Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics

Abstract

T cell circulation between peripheral tissues and the lymphoid compartment is critical for immunosurveillance and host defense. However, the factors that determine whether T cells remain in peripheral tissue or return to the circulation are undefined. Here we demonstrate that the chemokine receptor CCR7 is a critical signal that determines T cell exit from peripheral tissue. Both CCR7 and CCR7+ effector T cells entered mouse asthmatic lung and while CCR7 T cells accumulated, CCR7+ T cells continued to migrate into afferent lymph. Delivery of both CCR7+ and CCR7 T cells directly into the airways showed that only CCR7+ T cells exited the lung and entered draining lymph nodes. Our study establishes a molecular basis for T cell exit from peripheral tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CCR7 but not CCR7+ CD44hi T cells accumulate in the inflamed lung.
Figure 2: Constitutive T cell transgenic CCR7 expression results in a paucity of T cells in inflamed extralymphoid tissues and accumulation in lymphoid tissues.
Figure 3: CCR7 expression on antigen-specific T cells determines their accumulation in lymphoid versus inflamed extralymphoid tissues.
Figure 4: Adoptively transferred wild-type OT-II or CCR7-transgenic OT-II T cells induce inflammation after challenge with aerosolized OVA.
Figure 5: CCR7 'guides' CD4+ and CD8+ effector T cell exit from peripheral tissues and entry into afferent lymphatics.

Similar content being viewed by others

References

  1. Gowans, J.L. & Steer, H.W. The function and pathways of lymphocyte recirculation. Ciba Found. Symp. 71, 113–126 (1980).

    CAS  PubMed  Google Scholar 

  2. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Stein, J.V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Sallusto, F. et al. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur. J. Immunol. 29, 2037–2045 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Campbell, D.J., Kim, C.H. & Butcher, E.C. Chemokines in the systemic organization of immunity. Immunol. Rev. 195, 58–71 (2003).

    CAS  PubMed  Google Scholar 

  8. Luster, A.D. Chemokines–chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Mackay, C.R., Marston, W.L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Lehmann, C. et al. Lymphocytes in the bronchoalveolar space reenter the lung tissue by means of the alveolar epithelium, migrate to regional lymph nodes, and subsequently rejoin the systemic immune system. Anat. Rec. 264, 229–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hogan, R.J. et al. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J. Immunol. 166, 1813–1822 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ostler, T., Hussell, T., Surh, C.D., Openshaw, P. & Ehl, S. Long-term persistence and reactivation of T cell memory in the lung of mice infected with respiratory syncytial virus. Eur. J. Immunol. 31, 2574–2582 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Dieu, M.C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saeki, H., Moore, A.M., Brown, M.J. & Hwang, S.T. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 162, 2472–2475 (1999).

    CAS  PubMed  Google Scholar 

  15. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Gunn, M.D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl. Acad. Sci. USA 95, 258–263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Unsoeld, H. & Pircher, H. Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J. Virol. 79, 4510–4513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roman, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Debes, G.F. et al. CC chemokine receptor 7 expression by effector/memory CD4+ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J. Virol. 78, 7528–7535 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Belz, G.T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl. Acad. Sci. USA 101, 8670–8675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Methods 185, 133–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Nakano, H. & Gunn, M.D. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J. Immunol. 166, 361–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Mori, S. et al. Mice lacking expression of the chemokines CCL21-ser and CCL19 (plt mice) demonstrate delayed but enhanced T cell immune responses. J. Exp. Med. 193, 207–218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kallinich, T. et al. Chemokine-receptor expression on T cells in lung compartments of challenged asthmatic patients. Clin. Exp. Allergy 35, 26–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Burman, A. et al. A chemokine-dependent stromal induction mechanism for aberrant lymphocyte accumulation and compromised lymphatic return in rheumatoid arthritis. J. Immunol. 174, 1693–1700 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Christopherson, K.W., II, Hood, A.F., Travers, J.B., Ramsey, H. & Hromas, R.A. Endothelial induction of the T-cell chemokine CCL21 in T-cell autoimmune diseases. Blood 101, 801–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tager, A.M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Goodarzi, K., Goodarzi, M., Tager, A.M., Luster, A.D. & von Andrian, U.H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat. Immunol. 4, 965–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Mathew, A., Medoff, B.D., Carafone, A.D. & Luster, A.D. Cutting edge: Th2 cell trafficking into the allergic lung is dependent on chemoattractant receptor signaling. J. Immunol. 169, 651–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Grakoui, A., Donermeyer, D.L., Kanagawa, O., Murphy, K.M. & Allen, P.M. TCR-independent pathways mediate the effects of antigen dose and altered peptide ligands on Th cell polarization. J. Immunol. 162, 1923–1930 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Luster laboratory for discussions; and A.M. Tager, P. Sarraf, B.D. Medoff and S.A. Islam for discussions, technical advice and critical reading of the manuscript. Supported by the National Institutes of Health (R01-AI40618 to A.D.L. and F32-AI054107 to S.K.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D Luster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromley, S., Thomas, S. & Luster, A. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 6, 895–901 (2005). https://doi.org/10.1038/ni1240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing