Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linkage of pycnodysostosis to chromosome 1q21 by homozygosity mapping

Abstract

Pycnodysostosis is an autosomal recessive sclerosing skeletal dysplasia of unknown aetiology which is inherited with complete penetrance. The clinical features, fully delineated in 1962 by Maroteaux & Lamy1 and by Andrén et al.2, include osteosclerosis, acro-osteolysis of the distal phalanges, bone fragility, clavicular dysplasia, reduced stature and skull deformities with delayed suture closure. Although rare, pycnodysostosis has attained prominence because the French artist Henri de Toulouse-Lautrec was retrospectively diagnosed as having been affected with this disorder3,4. For rare autosomal recessive traits, homozygosity mapping provides a powerful approach to disease gene mapping5,6. We have now used this approach to map the locus for pycnodysostosis. Following a genome-wide search in a large Arab family with 16 affected relatives7, we established linkage to a narrow region on chromosome 1q21, with a maximal lod score of 11.72. A single marker, D1S498, was homozygous-by-descent in all affecteds and defined the gene locus to a region of 4 cM. Two candidate genes in the region — the interleukin-6 receptor gene (IL6R) and the myeloid cell leukaemia-1 gene (MCL1) — are involved in the differentiation of monocyte/macrophages into osteoclasts, the most likely site of the primary defect in pycnodysostosis8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maroteaux, P. & Lamy, M. La pycnodysostose. Presse Med. 70, 999–1002 (1962).

    CAS  PubMed  Google Scholar 

  2. Andren, L., Dymling, J.F., Hogeman, K.E. & Wendeberg, B. Osteopetrosis acro-osteolytica: A syndrome of osteopetrosis, acro-osteolysis and open sutures of the skull. Acta Chir. Scand. 124, 496–507 (1962).

    PubMed  Google Scholar 

  3. Maroteaux, P. & Lamy, M. The malady of Toulouse-Lautrec. J. Am. med. Assoc. 191, 715–717 (1965).

    Article  CAS  Google Scholar 

  4. Maroteaux, P. La maladie de Toulouse-Lautrec. Presse Med. 23, 1635–1640 (1993).

    Google Scholar 

  5. Lander, E.S. & Botstein, D. Homozygosity mapping: A way to map human recessive traits with the DMA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Kruglyak, L., Daly, M.J. & Lander, E.S. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am. J. Hum. Genet. 56, 519–527 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Edelson, J.G., Obad, S., Geiger, R., On, A. & Artul, H.J. Pycnodysostosis: orthopedic aspects with a description of 14 new cases. Clin. Orthop. 280, 263–276 (1992).

    Google Scholar 

  8. Greenspan, A. Sclerosisng bone dysplasias- a target-site approach. Skeletal Radiol. 20, 561–583 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet. 7, 246–330 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Hoggard, N. et al. Mapping regions of allelic imbalance on chromosome 1 in human breast cancer. Cytogenet.Cell Genet. 67, 168 (1994).

    Google Scholar 

  11. Kluck, P.M.C. et al. The human interleukin-6 receptor alpha chain gene is localized on chromosome 1 band q21. Hum. Genet. 90, 542–544 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Craig, R.W. et al. Human and mouse chromosomal mapping of the myeloid cell leukemia-1 gene: MCL1 maps to human chromosome 1q21, a region that is frequently altered in preneoplastic and neoplastic disease. Genomics 23, 457–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Kishimoto, T., Akira, S. & Taga, T. IL-6 receptor and mechanism of signal transduction. Int. J. Immunopharmac. 14, 431–438 (1992).

    Article  CAS  Google Scholar 

  14. Tamura, T. et al. Soluble interteukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natn. Acad. Sci. U.S.A. 90, 11924–11928 (1993).

    Article  CAS  Google Scholar 

  15. Hoyland, J.A., Freemont, A.J. & Sharpe, P.T., IL-6 receptor, and IL-6 nuclear factor gene expression in Paget's disease. J. Bone miner. Res. 9, 75–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Balena, R. et al. Interleukin-6 deficient mice are protected from bone loss by estrogen depletion. EMBO J. 13, 1189–1196 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P. & Craig, R.W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. U.S.A. 90, 3516–3520 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaux, D.L., Cory, S. & Adams, J.M. Bcl-2 gene promotes hemopoietic cell survival and cooperates with c-myc to immortalize Pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. McKusick, V.A. Abraham Lincoln and Marfan syndrome. Nature 352, 280 (1991).

    Article  Google Scholar 

  21. Herrmann, J., France, T.D., Sprager, J.W., Opitz, J.M. & Wiffler, C., Stickler syndrome (hereditary arthroophthalmopathy). Birth Defects Orig. Art.Ser. XI, 76–103 (1975).

    Google Scholar 

  22. Macalpine, I., Hunter, R. & Rimington, C. Porphyria in the royal houses of Stuart, Hanover, and Prussia: A follow-up study of George III's illness. Brit. Med.J. 1, 7–18 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wolf, P.L. If clinical chemistry had exited then…. Clin. Chem. 40, 328–335 (1994).

    CAS  PubMed  Google Scholar 

  24. McKusick, V.A. The royal hemophilia. Sci. Am. 213, 88–95 (1965).

    Article  CAS  PubMed  Google Scholar 

  25. Loftus, L.S. & Arnold, W.N. Vincent van Gogh's illness: Acute intermittent porphyria? Brit. med. J. 303, 1589–1591 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Shea, J.G., Chopin's illness actually cystic fibrosis? Med. J. Aust. 147, 586–589 (1987).

    CAS  PubMed  Google Scholar 

  27. Frey, J. Toulouse-Lautrec: A life. (Viking Press, New York, 1994).

    Google Scholar 

  28. Anderson, M.A. & Gusella, J.F. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20, 856–858 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Verma, R.S. & Babu, A. Human chromsomes: principles and techniques. 2nd edn, 134–136 (McGraw-Hill, Inc., New York, 1995).

    Google Scholar 

  30. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Multilocus linkage analysis in humans: Detection of linkage and estimation of recombination. Am. J. hum. Genet. 37, 482–498 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelb, B., Edelson, J. & Desnick, R. Linkage of pycnodysostosis to chromosome 1q21 by homozygosity mapping. Nat Genet 10, 235–237 (1995). https://doi.org/10.1038/ng0695-235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing