSAS powder refinement routines 20 

cannot properly model the high degree of stacking faults present, and this introduces 21 
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uncontrolled systematic uncertainties into the detailed crystallographic parameters obtained from 1 

the refinement.  Nevertheless the data clearly indicate that the sample is pure. There are no 2 

additional peaks that would indicate potential impurity phases, such as β-RuCl3, RuOCl2, Ru or 3 

RuO2.  No obvious phase transition was observed between room-temperature and 10 K.  For this 4 

paper we adopt the P31 12 nomenclature which has been proposed for this system and which we 5 

find consistent with the dataS1 6 

 7 

Magnetic neutron diffraction was performed on both single-crystal and powder samples of α-8 

RuCl3 at the HB-1A Fixed Incident Energy (Ei = 14.68 meV) beamline at the High Flux Isotope 9 

Reactor (HFIR) at ORNL. Single-crystal rocking curves are shown in Supplementary Figure 2c.  10 

Magnetic Bragg peaks are shown in Supplementary Figure 3.  Powder diffraction showed one 11 

clear magnetic peak at Q ≈ 0.81 Å-1, and its weak second harmonic at 2Q ≈ 1.62 Å-1. 12 

Supplementary Fig. 3b shows the magnetic Bragg peak which is fitted to a Gaussian to reveal the 13 

exact location of the peak at Q = 0.81 ± 0.01 Å-1. This corresponds to either (1/3, 1/3, 1) with a 14 

120° order, or (1/2 0 3/2) with a zig-zag or stripy order. To confirm this, the single-crystal 15 

diffraction was performed using one single-domain 22.5 mg crystal under identical experimental 16 

conditions to the powder diffraction. Supplementary Fig. 3c,d show the single-crystal magnetic 17 

diffraction peaks and their temperature dependence. As shown, we see co-existent magnetic 18 

peaks at two different wave-vectors, 𝑘1����⃗  = (ξ 0 2ξ) and 𝑘2����⃗  = (ξ 0 3ξ) where ξ=1/2, with two 19 

different transition temperatures TN1 = 8 K and TN2 = 14 K, precisely matching the Neel 20 

transition temperatures obtained from the heat capacity measurements in Fig. 1d and 21 

Supplementary Fig. 1. A search yielded no evidence of peaks for 120° order at the (1/3, 1/3, L) 22 
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locations, which can hence be precluded. The ordered moment size is estimated by comparing 1 

the structural Bragg peak intensities with the magnetic Bragg peaks, and yields a lower bound of 2 

0.20(5) µB that can be inferred by assuming that the moment direction is perpendicular to the 3 

magnetic k vector. The moment direction is not completely resolved in our measurements, 4 

however from the constraints imposed by measuring peaks in different directions an upper bound 5 

can be ascertained for the total ordered moment, to be 0.4(1) µB.  Thus the ordered moment is at 6 

most around 35% of the value of the effective moment measured from susceptibility. Note that 7 

the ordered moment size in neutron scattering measurements corresponds to g<Jα>, where g is 8 

the Lande g factor and α corresponds to the direction of the ordered moment.   9 

As discussed in the main text, the powder data does not show statistically significant 10 

evidence for a peak at 0.7Å-1 corresponding to the (1/2,0,1) position.  If such a peak is included 11 

in a fit it is present with an intensity of approximately 10% of that at the (1/2,0,3/2) position 12 

although the peaks are not well resolved.  This is not surprising when considering the low energy 13 

necessary to induce stacking faults and the ease of introducing them by mechanically working 14 

the sample. If the neighboring layers of one fixed layer are assumed to be one of the other two 15 

possibilities, but occurring with similar probabilities, the average length of an ABCABC ordered 16 

domain extends over very few lattice spacings, and most of the sample will be composed of 17 

ABAB type ordered regions.  This is reflected in the presence of only a single observed 18 

transition in the powder samples, which also simplifies the interpretation of the observed 19 

inelastic scattering. 20 

 21 
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The Spin-Orbit coupling mode: In a simple picture the spin-orbit coupling leads to a 1 

dispersionless magnetic mode of energy E = 3λ/2 corresponding to the J1/2  J3/2 transition.  The 2 

neutron scattering cross-section for this mode varies as the square of the magnetic form factor of 3 

the Ru3+ ion and therefore decreases with increasing Q.   This allows one to distinguish magnetic 4 

modes from other scattering processes.  This is evident in the extra scattering at low Q visible in 5 

Supplementary Figure 4.  The large background at high Q (shown in Figure 2b) arises from 6 

several sources including multi-phonon and multiple scattering.  Over the region shown a Q 7 

independent background is a reasonable approximation.  8 

 9 

Spin wave models for zig-zag ground states plus extended Hamiltonians:  Spin wave 10 

calculations have been performed for both zig-zag and stripy ordered ground states which are 11 

illustrated in Supplementary Figure 5a,b with the Brillouin zone shown in 5c.  As mentioned in 12 

main text, the spin wave minimum occurs at 0.6 Å-1, corresponding to the M point of the 2D 13 

lattice, as opposed to the 3D wave ordering vector of 0.8 Å-1.  This is strong evidence that 14 

interplanar coupling of the spins is small, and a two dimensional analysis can describe most 15 

features of the relevant spin waves. These calculations are hence performed in a strictly two 16 

dimensional limit, and therefore do not capture details of  the low energy spin waves that may be 17 

dependent on the precise stacking arrangement of the honeycomb lattices. The addition of 18 

interplanar coupling will result in some small dispersion of spin waves along the c* direction 19 

with a minimum at the 3D ordering wave-vector.  As revealed in simulations including such a 20 

coupling, this also leads to observable singularities separated by the same energy scale.    Such 21 
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features have not been observed in the highest resolution data taken with Ei = 8 meV, allowing 1 

for an estimate of an upper bound for the interplanar magnetic coupling on the order of 0.3 meV.     2 

We note that recent calculations suggest that the interlayer binding energy is of order only a few 3 

micro-eV/unit-cellS3, suggesting that effects on the 2D excitations arising from stacking faults 4 

are likely to be negligible.     5 

 6 

As discussed below, we have carried out numerous different simulations to investigate the 7 

possible effect of additional Hamiltonian terms on the excitation spectrum and corresponding 8 

powder averaged scattering.    The powder measurement averages over directions in Q, but 9 

preserves singularities arising in the density of states as a function of E.  The scattering cross-10 

sections can be readily calculated and it is seen that the powder neutron spectrum contains 11 

distinctive fingerprints of the Hamiltonian which can be readily compared to theoretical 12 

calculations to obtain approximate parameters. This is especially true if the measurements are 13 

high resolution, allowing for the extraction of the intensities and widths of the features with high 14 

accuracy.  In our data, any extra modes will be well-resolved to the instrumental resolution of 15 

~0.5 meV (at 6 meV) which puts an absolute lower bound on the resolvability of the features.  16 

Various combinations of all parameters known to us that have been suggested to describe the 17 

system, including the Γ and Γ’ terms, have been used for our spin wave simulations.  We have 18 

not found any of these that satisfactorily fit our powder averaged data.    19 

 20 

 21 
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For illustrative purposes we consider the Hamiltonian including the H-K terms as well as 1 

the symmetry allowed off-diagonal exchange term, Γ35:   2 

 3 

ℋ = ∑ �𝐾𝑆𝑖𝑚𝑆𝑗𝑚 + 𝐽𝑆𝚤���⃗ ∙ 𝑆𝚥���⃗ + 𝛤(Si
mSj

n + Si
nSj

m)�𝑖,𝑗  .               … eqn. (S1) 4 

 5 

Representative calculations with different values of K, J and Γ, and additional Ising terms are 6 

shown in panels d – o of Supplementary Figure 5.  Supplementary Fig. 5 d,e shows the scattering 7 

from the alternate set of parameters (K,J) inferred from the spin wave analysis discussed in the 8 

main text.  Supplementary Fig. 5 f,g illustrates the inelastic scattering expected for a stripy 9 

ground state, which is seen to be completely incompatible with the data. 10 

 11 

 As discussed in the main text, the observed M1 scattering has an energy gap ∆ ≥  1.7 ± 0.1 meV 12 

that is established by analyzing the Ei= 8 meV  constant Q cut at the M point band minimum,  Q 13 

= 0.62(3) Å-1.  With Γ = 0 the H-K SWT cannot reproduce the experimentally observed gap.   A 14 

non-zero Γ term can induce a gap at the M point. However, it also lifts mode degeneracies, and 15 

as described in main text, when it is large enough to match the experimental gap value it also 16 

yields additional singularities in the powder averaged spectrum that are not seen experimentally. 17 

To assess whether or not spin wave theory can explain the broad energy response of the M2 18 

mode, a numerical search of (K-J-Γ) parameter space was conducted.   Supplementary Figure 19 

5h,i shows one of the best solutions found with  parameter set [K, J, Γ] = [7.0, -3.5, ±1.75] meV.   20 

This solution produces an unbroken band of scattering at M2 with about half of the observed 21 
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width, but is contradicted by the data as it predicts extra singularities in the lower mode (orange 1 

arrow) that are not observed.  A smaller Γ does not broaden the upper mode appreciably to match 2 

the data, while a larger Γ both splits the M2 band and makes the unobserved additional mode in 3 

M1 much more prominent.  The addition of arbitrary extra Heisenberg terms (such as next-4 

nearest neighbor terms) to equation 1 to artificially broaden the upper mode also breaks the 5 

degeneracy of the modes creating extra singularities and at lower energies not observed in the 6 

data.    As argued in the main text, the line-shape of the M2 mode cannot be satisfactorily 7 

accounted for by adding extra modes or bending the bands.  8 

 9 

We also note that an additional Ising-like anisotropy, which includes anisotropic Kitaev 10 

terms as a special case, also leads to a gap in SWT without creating any extra bands: 11 

 12 

ℋ = ∑ �𝐾SimSjm + 𝐽Sı���⃗ ∙ Sȷ��⃗ + 𝐷𝜌Si
ρSj

ρ�𝑖,𝑗  .                …  eqn. (S2) 13 

 14 

Supplementary Fig. 5j,k shows a calculation for the special case ρ = z, chosen to match the 15 

experimental gap.   Notably, this scenario is equivalent to introducing anisotropy in the Kitaev 16 

term of the H-K model with one of the three components increased by roughly 10% relative to 17 

the other two components, in the two solutions marked in Fig. 4(d) inset.  Although there is no 18 

physical motivation for the assumption of an Ising-like term in the Hamiltonian, one cannot 19 

absolutely rule out the possibility of an anisotropy in the Kitaev terms.  However, the calculated 20 

spin wave scattering does not reproduce the energy width of the M2 mode.   We note that it has 21 
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been suggested that the Hamiltonian for α-RuCl3 should be XY like as opposed to Ising-like29.   1 

SWT calculations with an XY anisotropy are not compatible with the inelastic neutron scattering 2 

data.   3 

 4 

Note that all of the SW simulations illustrated above assume the presence of long-range order, 5 

and hence none of them can explain the experimental temperature dependence of the M2 mode 6 

(Fig. 5b) which extends well beyond the ordering temperature.   7 

 8 

As an interesting aside, the ratio K/J =-2 has been suggested previously for interactions in 9 

trigonally symmetric lattices with magnetic cations interacting via three edge-shared octahedral 10 

anions. (see, e.g., equation 5.8 in Ref. S4).  With this ratio the SWT has additional degeneracies, 11 

and the result is the appearance of only the M1 mode, as depicted in Supplementary Fig. 5l-m 12 

and also in Supplementary Fig. 5n-o with an additional Ising term leading to a gap.  The possible 13 

relevance of this is discussed further below. 14 

 15 

Wave-vector dependence of the intensity above TN :  In typical antiferromagnets above the 16 

ordering temperature TN the system is in a disordered state with short range order characterized 17 

by a correlation length 𝜉.  Under this circumstance propagating spin waves can still appear at 18 

reduced wave-vectors q such that 𝑞𝑞 ≳ 1, i.e. close to an antiferromagnetic zone boundary.  If an 19 

apparently well-defined peak arises from the zone boundary scattering, a constant E scan in a 20 

powder can exhibit structure when Q has a magnitude equal to that of the zone boundary in any 21 

magnetic Brillouin zone.   Moreover, the powder averaged measurement for a quasi-2D system 22 
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includes contributions from all 2D zone boundaries with Q2D
ZB  ≤    Q.  Thus, the monotonic 1 

decrease intensity as a function of Q observed for M2 is unexpected for SWT, however it 2 

matches the calculated scattering from the Kitaev QSL.  3 

 4 

Pure Kitaev Model: With the validity of the spin-waves in question because of the low ordered 5 

moment, and given the continuity of the high-energy mode across the Neel transition, we argue 6 

that the pure Kitaev model is a more appropriate description of the physics for the higher energy 7 

mode. Calculations for the both antiferromagnetic and ferromagnetic pure Kitaev interactions10 8 

(i.e. with no Heisenberg contributions) are shown to also produce two modes in the powder 9 

average as is shown in Fig. 5d and Supplementary Fig. 6. For both cases, the intensity originates 10 

from Majorana fermions in the presence of a heavy Z2 flux pair. In particular, in the limit of 11 

vanishing Heisenberg interactions, the lower mode originates from Majorana Fermions strongly 12 

affected by the pair of fluxes. The upper mode at a scale E ~ K originates from high energy 13 

Majorana fermions which are much less sensitive to the local scattering by the flux pair, or the 14 

magnetic LRO; this mode therefore more closely resembles the Majorana density of states in this 15 

energy region.  As discussed in the main text the response is broad in both energy and 16 

momentum, and can here be directly related to the broadness of the Majorana Fermion DOS in 17 

the presence of a flux pair.  The broad M2 mode from deconfined Majorana Fermions is 18 

insensitive to energy scales of the interlayer coupling. Our results in RuCl3 hence place this 19 

material as a particularly strong contender for further studies of the properties of 2D Majorana 20 

physics.   21 
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While we have carried out two parallel analyses (classical SWT and QSL) describing the 1 

location and behavior of both modes, both ultimately derive from the same microscopic 2 

Hamiltonian. The full description of the magnetic response function at all energies and 3 

temperatures will thus require a complete quantum theory of the excitations of the Heisenberg-4 

Kitaev Hamiltonian, possibly with additional terms.  Such a treatment is not available with 5 

present technology. In absence of the above all-inclusive quantum H-K theory, one ansatz 6 

popular in the literature attempts to treat both the modes together in SWT using the H-K 7 

Hamiltonian. This generally permits an approximate evaluation of interaction parameters. For 8 

systems that show magnetic order, where SWT is appropriate as a low-energy theory, the 9 

interaction parameters derived in this fashion can often be employed to infer the nature of the 10 

ordered ground states . 11 

 12 

Comparison of wave-vector dependence of the Kitaev and spin-wave models: For 13 

convenience of comparison, the supplementary Figure 7 shows a direct comparison of the low 14 

temperature response function of α-RuCl3 (Fig. 3a), spin-wave theory (Fig. 4b), and the pure 15 

Kitaev calculation (Fig. 5d). 16 

 17 

An alternate single-mode scenario:  18 

One can check for robustness of the fitted value of K from SWT by treating an alternate 19 

hypothetical scenario where the spin wave spectrum is fitted to optimally reproduce only the 20 
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single lower mode M1, leaving the origin of the upper mode M2 a priori undetermined. As 1 

discussed above, this can be done by choosing K=-2J where ω1 and ω2 coincide. With this 2 

choice K = 6 meV yields only one band of intensity corresponding to the location of M1 at 4.2 3 

meV. Supplementary fig. 5 l-m shows the calculation and their powder average for the gapless 4 

case, while Supplementary fig. 5 n-o with parameters K = - 2J = 5.5 meV, D = -0.75 meV (or 5 

alternatively, Kαα = Kββ = Kγγ/1.14 = -2J = 5.5 meV) represents the gapped scenario.  As we see, 6 

this ansatz yields values and sign of K and J values in the vicinity of the two solutions obtained 7 

above and hence the listed parameters remain valid even in this scenario. Crucially, K = 6 meV 8 

continues to reproduce the location of the M2 mode at E ≈ 6 meV in our Kitaev-only QSL 9 

computation. 10 

 11 

 12 
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