Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synergistic assembly of nanoscale lamellar photoconductor hybrids

Abstract

Highly ordered nanostructured organic/inorganic hybrids offer chemical tunability, novel functionalities and enhanced performance over their individual components. Hybrids of complementary p-type organic and n-type inorganic components have attracted interest in optoelectronics, where high-efficiency devices with minimal cost are desired. We demonstrate here self-assembly of a lamellar hybrid containing periodic and alternating 1-nm-thick sheets of polycrystalline ZnO separated by 2–3 nm layers of conjugated molecules, directly onto an electrode. Initially the electrodeposited inorganic is Zn(OH)2, but π–π interactions among conjugated molecules stabilize synergistically the periodic nanostructure as it converts to ZnO at 150 C. As photoconductors, normalized detectivities (D*) greater than 2×1010 Jones, photocurrent gains of 120 at 1.2 V μm−1 and dynamic ranges greater than 60 dB are observed on selective excitation of the organic. These are among the highest values measured for organic, hybrid and amorphous silicon, making them technologically competitive as low-power, wavelength-tunable, flexible and environmentally benign photoconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of lamellar hybrid nanostructure.
Figure 2: Identity of inorganic phase and effect of annealing.
Figure 3: Optoelectronic properties of hybrid PyBA nanostructures.
Figure 4: Structure and photoconducting properties of resulting nanostructures using 5TmDCA.

Similar content being viewed by others

References

  1. Gomez-Romero, P. & Sanchez, C. Functional Hybrid Materials (Wiley–VCH, 2004).

    Google Scholar 

  2. Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Organic–inorganic electronics. IBM J. Res. Dev. 45, 29–45 (2001).

    Article  CAS  Google Scholar 

  3. Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956).

    Article  CAS  Google Scholar 

  4. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  5. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531–534 (2007).

    Article  CAS  Google Scholar 

  6. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996).

    Article  CAS  Google Scholar 

  7. Yang, P. D. et al. Hierarchically ordered oxides. Science 282, 2244–2246 (1998).

    Article  CAS  Google Scholar 

  8. Stupp, S. I. & Braun, P. V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 277, 1242–1248 (1997).

    Article  CAS  Google Scholar 

  9. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996).

    Article  CAS  Google Scholar 

  10. Huang, X. Y. & Li, J. From single to multiple atomic layers: A unique approach to the systematic tuning of structures and properties of inorganic–organic hybrid nanostructured semiconductors. J. Am. Chem. Soc. 129, 3157–3162 (2007).

    Article  CAS  Google Scholar 

  11. Osenar, P., Braun, P. V. & Stupp, S. I. Lamellar semiconductor–organic nanostructures from self-assembled templates. Adv. Mater. 8, 1022–1025 (1996).

    Article  CAS  Google Scholar 

  12. Coakley, K. M. et al. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater. 13, 301–306 (2003).

    Article  CAS  Google Scholar 

  13. Nguyen, T. Q. et al. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288, 652–656 (2000).

    Article  CAS  Google Scholar 

  14. Messmore, B. W., Hulvat, J. F., Sone, E. D. & Stupp, S. I. Synthesis, self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules. J. Am. Chem. Soc. 126, 14452–14458 (2004).

    Article  CAS  Google Scholar 

  15. Reese, C. & Bao, Z. Organic single-crystal field-effect transistors. Mater. Today 10, 20–27 (2007).

    Article  CAS  Google Scholar 

  16. Schenning, A. P. H. J. & Meijer, E. W. Supramolecular electronics; nanowires from self-assembled pi-conjugated systems. Chem. Commun. 3245–3258 (2005).

  17. Hulvat, J. F., Sofos, M., Tajima, K. & Stupp, S. I. Self-assembly and luminescence of oligo(p-phenylene vinylene) amphiphiles. J. Am. Chem. Soc. 127, 366–372 (2005).

    Article  CAS  Google Scholar 

  18. Sofos, M. et al. Nanoscale structure of self-assembling hybrid materials of inorganic and electronically active organic phases. J. Phys. Chem. C 112, 2881–2887 (2008).

    Article  CAS  Google Scholar 

  19. Tajima, K., Li, L.-S. & Stupp, S. I. Nanostructured oligo(p-phenylene vinylene)/silicate hybrid films: One-step fabrication and energy transfer studies. J. Am. Chem. Soc. 128, 5488–5495 (2006).

    Article  CAS  Google Scholar 

  20. Choi, K. S., Lichtenegger, H. C., Stucky, G. D. & McFarland, E. W. Electrochemical synthesis of nanostructured ZnO films utilising self-assembly of surfactant molecules at solid–liquid interfaces. J. Am. Chem. Soc. 124, 12402–12403 (2002).

    Article  CAS  Google Scholar 

  21. Jing, H. Y. et al. Electrochemical self-assembly of highly oriented ZnO-surfactant hybrid multilayers. J. Phys. Chem. B 109, 2881–2884 (2005).

    Article  CAS  Google Scholar 

  22. Usui, H., Sasaki, T. & Koshizaki, N. Ultraviolet emission from layered nanocomposites of Zn(OH)2 and sodium dodecyl sulphate prepared by laser ablation in liquid. Appl. Phys. Lett. 87, 063105 (2005).

    Article  CAS  Google Scholar 

  23. Ogata, S., Tagaya, H., Karasu, M. & Kadokawa, J. New preparation method for organic-inorganic layered compounds by organo derivatization reaction of Zn(OH)2 with carboxylic acids. J. Mater. Chem. 10, 321–327 (2000).

    Article  CAS  Google Scholar 

  24. Soci, C. et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007).

    Article  CAS  Google Scholar 

  25. Law, M. et al. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  26. Mottaghi, M. et al. Low-operating-voltage organic transistors made of bifunctional self-assembled monolayers. Adv. Funct. Mater. 17, 597–604 (2007).

    Article  CAS  Google Scholar 

  27. Quist, P. A. C. et al. Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers. J. Phys. Chem. B 110, 10315–10321 (2006).

    Article  CAS  Google Scholar 

  28. Beek, W. J. E., Wienk, M. M. & Janssen, R. A. J. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater. 16, 1112–1116 (2006).

    Article  CAS  Google Scholar 

  29. Olson, D. C. et al. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496, 26–29 (2006).

    Article  CAS  Google Scholar 

  30. Oswald, H. & Asper, R. in Preparation and Crystal Growth of Materials with Layered Structures (ed. Lieth, R. M. A.) 71 (D. Reidel Publishing Company, 1977).

    Book  Google Scholar 

  31. Brinker, C. J., Lu, Y. F., Sellinger, A. & Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  32. Boeckler, C., Oekermann, T., Feldhoff, A. & Wark, M. Role of the critical micelle concentration in the electrochemical deposition of nanostructured ZnO films under utilization of amphiphilic molecules. Langmuir 22, 9427–9430 (2006).

    Article  CAS  Google Scholar 

  33. Yoshida, T. et al. Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chem. Mater. 11, 2657–2667 (1999).

    Article  CAS  Google Scholar 

  34. Blom, F. R., Van de Pol, F. C. M., Bauhuis, A. & Popma, Th. J. A. R. F. Planar magnetron sputtered ZnO films II: Electrical properties. Thin Solid Films 204, 365–376 (1991).

    Article  CAS  Google Scholar 

  35. Gijzeman, O. L. J., Langelaar, J. & Van Voorst, J. D. W. Triplet excimer emission from pyrene single crystals. Chem. Phys. Lett. 5, 269–272 (1970).

    Article  CAS  Google Scholar 

  36. Loutfy, R. O., Hsiao, C. K., Ong, B. S. & Keoshkerian, B. Electrochemical evaluation of electron acceptor materials. Can. J. Chem. 62, 1877–1885 (1984).

    Article  CAS  Google Scholar 

  37. Müllen, K. & Wegner, G. Electronic Materials: The Oligomer Approach (Weinham, 1998).

    Book  Google Scholar 

  38. Broich, B. & Heiland, G. Charge transfer between zinc oxide crystals and dye layers. Surf. Sci. 92, 247–264 (1980).

    Article  CAS  Google Scholar 

  39. Munoz, E. et al. Photoconductor gain mechanisms in GaN ultraviolet detectors. Appl. Phys. Lett. 71, 870–872 (1997).

    Article  CAS  Google Scholar 

  40. Porter, V. J. et al. Photoconduction in annealed and chemically treated CdSe/ZnS inorganic nanocrystal films. J. Phys. Chem. C 112, 2308–2316 (2008).

    Article  CAS  Google Scholar 

  41. Daubler, T. K. et al. Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2 . J. Appl. Phys. 86, 6915–6923 (1999).

    Article  CAS  Google Scholar 

  42. Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).

    Article  CAS  Google Scholar 

  43. Dong, L., Yue, R. & Liu, L. Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements. J. Microelectromech. 14, 1167–1177 (2005).

    Article  CAS  Google Scholar 

  44. Kagan, J., Arora, S. K. & Ustunol, A. 2,2′-5′,2′′-terthiophene-5-carboxylic acid and 2,2′-5′,2′′-terthiophene-5,5′′-dicarboxylic acid. J. Org. Chem. 48, 4076–4078 (1983).

    Article  CAS  Google Scholar 

  45. Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: From nanodots, to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under Award DE-FG02-00ER54810 and the National Science Foundation under award DMR 0605427. Experiments made use of the following facilities at Northwestern University: J. B. Cohen X-ray Diffraction Facility, IMSERC, the EPIC and Keck-II Facilities of the NUANCE Center, the Keck Biophysics Facility and the Institute for BioNanotechnology in Medicine. The NUANCE Center is supported by the NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois and Northwestern University. We acknowledge facilities support by the Materials Research Center through NSF-MRSEC grant DMR-0520513. XAS measurements were carried out at the DuPont–Northwestern–Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center located at Sector 5 of the Advanced Photon Source. DND-CAT is supported by the E.I. DuPont de Nemours & Co., The Dow Chemical Company, the US National Science Foundation through Grant DMR-9304725 and the State of Illinois through the Department of Commerce and the Board of Higher Education Grant IBHE HECA NWU 96. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. We also thank L. Palmer for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Stupp.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofos, M., Goldberger, J., Stone, D. et al. A synergistic assembly of nanoscale lamellar photoconductor hybrids. Nature Mater 8, 68–75 (2009). https://doi.org/10.1038/nmat2336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing