Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas

Abstract

The Younger Dryas interval during the Last Glacial Termination was an abrupt return to glacial-like conditions punctuating the transition to a warmer, interglacial climate. Despite recent advances in the layer counting of ice-core records of the termination, the timing and length of the Younger Dryas remain controversial. Also, a steep rise in the concentration of atmospheric radiocarbon at the onset of the interval, recorded primarily in the Cariaco Basin, has been difficult to reconcile with simulations of the Younger Dryas carbon cycle. Here we discuss a radiocarbon chronology from a tree-ring record covering the Late Glacial period that has not been absolutely dated. We correlate the chronology to ice-core timescales using the common cosmic production signal in tree-ring 14C and ice-core 10Be concentrations. The results of this correlation suggest that the Cariaco record may be biased by changes in the concentration of radiocarbon in the upper ocean during the early phase of the Younger Dryas climate reversal in the Cariaco basin. This bias in the marine record may also affect the accuracy of a widely used radiocarbon calibration curve over this interval. Our tree-ring-based radiocarbon record is easily reconciled with simulated production rates and carbon-cycle changes associated with reduced ocean ventilation during the Younger Dryas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ18O (ref. 36), 10Be flux and 14C production rate for the period from 15,000 to 10,000 yr BP.
Figure 2: Correlation coefficient for a linear correlation between the 14C production rate from the floating tree-ring record and the climate-corrected 10Be flux to Summit.
Figure 3: Comparison of tree-ring-based 14C ages versus calendar ages with several independent calibration records.
Figure 4: Modelled and measured Δ14C and δ18O during the YD.

Similar content being viewed by others

References

  1. Dansgaard, W., White, J. W. C. & Johnsen, S. J. The abrupt termination of the younger dryas climate event. Nature 339, 532–534 (1989).

    Article  Google Scholar 

  2. Björck, S. et al. An event stratigraphy for the last termination in the North Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group. J. Quatern. Sci. 13, 283–292 (1998).

    Article  Google Scholar 

  3. Litt, T. et al. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 20, 1233–1249 (2001).

    Article  Google Scholar 

  4. Wang, Y. J. et al. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  5. Hughen, K. A., Overpeck, J. T., Peterson, L. C. & Trumbore, S. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–54 (1996).

    Article  Google Scholar 

  6. Hendy, I. L., Kennett, J. P., Roark, E. B. & Ingram, B. L. Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10 ka. Quat. Sci. Rev. 21, 1167–1184 (2002).

    Article  Google Scholar 

  7. Friedrich, M. et al. High-resolution climate signals in the Bølling-Allerød Interstadial (Greenland Interstadial 1) as reflected in European tree-ring chronologies compared to marine varves and ice-core records. Quat. Sci. Rev. 20, 1223–1232 (2001).

    Article  Google Scholar 

  8. Friedrich, M., Lücke, A., Schwalb, A. & Hanisch, S. Late glacial environmental and climatic changes from synchronized terrestrial archives of central Europe: The network PROSIMUL. PAGES Newslett. 12, 27–29 (2004).

    Article  Google Scholar 

  9. Ammann, B. & Lotter, A. F. Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18, 109–126 (1989).

    Article  Google Scholar 

  10. Björck, S., Koç, N. & Skog, G. Consistently large marine reservoir ages in the Norwegian Sea during the Last Deglaciation. Quat. Sci. Rev. 22, 429–435 (2003).

    Article  Google Scholar 

  11. Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, D06102 (2006).

    Article  Google Scholar 

  12. Meese, D. A. et al. The Greenland Ice Sheet Project 2 depth-age scale: Methods and results. J. Geophys. Res. 102, 26411–26424 (1997).

    Article  Google Scholar 

  13. Hughen, K. A., Southon, J. R., Lehman, S. J. & Overpeck, J. T. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951–1954 (2000).

    Article  Google Scholar 

  14. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  15. Stuiver, M. & Polach, H. A. Discussion: Reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  16. Goslar, T. et al. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377, 414–417 (1995).

    Article  Google Scholar 

  17. Björck, S. et al. Synchronized terrestrial–atmospheric deglacial records around the North Atlantic. Science 274, 1155–1160 (1996).

    Article  Google Scholar 

  18. Stocker, T. F. & Wright, D. G. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11, 773–795 (1996).

    Article  Google Scholar 

  19. Hughen, K. et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65–68 (1998).

    Article  Google Scholar 

  20. Goslar, T., Arnold, M., Tisnerat-Laborde, N., Czernik, J. & Wickowski, K. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403, 877–880 (2000).

    Article  Google Scholar 

  21. Muscheler, R., Beer, J., Wagner, G. & Finkel, R. C. Changes in deep-water formation during the Younger Dryas cold period inferred from a comparison of 10Be and 14C records. Nature 408, 567–570 (2000).

    Article  Google Scholar 

  22. Friedrich, M. et al. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46, 1111–1122 (2004).

    Article  Google Scholar 

  23. Reimer, P. J. et al. INTCAL04 terrestrial radiocarbon age calibration, 0-26 CAL KYR BP. Radiocarbon 46, 1029–1058 (2004).

    Article  Google Scholar 

  24. Delaygue, G., Stocker, T. F., Joos, F. & Plattner, G.-K. Simulation of atmospheric radiocarbon during abrupt oceanic circulation changes: Trying to reconcile models and reconstructions. Quat. Sci. Rev. 22, 1647–1658 (2003).

    Article  Google Scholar 

  25. Schaub, M., Kaiser, K. F., Kromer, B. & Talamo, S. Extension of the Swiss Lateglacial tree-ring chronologies. Dendrochronologia 23, 11–18 (2005).

    Article  Google Scholar 

  26. Kromer, B. et al. Late glacial 14C ages from a floating, 1382-ring pine chronology. Radiocarbon 46, 1203–1209 (2004).

    Article  Google Scholar 

  27. Lal, D. & Peters, B. in Handbuch für Physik (ed. Flügge, S.) 551–612 (Springer, Berlin, 1967).

    Google Scholar 

  28. Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    Article  Google Scholar 

  29. Svensson, A. et al. The Greenland ice core chronology 2005, 15-42 ka. Part 2: Comparison to other records. Quat. Sci. Rev. 25, 3258–3267 (2006).

    Article  Google Scholar 

  30. Yiou, F. et al. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. J. Geophys. Res. 102, 26783–26794 (1997).

    Article  Google Scholar 

  31. Wagner, G. et al. Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core. Earth Planet. Sci. Lett. 181, 1–6 (2000).

    Article  Google Scholar 

  32. Wagner, G. et al. Presence of the solar de Vries cycle (205 years) during the last ice age. Geophys. Res. Lett. 28, 303–306 (2001).

    Article  Google Scholar 

  33. Muscheler, R., Beer, J., Kubik, P. W. & Synal, H.-A. Geomagnetic field intensity during the last 60,000 years based on 10Be & 36Cl from the Summit ice cores and 14C. Quat. Sci. Rev. 24 (2005) (doi:10.1016/j.quascirev.2005.01.012).

    Article  Google Scholar 

  34. Vonmoos, M., Beer, J. & Muscheler, R. Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111doi:10.1029/2005JA011500 (2006).

  35. Finkel, R. C. & Nishiizumi, K. Beryllium 10 concentrations in the Greenland ice sheet project 2 ice core from 3–40 ka. J. Geophys. Res. 102, 26699–26706 (1997).

    Article  Google Scholar 

  36. Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. 102, 26397–26410 (1997).

    Article  Google Scholar 

  37. Alley, R. B. et al. Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: Model-based estimates. J. Glaciol. 41, 503–514 (1995).

    Article  Google Scholar 

  38. Fairbanks, R. G. et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 24, 1781–1796 (2005).

    Article  Google Scholar 

  39. Cao, L., Fairbanks, R. G., Mortlock, R. A. & Risk, M. J. Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quat. Sci. Rev. 26, 732–742 (2007).

    Article  Google Scholar 

  40. Muscheler, R. et al. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet. Sci. Lett. 219, 325–340 (2004).

    Article  Google Scholar 

  41. Brauer, A., Endres, C. & Negendank, J. F. W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 61, 17–25 (1999).

    Article  Google Scholar 

  42. Kaiser, K. F. Beiträge zur Klimageschichte vom Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten (Ziegler Druck & Verlags-AG, Winterthur und WSL/FNP, Birmensdorf, 1993).

    Google Scholar 

  43. Friedrich, M., Kromer, B., Spurk, M., Hofmann, J. & Kaiser, K. F. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quat. Int. 61, 27–39 (1999).

    Article  Google Scholar 

  44. Mortensen, A. K., Bigler, M., Grönvold, K., Steffensen, J. P. & Johnsen, S. J. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core. J. Quat. Sci. 20, 209–219 (2005).

    Article  Google Scholar 

  45. Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2000).

    Article  Google Scholar 

  46. Siegenthaler, U. Uptake of excess CO2 by an outcrop-diffusion model ocean. J. Geophys. Res. 88, 3599–3608 (1983).

    Article  Google Scholar 

  47. Beck, J. W. et al. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292, 2453–2458 (2001).

    Article  Google Scholar 

  48. Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. & Cabioch, G. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals. An update data base including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40, 1085–1092 (1998).

    Article  Google Scholar 

  49. Kitagawa, H. & van der Plicht, J. Atmospheric radiocarbon calibration beyond 11,900 Cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42, 369–380 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Schaub for his contribution to the building of the Swiss Late Glacial tree-ring chronology supported by the Department of Construction of Canton Zurich, Switzerland. This work was supported by the Swedish Research Council. B.K. and M.F. were funded by the ESF (European Science Foundation), EuroCores project ‘EuroClimate’ (Kr 726/3). Initial tree-ring work of M.F. was funded by the German Ministry of Education and Research (DEKLIM—PROSIMUL1/01LD0002).

Author information

Authors and Affiliations

Authors

Contributions

R.M. proposed the 10Be–14C link, initiated the paper and did the calculations. Each co-author contributed especially to his own field of expertise. B.K., M.F. and K.F.K. were the main contributors for the development of the floating tree-ring 14C record. A.S. provided details on the ice-core dating and accumulation rate. S.B. and J.S. provided background and input on the climate, dating and correlation discussion. J.S. suggested a similar placement of the floating tree-ring chronology at the Second Carlsberg Dating Conference in Copenhagen. R.M. wrote the paper, with comments and input provided by all other authors.

Corresponding author

Correspondence to R. Muscheler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscheler, R., Kromer, B., Björck, S. et al. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geosci 1, 263–267 (2008). https://doi.org/10.1038/ngeo128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing