Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A new representation of knowledge concerning human anatomy and function

By integrating concepts of computer graphics and artificial intelligence, novel ways of representing medical knowledge become possible. They allow unprecedented possibilities ranging from three-dimensional interactive atlases to systems for surgery rehearsal

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Höhne, K.H. et al. A 3D anatomical atlas based on a volume model. in IEEE Comput. Graphics Appl. 12, 72–78 (1992).

    Google Scholar 

  2. Tiede, U. et al. A computerized three-dimensional atlas of the human skull and brain. Am. J. Neuroradiol. 14, 551–559 (1993).

    CAS  PubMed  Google Scholar 

  3. Schubert, R. et al. A new method for practicing exploration, dissection, and simulation with a complete computerized three-dimensional model of the brain and skull. Acta Anat. 150, 69–74 (1994).

    Article  CAS  Google Scholar 

  4. Bloom, F.E. Databases of brain information. in Three-Dimensional Neuroimaging (ed., A.W. Toga), Ch. 13, 273–306 (Raven, New York, 1990).

    Google Scholar 

  5. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  6. Schaltenbrand, G. & Wahren, W. Atlas for Stereotaxy of the Human Brain (Thieme, Stuttgart, 1977).

    Google Scholar 

  7. Wertheim, S.L. The brain database: A multimedia database for neuroscience research and teaching. in 13th Annual Symposium on Computer Applications in Medical Care (eds Lemke, H.U., Rhodes, M.L., Jaffe, C.C. & Felix, R.) 399–404 (IEEE Computer Society Press, Los Alamitos, California, 1989).

    Google Scholar 

  8. Fox, P.T., Mikiten, S., Davis, G. & Lancaster, J.L. BrainMap: A database of human functional brainmapping. in Functional Neuroimaging: Technical Foundations (eds Thatcher, R.W., Hallett, M., Zeffiro, T. & John, E.R.), ch. 9, 95–105 (Academic, Orlando, Florida, 1994).

    Google Scholar 

  9. Lipscomb, K. & Kittrel, A. Software gets under your skin. Physicians Comput. 9, 14–16 (1991).

    Google Scholar 

  10. Dev, P., Coppa, G.P. & Tancred, E. Brainstorm: Designing an interactive neuroanatomy atlas [abstract]. Radiology 185(P), 413 (1992).

    Google Scholar 

  11. Evans, A.C. et al. Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J. Cereb. Blood Flow Metab. 8, 513–530 (1988).

    Article  CAS  Google Scholar 

  12. Greitz, T., Bohm, C., Holte, S. & Eriksson, L. A computerized brain atlas: Construction, anatomical content, and some applications. J. Comput. Assist. Tomogr. 15, 26–38, (1991).

    Article  CAS  Google Scholar 

  13. Keyserlingk, D.G., Niemann, K., Wasel, J. & Maurer, K. Digital brain atlas for structure localization in CT combined with EEG mapping. Psychiat. Res. 29, 461–462 (1989).

    Article  Google Scholar 

  14. Lehmann, E.D.M. et al. Computer-aided interpretation of SPECT images of the brain using an MRI-derived 3D neuro-anatomical atlas. Med. Inform. 16, 151–166 (1991).

    Article  CAS  Google Scholar 

  15. Niemann, K., Keyserlingk, D.G.v. & Wasel, J. Superimposition of an averaged three-dimensional pattern of brain structures on CT scans. Acta Neurochir. 93, 61–67 (1988).

    Article  CAS  Google Scholar 

  16. Carlsen, I.C. et al. Knowledge based interpretation of cranial MR images. in Computer Assisted Radiology, Proc. CAR '91 (eds Lemke, H.U., Rhodes, M.L., Jaffe, C.C. & Felix, R.) 277–282 (Springer, Berlin, 1991).

    Google Scholar 

  17. Robinson, G.P., Colchester, A.C.F. & Griffin, L.D. Model-based recognition of anatomical objects from medical images. Image Vis. Comput. 12, 499–507 (1994).

    Article  Google Scholar 

  18. Mano, I., Suto. Y., Suzuki, M. & Iio, M. Computerized three-dimensional normal atlas. Radiat. Med. 8, 50–54 (1990).

    CAS  PubMed  Google Scholar 

  19. Brinkley, J.F., Eno, K. & Sundsten, J.W. Knowledge-based client-server approach to structural information retrieval: The Digital Anatomist Browser. Comput. Methods Programs Biomed. 40, 131–145 (1993).

    Article  CAS  Google Scholar 

  20. Wahler-Lück, M., Schütz, T. & Kretschmann, H.-J. A new anatomical representation of the human visual pathways. Graefe's Arch. Clin. Exp. Ophthalmol. 229, 201–205 (1991).

    Article  Google Scholar 

  21. Gee, J.C., Reivich, M. & Bajcsy, R. Elastically deforming a 3D atlas to match anatomical brain images. J. Comput. Assist. Tomogr. 17, 225–236 (1993).

    Article  CAS  Google Scholar 

  22. Ackerman, M.I. Viewpoint: The visible Human project. J. Biocommun. 18, 14 (1991).

    CAS  PubMed  Google Scholar 

  23. Winston, P.H. Artificial Intelligence 3rd edn (Addison-Wesley, Reading, Massachusetts, 1992).

    Google Scholar 

  24. Niemann, H., Sagerer, G.F., Schröder, S. & Kummert, F. Ernest: A semantic network system for pattern understanding. IEEE Trans. Pattern Analyt. Machine Intell. 12, 883–905 (1990).

    Article  Google Scholar 

  25. Pommert, A. et al. Symbolic modeling of human anatomy for visualization and simulation. in Visualization in Biomedical Computing (1994), Proc. SPIE 2359 (ed. Robb, R.A.) 412–423 (Rochester, Minnesota, 1994).

    Google Scholar 

  26. Höhne, K.H. & Hanson, W.A. Interactive 3D-segmentation of MRI and CT volumes using morphological operations. J. Comput. Assist. Tomogr. 16, 285–294 (1992).

    Article  Google Scholar 

  27. Schiemann, Th., Bomans, M., Tiede, U. & Höhne, K.H. Interactive 3D-segmentation in Visualization in Biomedical Computing II, Proc. SPIE 1808 (ed. Robb, R.A.) 376–383 (Chapel Hill, North Carolina, 1992).

    Chapter  Google Scholar 

  28. Höhne, K.H. et al. 3D-visualization of tomographic volume data using the generalized voxel-model. Visual Comput. 6, 28–36 (1990).

    Article  Google Scholar 

  29. Tiede, U. et al. Investigation of medical 3D-rendering algorithms. IEEE Comput. Graphics Appl. 10, 41–53 (1990).

    Article  Google Scholar 

  30. Voxel-man brain and skull, an interactive 3D atlas for teaching and studying anatomy and its radiological appearance. (Springer Electronic Media, Heidelberg & New York, 1995).

  31. Bookstein, F. Morphometric Tools for Landmark Data. (Cambridge Univ. Press, New York, 1991).

    Google Scholar 

  32. Brechbühler, C., Gerig, G. & Kübler, O. Surface parametrisation and shape description. in Proc. First Conference on Visualization in Biomedical Computing, VBC '92, 80–89 (Chapel Hill, North Carolina, 1992).

    Chapter  Google Scholar 

  33. Declerck, J., Subsol, G., Thirion, I. & Ayache, N. Automatic retrieval of anatomical structures in 3d medical images. in Proc. First International Conference on Computer Vision, Virtual Reality and Robotics in Medicine 153–162 (CVR Med, Nice, 1995).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höhne, K., Pflesser, B., Pommert, A. et al. A new representation of knowledge concerning human anatomy and function. Nat Med 1, 506–511 (1995). https://doi.org/10.1038/nm0695-506

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0695-506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing