Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours

Abstract

We recently showed that the 1.7 megabase multiple aberration region (MAR) on human chromosome 12q15 harbours recurrent breakpoints frequently found in a variety of benign solid tumours. We now report a candidate gene within MAR suspected to be of pathogenetical relevance. Using positional cloning, we have identified the high mobility group protein gene HMGI–C within a 175 kilobase segment of MAR and characterized its genomic organization. By FISH analysis, we show the majority of the breakpoints of eight different benign solid tumour types fall within this gene. By Southern blot and 3′–RACE analysis, we demonstrate consistent rearrangements in HMGI–C and/or expression of altered HMGI–C transcripts. These results suggest a link between a member of the HMG gene family and benign solid tumour development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mitelman, F. Catalog of chromosome aberrations in cancer. 4th ed., New York, Wiley-Liss (1994).

    Google Scholar 

  2. Turc-Carel, C. et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet. Cytogenet. 23, 291–299 (1986).

    Article  CAS  Google Scholar 

  3. Fletcher, J.A. Translocation (12;22)(q13–14q12) is a nonrandom aberration in soft-tissue clear-cell sarcoma. Genes Chrom. Cancer 5, 184 (1992).

    Article  CAS  Google Scholar 

  4. Roberts, P. et al. 12q13 Abnormality in rhabdomyosarcoma. A nonrandom Occurrence? Cancer Genet. Cytogenet. 60, 135–140 (1992).

    Article  CAS  Google Scholar 

  5. Aman, P. et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chrom. Cancer 5, 278–285 (1992).

    Article  CAS  Google Scholar 

  6. Rabbitts, T.H., Forster, A., Larson, R. & Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nature Genet. 4, 175–180 (1993).

    Article  CAS  Google Scholar 

  7. Zucman, J. et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nature Genet. 4, 341–345 (1993).

    Article  CAS  Google Scholar 

  8. Van de Ven, W.J.M. et al. Molecular characterization of MAR, a multiple aberration region on human chromosome segment 12q13–q15 implicated in various solid tumors. Genes Chrom. Cancer 12, 296–303 (1995).

    Article  CAS  Google Scholar 

  9. Cramer, D.W. Epidemiology of myomas. Semin. Repro. Endocrinol. 10, 320–324 (1992).

    Article  Google Scholar 

  10. Schoenmakers, E.F.P.M. et al. Physical mapping of chromosome 12q breakpoints in lipoma, pleomorphic salivary gland adenoma, uterine leiomyoma, and myxoid liposarcoma. Genomics 20, 210–222 (1994).

    Article  CAS  Google Scholar 

  11. Schoenmakers, E.F.P.M. et al. Identification, molecular cloning and characterization of the chromosome 12 breakpoint cluster region of uterine leiomyomas. Genes Chrom. Cancer 11, 106–118 (1994).

    Article  CAS  Google Scholar 

  12. Rohen, C. et al. The 12q aberration of a breast hamartoma maps within MAR. Genes Chrom. Cancer (in the press).

  13. Schoenmakers, E.F.P.M. et al. A 6 Mb yeast artificial chromosome contig and long range physical map encompassing the region on chromosome 12q15 frequently rearranged in a variety of benign solid tumors. Genomics (in the press).

  14. Kools, P.F.J. et al. Identification of the chromosome 12 translocation breakpoint region of a pleomorphic salivary gland adenoma with t(1;12)(p22;q15) as the sole cytogenetic abnormality. Cancer Genet. Cytogenet. 79, 1–7 (1995).

    Article  CAS  Google Scholar 

  15. Kievits, T. et al. Rapid subchromosomal localization of cosmids by nonradioactive in situ hybridization. Cytogenet. Cell Genet. 53, 134–136 (1990).

    Article  CAS  Google Scholar 

  16. Smith, M.W., Holmsen, A.L., Wei, Y.H., Peterson, M. & Evans, G.A. Genomic sequence sampling: a strategy for high resolution sequence-based physical mapping of complex genomes. Nature Genetics 7, 40–47 (1994).

    Article  CAS  Google Scholar 

  17. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  18. Patel, U.A. et al. Expression and cDNA cloning of human HMGI-C phosphoprotein. Biochem. Biophys. Res. Commun. 201, 63–70 (1994).

    Article  CAS  Google Scholar 

  19. Bustin, M., Lehn, D.A. & Landsman, D. Structural features of the HMG chromosomal proteins and their genes. Biochim. Biophys. Acta 1049, 231–243 (1990).

    Article  CAS  Google Scholar 

  20. Manfioletti, G. et al. cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucl. Acids Res. 19, 6793–6797 (1991).

    Article  CAS  Google Scholar 

  21. Wagner, M.J., Ge, Y., Siciliano, M. & Wells, D.E. A hybrid cell mapping panel for regional localization of probes to human chromsome 8. Genomics 10, 114–125 (1991).

    Article  CAS  Google Scholar 

  22. Schoenberg Fejzo, M. et al. Identification of a YAC spanning the translocation breakpoints in uterine leiomyomata, pulmonary chondroid hamartoma and lipoma. Genomics 26, 265–275 (1995).

    Article  Google Scholar 

  23. Friedman, M., Holth, L.T., Zoghbi, H.Y. & Reeves, R. Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucl. Acids Res. 21, 4259–4267 (1993).

    Article  Google Scholar 

  24. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  Google Scholar 

  25. Yang-Yen, H.F. & Rothblum, L.I. Purification and characterization of a high-mobility-group-like DNA-binding protein that stimulates rRNA synthesis in vitro. Molec. cell. Biol. 8, 3406–3414 (1988).

    Article  CAS  Google Scholar 

  26. Reeves, R., Langan, T.A. & Nissen, M.S. Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity. Proc. natn. Acad. Sci. U.S.A. 88, 1671–1675 (1991).

    Article  CAS  Google Scholar 

  27. Thanos, D. & Maniatis, T. The high mobility group protein HMGI(Y) is required for NF-KB-dependent virus induction of the human IFN-β gene. Cell 71, 777–789 (1992).

    Article  CAS  Google Scholar 

  28. Du, W. & Maniatis, T. The high mobility group protein HMGI(Y) can stimulate or inhibit DNA binding of distinct transcriptional factor ATF-2 isoforms. Proc. natn. Acad. Sci. U.S.A. 91, 11318–11322 (1994).

    Article  CAS  Google Scholar 

  29. Aizawa, S., Nishino, H., Saito, K., Kimura, K., Shirakawa, H. & Yoshida, M. Stimulation of transcription in cultured cells by high mobility group protein 1: Essential role of the acidic carboxy-terminal region. Biochemistry 33, 14690–14695 (1994).

    Article  CAS  Google Scholar 

  30. Miles, H., Mcfarlane, J., Aleck, K.A. & Bawle, E. Macrocephaly with hamartomas: Bannayan-Zonana syndrome. Am. J. med. Genet. 19, 225–234 (1984).

    Article  CAS  Google Scholar 

  31. Kazmierczak, B., Bartnitzke, S., Hartl, M. & Bullerdiek, J. In vitro transformation by the SV40 “early region” of cells from a human benign salivary gland tumor with a 12q13-q15 rearrangement. Cytogenet. Cell Genet. 53, 37–39 (1990).

    Article  CAS  Google Scholar 

  32. Albertsen, H.M., Adderrahim, H., Cann, H.M., Dausset, J., Le Paslier, D. & Cohen, D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. natn. Acad. Sci. U.S.A. 87, 4256–4260 (1990).

    Article  CAS  Google Scholar 

  33. Chumakov, I. et al. Continuum of overlapping clones spanning the entire human chromosome 21 q. Nature 359, 380–387 (1992).

    Article  CAS  Google Scholar 

  34. Green, E.D. & Olson, M.V. Systematic screening of yeast artificial-chromosome libraries using the polymerase chain reaction. Proc. natn. Acad. Sci. U.S.A. 87, 1213–1217 (1990).

    Article  CAS  Google Scholar 

  35. Montgomery, K.T. et al. Characterization of two chromosome 12 cosmid libraries and development of STSs from cosmids mapped by FISH. Genomics 17, 682–693 (1993).

    Article  CAS  Google Scholar 

  36. Geurts, J.M.W., Schoenmakers, E.F.P.M., Mols, R. & Van de Ven, W.J.M. Improved procedure for rapid isolation and sequencing of DNA insert termini in yeast artificial chromosomes. Meth. molec. cell. Biol. 4, 257–265 (1994).

    Google Scholar 

  37. Nelson, D.L. et al. Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proc. natn. Acad. Sci. U.S.A. 86, 6686–6690 (1989).

    Article  CAS  Google Scholar 

  38. Rychlik, W. & Rhoads, R.E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl. Acids Res. 17, 8543–8551 (1989).

    Article  CAS  Google Scholar 

  39. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenmakers, E., Wanschura, S., Mols, R. et al. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet 10, 436–444 (1995). https://doi.org/10.1038/ng0895-436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing