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Tracing the fate of carbon and the atmospheric
evolution of Mars

Renyu Hu'?, David M. Kass', Bethany L. Ehlmann'? & Yuk L. Yung"?2

The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current
state. However, no solutions for this evolution have previously been found to satisfy the
observed geological features and isotopic measurements of the atmosphere. Here we show
that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of
carbon via CO photodissociation and sputtering enriches heavy carbon (13C) in the Martian
atmosphere, partially compensated by moderate carbonate precipitation. The current
atmospheric 3C/12C and rock and soil carbonate measurements indicate an early atmo-
sphere with a surface pressure <1bar. Only scenarios with large amounts of carbonate
formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully
testable with data from the MAVEN mission and further studies of the isotopic composition
of carbonate in the Martian rock record through time.
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he evolution of the atmosphere of Mars is one of the most

intriguing problems in the exploration of the solar system.

Presently Mars has a very thin 6-mbar atmosphere in
equilibrium with polar caps and regolith. Yet, both morphological
and mineralogical evidence suggests that the climate of Mars
more than 3 billion years ago was warmer and wetter than the
present!. The atmospheric conditions conducive to this
environment are still uncertain. A denser CO, atmosphere may
have facilitated early warm and wet surface conditions, at least
locally and transiently at high orbital obliquities.

The pressure of the early Martian atmosphere has not yet been
constrained by models of atmospheric evolution, due to
uncertainties in the planet’s early out%assing history, atmospheric
escape and carbonate precipitation**. To transition from a
thicker early atmosphere to the thin current atmosphere, carbon
needs to be removed by either escape to space™® or deposition
near the surface as carbonates’. Recent models of the upper
atmosphere of Mars suggest that <300 mbar of CO, has escaped
to space since the late heavy bombardment (LHB)®?, and current
Mars exlploration has only found local evidence of carbonate
deposits'®. Neither mechanism, alone or coupled, fully accounts
for the ‘missing’ CO,, if a multi-bar early atmosphere is assumed.

Here we combine the recent Mars Science Laboratory (MSL)
isotopic measurements of Mars’ atmosphere, and orbital remote
sensing and in situ measurements of Mars’ surface composition to
place hard constraints on Mars’ atmospheric evolution. The
isotopic signature of carbon offers a unique tracer for the
atmospheric evolution of Mars because CO, is the major
constituent of Mars’ atmosphere, and because carbon is not
incorporated into surface minerals except for carbonates. Our
study is driven by the following three recent and important
constraints from in situ and remote sensing observations.

Carbon isotope signature of Mars’ atmosphere. Early data
analyses from the Phoenix lander showed an isotopically light
atmosphere but were influenced by a calibration artefact!™12,
Telescopic measurements had a large uncertainty of 20%o and
were subject to telluric contamination!. The Sample Analysis at
Mars (SAM) instrument suite on MSL has reported the most
precise isotopic measurements of atmospheric CO, to date:
d313C=46+4 (ref. 14), measured by both the tunable laser
spectrometer and the quadrupole mass spectrometer, which
shows that the current Martian atmosphere is enriched in *C
than the Martian mantle (Fig. 1). 813C is defined as the relative
enhancement of the ratio 3C/!2C with respect to a reference
standard (VPDB), reported in parts per thousand (%o):

(13C/12C)Sample - (13C/12C)VPDB
(13C/12C)VPDB

where (13C/12C)yppp = 0.0112372 (ref. 15).

oBC =

x1,000 (1)

Carbonates formed in the Amazonian era. Orbital remote
sensing indicates the Martian dust contains 2-5wt% of carbo-
nate!®. Phoenix-evolved gas experiments have measured up to
6wWt% carbonate in soil of the northern plains!”. MSL’s evolved
gas experiments in Gale Crater found ~1wt% carbonate at the
Rocknest aeolian deposit!8. Certain young, large geologic units on
Mars, including the southern polar layered deposits and the
Medusae Fossae formation may contain up to 10m global
equivalent of dust'®?, On the basis of these measurements, we
estimate an upper limit of carbonate formation during the
Amazonian Era to be 7mbar of CO,, corresponding to global
presence in the upper 10 m of soil at an abundance of ~2 wt%.
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Figure 1 | Summary of 5'3C measurements of Mars. The 5'C value of the
magmatic component of SNC meteorites are used to derive the §'3C value
of the Martian mantle3'. The carbonates in SNC meteorites have highly
variable 8'3C values and the carbonates in ALH 84001 (formed ~3.9 Ga
before the present) are generally enriched in 13C than the Martian mantle'.
The rest of the measurements are for modern Mars' atmosphere!#>152,

Carbonates formed in the Noachian and Hesperian era.
Carbonate-bearing rocks have been discovered in various
Noachian terrains by orbital remote sensing'® and in one rock
formation at Gusev Crater in situ?!. The largest contiguous
exposure of carbonate-bearing rocks in Nili Fossae covers
15,000 km?, is a few tens of metres thick, and may host up to
12 mbar of CO, (refs 22,23). Deep crustal carbonate rocks may
also exist, exposed in several impact craters’*. However,
carbonates are not widespread on Mars and are rare compared
with other secondary minerals like hydrated silicates and
sulfates?>. There is no inherent difference in the detectability
between phyllosilicate and carbonate from an infrared
spectroscopy methodological perspective, and the planet Mars
has been globally sampled. Thus, the difference is most simply
explained as a real difference in abundance. On the basis of this
fact, an upper bound of the amount of carbonates is 5 wt% in the
volume of crust interrogated by remote sensing, constrained by
an upper bound of carbonate non-detectability from infrared
absorption features. Assuming 500 m depth, this upper bound
corresponds to an equivalent atmospheric pressure of 1.4bar.
Similarly, 1wt% of carbonates in the crust, more plausibly non-
detectable in remote sensing and rover-based analyses, would
correspond to 0.3 bar of CO,.

Driven by these three constraints and together with a newly
identified mechanism (photodissociation of CO) that efficiently
enriches the heavy carbon isotope, we find a group of plausible
atmospheric evolution solutions that can indeed satisfy the
current atmospheric pressure and isotopic signatures, and the
amount of carbonate deposition, invoking no missing reservoirs
or loss processes. We therefore derive new quantitative
constraints on the atmospheric pressure of Mars through time,
extending into the Noachian, ~ 3.8 Gyr before the present. The
atmospheric 8'>C data and the carbonate content in rock and soil
indicate an early atmosphere with a surface pressure <1bar.
Only scenarios with large amounts of carbonate deposition in
open-water systems permit higher values up to 1.8 bar.

Results

Isotope fractionation in CO photodissociation. Photodissocia-
tion of CO is the most important photochemical source of
escaping carbon atoms from Mars, responsible for ~90%
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Figure 2 | Energy distribution of carbon atoms produced by
photodissociation of CO. The critical energy for each isotope to escape is
shown in dashed lines for comparison. The energy distribution is calculated
using the current solar minimum spectrum for an exobase at 200 km and
the measured CO photodissociation cross-section?®. The grey and red
areas indicate the fraction of 2C and 3C that escape, respectively, which is
0.40 for 2C and 0.24 for 13C. The fractionation ratio '2C/'3C via CO
photodissociation is thus 0.6. Using early Sun proxies*’ or assuming higher
exobases gives quantitatively similar results.

photochemical loss®. Its fractionation factor, however, has never
been evaluated. Here we show that CO photodissociation on
Mars has a fractionation factor of 0.6 and is a highly efficient
mechanism to enrich 13C of the atmosphere.

In a CO photodissociation, energy from the incident photon, in
excess of the bond dissociation energy, is imparted to carbon and
oxygen atoms as kinetic energy. We use the solar spectrum and
the cross-section of CO photodissociation as a function of
wavelength to calculate the kinetic energy distribution of carbon
isotopes (Fig. 2). The significant fractionation effect of CO
photodissociation is mainly due to two effects: first, conservation
of momentum determines that !3C takes a lesser fraction of the
excess energy than !2C in each photodissociation event; and
second, '3C requires more energy to escape from the gravity of
Mars. The excess energy needs to be >2.6-2.9eV to produce
escaping carbon atoms (that is, the escape threshold energy is
1.5eV for 12C and 1.6V for 13C, and the corresponding energy
for non-escaping 0 by conservation of momentum is
1.1-1.3eV). Because the bond dissociation energy of CO is
11.2 eV, escaping carbon atoms can only be produced by photons
more energetic than 13.8 eV, that is, the solar Lyman continuum.
In this regime, the cross-section of CO photodissociation does not
have strong lines?®. Furthermore, the branching ratios of CO
photodissociation do not affect the fractionation factor, because
only the channel that produces ground-state atoms leads to
escape of any carbon atoms. If one of the dissociation products is
in its excited state (for example, C(!D) or O(!D)), the produced
carbon atom will not have enough kinetic energy to escape for
any photon less energetic than the ionization threshold (83.5 nm).
Thus, the fractionation factor of 0.6 is not sensitive to the
evolution of the solar extreme ultraviolet (EUV) spectrum.

Martian atmosphere evolution scenarios. With the newly cal-
culated fractionation factor for CO photodissociation, we con-
struct a model to trace the history of 8'°C of a free-carbon
reservoir with carbonate deposition and atmospheric escape as
the two sinks and magmatic activity as the sole source (Fig. 3).
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Figure 3 | A box model for long-term exchanges between the carbon
reservoirs on Mars. The model traces a single free-carbon reservoir that
includes the atmosphere, CO, in polar ice, and adsorbed CO, in the
regolith, with magmatic outgassing as the source, and carbonate deposition
and atmospheric escape as the sinks. The escape mechanisms include pick-
up ion sputtering and photochemical escape.

The free-carbon reservoir includes all reservoirs exchangeable on
short timescales, that is, the atmosphere, CO, in polar ice and
adsorbed CO, in the regolith. The carbon history of Mars has
been extensively studied with reservoir models®*~7-*’3%, but none
of the previous models have included photochemical escape as a
major mechanism that enriches atmospheric *C.

We model the evolution of this reservoir starting from 3.8 Ga
before the present, that is, the mid/late Noachian after any
impact-enhanced loss during the LHB, beginning with an
atmospheric 3'*C value equal to that of mantle-degassed CO,
derived from the magmatic component of the SNC meteorites
(shergottites, nakhlites, chassignites)®! (other starting values
produce similar results; see the next section). The modelled
initial reservoir size is calculated from the sum of the current
reservoir size, the total removal by atmospheric escape and the
total amount of carbonate formation, minus the total outgassed.
For outgassing, we adopt the volcanic emplacement rates from
thermal evolution models and Ehotogeological estimates, which
are in agreement (48-120 mbar)*>32, For sputtering, we adopt the
three-dimensional (3D) Monte Carlo simulations® as the standard
escape rates, and the total sputtered is 138-382 mbar, depending
on the age dependency of the solar flux. We adopt the
photochemical escape rate calculated for the present-day solar
flux’, and scale up the rate for earlier, more intense solar Lyman
continuum with a power law:

Fpr = 7.9%10%°F (2)

where F,, is the photochemical escape flux in particles per s, a is
the power-law index and Fyy. is the solar Lyman continuum flux
in units of the current solar Lyman continuum flux. The power-
law index is a free parameter in the model, because existing
calculations of the photochemical escape rate only study current
solar conditions™34. It is however reasonable to explore a power-
law index ranging between 1 and 3, because an increasing solar
EUV flux would lead to increasing mixing ratios of CO, CO™
and electrons in the thermosphere, and these multiple factors
could contribute to increasing the photochemical escape rate
of carbon. The total photochemical loss for this range is
3.2-36 mbar.
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The rate of carbonate formation is simply assumed to be a step
function, characterized by an early carbonate formation rate, a
late carbonate formation rate and a time of transition. Reality
would, of course, be a more gradual transition. For the effects on
the carbon isotopic ratio of the atmosphere, two carbonate
formation scenarios are considered. One scenario is precipitation
in open-water systems (for example, lake and ponds) that have
good isotopic communication with the atmosphere. The
carbonate formed in this way is ~10%o enriched than the
atmosphere!®. The other scenario is precipitation in shallow
subsurface aquifers that are semi-isolated and have poor isotopic
communication with the atmosphere, that is, there is no influx of
gas to replace carbonate precipitated in rock pores. Carbonate is
formed by evaporation of water originally derived from the
surface, and the water can be enriched by up to ~50%o after 99%
of the original volume evaporated. The carbonate formed in this
way is thus up to ~ 60%o enriched relative to the atmosphere. The
shallow subsurface aquifer scenario has been suggested to explain
the high 5!°C values of the carbonates in the Martian meteorite
ALH 84001 (ref. 35). Some carbonate formation may also proceed
in subsurface, closed aquifers from carbon-bearing gases sourced
from hydrothermal fluids, but these would not influence the
atmospheric reservoir’s evolution.

We undertake a million-model approach to quantify the
relationship between the amount of carbonate formation and the
escape rate, and derive constraints on the early surface pressure.
We explore the power-law index of the photochemical escape rate
from 1 to 3, the time of transition from high carbonate formation
to low carbonate formation ranging from 3.0 to 3.5Ga, the
amount of early carbonate formation from 0.001 to 10bar, the
amount of late carbonate formation from 0.01 to 7 mbar and the
amount of early volcanic outgassing from 48 to 120 mbar. We
also consider the uncertainties in how the solar EUV flux varies
with age, which affect the total removal of sputtering and
photochemical processes (see Methods). We performed ~ 50
million simulations using combinations of parameters for both
carbonate formation scenarios, and show the combinations of
parameters that produce the §!3C value in the 1-¢ range
measured by MSL in Fig. 4. The range of early surface pressure—
including the atmosphere, the absorbed carbon in the regolith
and the polar caps—is also shown in Fig. 4.

Most scenarios permitted by the measurements of the current
atmospheric 8'°C and the surface carbonate content have an early
surface pressure <1bar. Owing to the '3C enrichment effect,
even a small amount of atmospheric escape via CO photo-
dissociation can drive the atmospheric 8'3C value to the present-
day value measured by MSL. Therefore, the isotopic data
themselves do not require massive atmospheric loss, and existing
known escape mechanisms are fully consistent with all evidence
from measured isotopic values and carbonate abundance. In fact,
the enrichment from 3.8 billion years ago to present is so
significant that it must be compensated by Noachian/Hesperian
carbonate deposition, because carbonate formation and out-
gassing during the Amazonian are low (see the next section for a
discussion on Amazonian volcanic outgassing). Figure 4 quan-
tifies this compensation: a higher photochemical escape flux
implies a greater amount of early carbonate deposition; but if
more carbonates precipitated in shallow subsurface aquifers that
were locally enriched, a lesser volume would be required. If all
carbonate precipitated in highly enriched shallow subsurface
aquifers as ALH 84001, the upper bound of carbonate formation
is 0.5bar, yielding an upper bound of the surface pressure of
0.9 bar. A surface pressure > 1 bar is only permitted if the power-
law index is >2 and most carbonates formed in open-water
systems. That would also require more carbonates, not yet
detected by rovers and orbiters. The upper bound on the amount
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Figure 4 | Carbonate formation and early surface pressure. These are
constrained by the current atmospheric 8'°C value measured by the MSL™.
In both panels the red area shows the permitted range when carbonate
deposition occurred in shallow subsurface aquifers and the blue area shows
the permitted range when carbonate deposition occurred in open-lake
systems. The amount of early carbonate formation must be commensurate
with the amount of photochemical escape to produce the measured §'°C of
the current Mars' atmosphere. A lesser amount of carbonate formation is
required if the fractionation factor is greater. The early surface pressure is
constrained by both the current atmospheric (Atm.) 8'3C value and the upper
limit of 1.4 bar (5wt%) for the early carbonate formation, shown in dark blue
versus light blue colour in the bottom panel.

of carbonates allowed by the geologic record (5wt% everywhere
globally in the top 500 m, or 1.4 bars of CO,) thus determines an
overall maximum early atmospheric pressure of 1.8 bar. The two
carbonate formation scenarios examined are endmembers, and
any solution between the two is viable and results in initial
atmosphere values between the two cases.

Figure 5 shows four standard scenarios that lead to a present-
day 8'3C value consistent with the MSL measurement. The
scenarios are chosen for a power-law index of 2 for the
photochemical escape rate. Calculations of the photochemical
escape rate for present-day low solar activity and high solar
activity indicate a power-law index of 2-2.4 (refs 9,34), although
the range of the EUV flux in these calculation (a factor of 2) is
smaller than the range from the present day to 3.8 Ga. Two
observations can be made from the evolutionary tracks of these
scenarios. First, photochemical processes are the main processes
that enrich !3C, although sputtering is the main atmospheric
escape process. The amount removed by sputtering is ~ 30 times
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Figure 5 | Standard scenarios of carbon evolution on Mars since the LHB at 3.8 Ga that arrive at present-day 5'3C values. (a) The evolution of the
atmospheric (Atm.) 8'3C value, in comparison with the MSL measurement shown by the error bar. (b,c) The evolution of the escape rate and the carbonate
formation rate, respectively. All scenarios have the same escape rate, corresponding to a power-law index of 2 for the photochemical escape rate. The solid
lines are the scenarios where carbonate deposition persisted through the Hesperian Era and the broken lines are the scenarios where carbonate deposition
only occurred during the Noachian Era. The blue lines are the scenarios where carbonate deposition occurred in shallow subsurface aquifers and the red
lines are the scenarios where carbonate deposition occurred in open-water systems. For each scenario, the amount of early carbonate formation (CF) is
determined by the 8'3C value. (d) The evolution of the surface (Surf.) pressure. The definition of the age boundaries is taken from a recent crater-density
study®3., The escape rate in the second panel can be converted to atom per s by 1bar Gyr ~'=1.7 x 1027 atom per s.

Table 1 | Jacobian values for how the amount of sputtering escape (Msp), photochemical escape (Mpy), carbonate deposition
(Mcp) and volcanic outgassing (Myo) would affect the present '3C.

Early carb. (bar) Late carb. (bar) Transition time (Ga) Index 036C/0In(Msp)  05'3C/0IN(Mpy)  06"3C/0IN(Mcp)  06'3C/0IN(Myo)
Carbonate deposition in open-water systems

0.29 <0.007 3.5 2.0 74.0 78.9 —46.3 —-0.34

01 <0.007 3.0 2.0 66.3 65.1 —54.2 —0.46
Carbonate deposition in shallow subsurface aquifers

0.08 <0.007 3.5 2.0 89.9 82.4 —62.6 —0.57

0.04 <0.007 3.0 2.0 753 77.5 — 633 —-0.92

We determine the Jacobian values of each parameter by calculating the 8'3C for a variation of 10% of each parameter from the standard scenarios shown in Fig. 5. The columns ‘Early carb’ and ‘Late carb’
indicate the amount of carbonate deposition in the Noachian and Hesperian, and that in the Amazonian, respectively.

greater than the amount removed by photochemical processes,
but their effects on the carbon isotopic ratio are comparable
(Table 1). Second, if carbonate formation persisted through the
Hesperian period, the required total amount of carbonates would
be less than if carbonate formation only occurred during the
Noachian. This is because a unit mass of carbonate formation has
a greater impact on the final §!3C value if it occurs later in the
history. With the uncertainties in the time of transition and in the
history of the solar EUV flux, the amount of CO, deposited as
carbonate would be 20 mbar-0.7 bar, corresponding to 2-100

deposits of the size of Nili Fossae, or up to 3 wt%, if distributed
globally. The early surface pressure is constrained to be
0.1-0.5 bar for carbonates formed in shallow subsurface aquifers,
and the upper limit can be extended up to 1bar for carbonates
formed in open-water systems (Fig. 4).

Finally our results show that carbonate formation from the late
Noachian to the Hesperian period is not required when the
power-law index is <1.5 and the amount of sputtering is at the
lower end of the reasonable range. These are the most ‘carbonate
conservative’ scenarios fully consistent with the isotopic data,
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which do not require carbonate deposits beyond Nili Fossae and
imply an early surface pressure of <0.3 bar.

Sensitivity to the starting 8'3C and the outgassing history. To
understand the effects of the starting atmospheric '°C value and
the volcanic outgassing rates to our results, we performed addi-
tional sets of simulations that assume the §'3C value at 3.8 Ga
before present to be —35 and —15%o, and simulations that
assume higher volcanic outgassing rates or longer volcanic out-
gassing period than the standard scenarios. The results of these
simulations are shown in Fig. 6.

If the starting atmosphere has a lower value for §'3C, fewer
carbonate rocks would be required for a fixed photochemical
escape rate. For example, for a power-law index of 2, the
minimum amount of carbonate formation is 0.05bar if the
starting 813C is — 25%o, 0.02bar if the starting '3C is — 35%o
and 0.09bar if the starting 8'°C is — 15%o (the left panel of
Fig. 6). The fractional variation of the required amount of
carbonate deposition is significant when the carbonate deposition
amount is small. When the amount of carbonate formation is
> 0.1 bar, we find the sensitivity to the initial 3!3C becomes much
less significant. In general, the uncertainty in the amount of
carbonate formation introduced by the starting §'3C value is
<0.1bar (Fig. 6) and so is the uncertainty in the estimate of the
early surface pressure.

We adopt the model by Grott et al.3? for the outgassing rate
history. Two endmember scenarios for outgassing are suggested,
one is termed ‘global melt’ scenario and the other is termed
‘mantle plume’ scenario. The difference between the ‘global melt’
scenario and the ‘mantle plume’ scenario is that the latter has the
volcanic outgassing flux more evenly distributed throughout the
Hesperian period and extended into the Amazonian period
(Fig. 7). For the standard models, we assume the ‘global melt’
scenario for the oxygen fugacity one order of magnitude higher
than the iron-wustite buffer IW + 1) and an efficiency of n =0.4
(for a total outgassing amount of 48 mbar). Increasing the
efficiency to n=1 (for a total outgassing amount of 120 mbar)
results in quite minimal changes (Fig. 6).

Without changing the total outgassing rate, but more evenly
distributing it over the Hesperian (that is, the ‘mantle plume’
scenario) would cause a decrease in the required amount of
carbonate formation for a power-law index of ~1.5 (the right
panel of Fig. 6). Prolonging the volcanic outgassing period

[

decreases the minimum amount of required carbonate formation,
because both processes lower the 3'C value, and because
outgassing during the late Hesperian has a greater impact on the
final 8'3C value than that during the early Hesperian. To
summarize, either increasing the total outgassing rate or
prolonging the outgassing period lead to minor changes to our
standard models, and our results appear to be relatively
insensitive to the volcanic outgassing rates varied in a wide range.

For completeness, we test the evolution scenarios by both
increasing the total outgassing rate and prolonging the outgassing
activity. Specifically, we assume the mantle plume scenario of
Grott for outgassing, at an oxygen fugacity of IW+1 and a
degassing efficiency of 0.4. The total outgassing amount since
3.8Ga would then be 420 mbar, in which 350 mbar would be
outgassed between 3.8 and 3.0Ga and 70mbar would be
outgassed between 3.0 Ga and present. This is compared with
the standard models in which 48 mbar would be outgassed
between 3.8 and 3.0 Ga, and essentially 0 would be outgassed after
3.0 Ga.

For this kind of volcanic outgassing history, the planet must
have started to build-up the atmosphere from close to zero
pressure at ~ 3 Ga before the present, to arrive at the appropriate
present-day size of free carbon (that is, 54 mbar). This is a result
of simple mass budget balance owing to the fairly significant
volcanic outgassing source after 3.0 Ga and insignificant mass loss
due to non-thermal escape. If the planet had an atmosphere at
~3Ga, its current atmosphere would be more massive than
7 mbar.

To fit the current 3'3C value, the solution would be
substantially different from our standard scenarios, in that the
final 8'3C value is no longer sensitive to any evolutionary events
before 3.0 Ga, including the early carbonate formation rate, and
that the photochemical escape rate becomes the sole factor that
controls atmospheric evolution since 3.0 Ga. In particular, we find
that the power-law index would have to be >3.7 to provide
enough fractionation during the Amazonian and lead to the
present-day 8'3C value consistent with the MSL measurement.
This solution cannot represent the evolution of planet
Mars, because it requires Mars to have no or minimal atmosphere
3.0Ga before the present, and an extremely large power-law
index for the photochemical escape rate, both of which are
unlikely. We therefore suggest that the solutions with substantial
outgassing during the Amazonian period is unlikely for
planet Mars.
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Figure 6 | Sensitivity of the results to the initial 5'3C value and the volcanic outgassing rates. The same as the upper panel of Fig. 4, but assuming 8'°C
to be —35 and —15%o at the beginning of the modelled period (a), or assuming different volcanic outgassing models (b). The coloured areas show the
permitted range of the amount of carbonate deposition, assuming deposition in open-lake systems. Different colours correspond to different sensitivity
studies, as labelled on the figure. The sensitivity results for the scenarios assuming deposition in shallow subsurface aquifers are similar. The constraints are
relatively insensitive to the initial 8'3C value or the volcanic outgassing rates in reasonable ranges.
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Figure 7 | Volcanic outgassing rates. We adopt the model by Grott et al.32.

Cases of oxygen fugacity of IW +1 and IW for an efficiency of 0.4 are
shown in solid and dashed lines, respectively.

Discussion
In this work we show that a large ‘missing’ carbon reservoir is
unnecessary unless the volcanic outgassing rate was very high.
Rather, starting from a few hundred mbar to about 1bar of CO,
after the LHB, sputtering and moderate carbonate formation is
able to reduce the atmospheric pressure, and subsequent
photochemical escape is able to appropriately enrich 3C with
known processes. The surface pressure constrained by isotopic
modelling is also consistent with an upper bound provided by
analyses of impact crater size®>. The uncertainty in the surface
pressure is dominated by the uncertainties in the photochemical
and sputtering escape rates, as well as the geological settings of
early carbonate formation. Our results thus highlight the crucial
importance of a reliable understanding of non-thermal escape
processes on Mars. How the photochemical escape rates scale
with the solar EUV flux plays a key role, and is yet to be studied.
The Mars Atmosphere and Volatile EvolutioN (MAVEN)
mission will provide data to calibrate current non-thermal
escape models and improve the extrapolation to early Mars.
The evolutionary tracks shown in this paper can be compared
with carbonates in SNC meteorites that formed in the past 1
billion years and have varied 8'3C (ref. 10). Their formation from
atmosphere-sourced carbon, mixed with magma-sourced carbon,
is fully consistent with our evolution scenarios. Importantly, our
model provides a methodology for determining even more
precisely the past atmospheric escape flux, testable by
examination of isotopic ratios in Martian carbonates. Coupled
measurements of isotopic ratios and isotopologues of Noachian to
Early Amazonian deposits, measured in situ or in meteorites and
returned samples, would uniquely distinguish the timing of major
carbonate formation, its geologic setting, as well as the amount of
carbonate deposition that balanced photochemical escape.

Methods

A box model for the atmospheric evolution. We adopt the box model of Kass’
to trace the evolution of the free-carbon reservoir and its §'>C value. We make
major changes to the model, including: using the latest calculations of sputtering
rates; adding photochemical escape as a mechanism of non-thermal escape and
calculating the fractionation factor of CO photodissociation; using the latest
estimate of the outgassing history of Mars that has taken into account the newly
measured solubility of carbon in a more reduced mantle melt; considering the
atmosphere, polar caps and the regolith to be one exchangeable reservoir for free
carbon, and using the latest measurements of their masses for the current size; and
modifying the implementation of the atmospheric collapse according to recent 3D
early Mars climate simulations and allowing the model to be directly constrained
by the geologic record.

Free-carbon reservoir. The current Martian atmosphere is at or near equilibrium
with polar caps and regolith. We define ‘free carbon’ as the atmosphere, CO, ice in
polar caps and CO, absorbed by the regolith. All free-carbon species are treated as

a single reservoir, assuming they exchange with each other over geological times
and they do not significantly fractionate relative to each other in this exchange.
Laboratory measurements indicate that the carbon in CO, does not fractionate
during condensation, an unusual phenomenon probably due to the effect of iso-
topic substitution on the inter-molecular binding energy of the condensed phase’®.
Recent measurements also show that re§olith absorption results in a ~ 1%o
enrichment of C in the gaseous phase®. Therefore, condensation or absorption
of even large amounts of CO, does not change 5'3C in the atmosphere.

Detailed characterization of Mars and relevant laboratory studies in recent years
have provided good constraints on the size of this free-carbon reservoir. We adopt
a current free-carbon reservoir of 54 mbar (7 mbar atmosphere, 2 mbar polar
caps0, 5 mbar subsurface polar deposits*! and 40 mbar regolith absorption*?) as a
fixed parameter in our baseline models.

The advantage of combining these reservoirs into a single reservoir is that we do
not have to explicitly trace the evolutionary history of the surface temperature,
which is primarily a function of the surface pressure, the solar luminosity and the
orbital obliquity?. The surface temperature is the dominant factor that controls the
partitioning of CO, among the atmosphere, the regolith and the polar caps®. This
way, we can focus on evaluating the relationship between non-thermal escape that
enriches 13C and carbon deposition that depletes 1*C.

Outgassing. Outgassing is the primary source of new carbon into the free-carbon
reservoir. The carbon in the mantle is released into the atmosphere through vol-
canic emplacement of mantle material and outgassing from the magma. The
outgassing flux can be estimated from the history of volcanic activity, the estimated
intrusive emplacements and the carbon content of the magmas. The history of
volcanic activity of Mars has been estimated photogeologically by determining the
ages of volcanic units of the E)Ianet’s surface®® and theoretically by modelling the
thermal history of the planet®2. Photogeological estimates based on Viking data
suggest extrusive magma of 67 x 10®km> from the late Noachian to present®,
which corresponds to a total outgassing of 0.5-50 mbar for complete degassing of
10-1,000 p.p.m. dissolved CO,. In addition, for a ratio of intrusive to extrusive
magma of 8.5:1, similar to Earth, the total outgassing can range from 2.4 to
240 mbar assuming 40% outgassing efficiency for the intrusive magma. No
quantitative photogeological estimates have been published after, but recent
observations using high-resolution imagery have suggested Martian volcanism
started earlier and the decay in intensity was more rapid than previously though

The latest models of Mars’ thermal evolution history appear to fully cover the
uncertainties in the flux and timing of volcanic outgassing®2. In the ‘global melt’
scenario of Grott, the planet cools fast, and most volcanic outgassing concentrates
in the pre-Noachian and Noachian periods. For this scenario, the total outgassing
rate during our modelled period (from 3.8 Ga to present) would be 48 mbar at an
oxygen fugacity of IW 4 1 and an outgassing efficiency of 40%. At IW + 1,
~ 1,000 p.p.m. CO, can be dissolved in the magma, and this amount scales with the
oxygen fugacity exponentially*%. In the ‘mantle plume’ scenario of Grott, the planet
cools more slowly, and volcanic outgassing persists throughout the Hesperian
period and extends into the Amazonian period. For this scenario, the total
outgassing rate during our modelled period would be 470 mbar. The
photogeological estimates are within the range defined by these two endmember
scenarios.

For this study, we adopt the volcanic outgassing flux modelled by Grott, as

t43,

Poutgassing = IOIWnA[tanh(t/a)Z]I/ﬁ 3)

where Pougassing is the cumulative outgassed partial pressure at ¢ Myr after
formation and # is the outgassing efficiency. For a ‘global melt’ scenario the
parameters are A =252.45 mbar, a =719.89 Myr, o = 3.6206 and = 6.7809, and
for a ‘mantle plume’ scenario the parameters are A =224.39 mbar, a = 1505.1 Myr,
o=2.7606 and f§ = 3.3600.

We assume volcanic outgassing has been mainly in the form of CO,, rather than
more reduced forms of carbon, during the modelled period. The speciation of
volcanic outgassing on Mars is mainly controlled by the oxygen fugacity of the
source magma. It has been recently shown, experimentally, that outgassing would
be in CO, when the oxygen fugacity is >IW — 0.55 (ref. 45). Petrologically
primitive SNC meteorites show that the Martian mantle has an oxygen fugacity
between IW and IW + 1 (ref. 44). For this range, volcanic outgassing would be in
CO,. However, the early Martian mantle may have been more reduced than the
sources of SNC meteorites, since the meteorite ALH 84001 formed 3.9 Ga before
the present shows an oxygen fugacity as low as IW — 1 (ref. 44). But, if this has
been the case, the total outgassing rate would be insignificant (that is, <12 mbar
for an oxygen fugacity of IW — 1 for the most optimistic estimate of volcanic
emplacement). We therefore suggest that the possibility of an early reduced mantle
and consequently CO or even CH, outgassing during the modelled period has little
impact on our model or results.

Pick-up ion sputtering and photochemical escape. During the model period,
hydrodynamic escape has ceased, impact delivery and removal of volatiles are
limited and the dominant atmospheric escape processes are pick-up ion sputtering
and photochemical processes.

| 6:10003 | DOI: 10.1038/ncomms10003 | www.nature.com/naturecommunications 7


http://www.nature.com/naturecommunications

ARTICLE

Pick-up ion sputtering is a process by which oxygen ions in Mars’ upper
atmosphere are picked up by the solar wind magnetic field and then collide with
the molecules and atoms in the upper atmosphere sputtering them away®®. This
process may have been quite efficient in removing carbon from early Mars when
the solar wind was much stronger than present. We expect sputtering occurred
during the entire modelled period. Detection and mapping of crustal magnetic
anomalies over the Mars surface implies the Martian magnetic field should have
ceased before the formation of Hellas or the rise of Tharsis, because the interiors of
these basins or most volcanic edifices lack magnetic remanence®. Therefore, the
magnetic field does not affect our study. We adopt the 3D Monte Carlo
simulations® as the standard values of the sputtering rate, fitted to this functional
form

Fyy = exp( — 0.462In(Fpuv)” + 5.086In(Feyv) + 53.49) (4)

where Fy, is the sputtering escape flux in particles per s and Fgyy is the solar EUV
flux in units of the current solar EUV flux.

The evolution of the solar EUV flux has been derived by observing young solar-
like stars*’. We adopt Fgyy oc t~123%01 where t is the age. The uncertainty of the
index corresponds to 20% uncertainty in the flux at 3.8 Ga, determined from the
measurement errors of the observations that are used to derive this flux index*745,
The total amount of atmosphere sputtered for the range of Fgyy oc t ~123%01 js
232733 mbar, or 138-382 mbar, calculated using equation (4).

The carbon sputtered will be between 15 and 40%o (depending on the epoch)
lighter than the source atmosphere. The sputtering process itself does not
fractionate the atmosphere, because the carbon atoms that actually escape all have
sufficient energy to escape regardless of the isotope. But the sputtering occurs at
altitudes well above the homopause®®, where each species takes on its mass-
dependent scale height. Thus, the atmosphere being sputtered is lighter than the
total atmosphere and the net effect of the sputtering is to enrich the atmosphere.

The fractionation factor o of the sputtering process can be calculated by

%= exp (%)7 (5)

where g is Mars gravitational acceleration, Az is the distance from the homopause
to the source altitude of escaping carbon atoms, Am is the mass difference between
the isotopes, k is the Boltzmann constant and T is the mean temperature of the
upper atmosphere. We adopt the source altitude from Kass® and calculate the
fractionation factors to be 0.96-0.98. A later calculation appears to suggest a higher
source altitude, by tens of kilometres®. The impact of this difference to the
sputtering fractionation factor is minimal, as the fractionation factor of sguttering
is close to unity in all cases, that is, sputtering is inefficient in enriching °C in the
atmosphere compared with photochemical processes. However, it is efficient in
removing atmospheric mass.

The main photochemical processes that generate escaping carbon atoms are
photodissociation of CO and dissociative recombination of CO ™ and CO;", and
the escape rates are calculated for the present-day solar EUV conditions’. The
escaping carbons are mainly produced by Lyman continuum photons (Fig. 2), and
the appropriate way to scale up the rates with the solar Lyman continuum flux
(FLyc) is unclear, so this is a free parameter in the model. We adopt Fry. o
£~ 08601 baced on observations of young solar-like stars*”48, Again, the
uncertainty of the index corresponds to 20% uncertainty in the flux at 3.8 Ga,
determined from the measurement errors of the observations used to derive this
index*”*8. The total amount of photochemical escape for the range of Fryy o
¢~ 086£01 i 3 40 mbar for a power-law index of 1, 8.2 732 mbar for a power-law
index of 2 and 24 * }? mbar for a power-law index of 3, calculated using
equation (2).

Photochemical processes fractionate the atmosphere in a much more efficient
way than sputtering. This is because sputtering, when it occurs, is usually too
energetic to have any isotopic effects, whereas the fate of photochemical products is
sensitive to their masses. The fractionation factor of dissociative recombination for
13C versus 12C is ~0.8 (ref. 49), and that of CO photodissociation is ~0.6 (main
text). Both depend weakly on the exobase location and fractionate more than
sputtering (> 0.95). Since about 90% of the photochemical escape flux is via CO
photodissociation®, the composite fractionation ratio is
0.8 x 10% + 0.6 x 90% = 0.62.

Carbonate deposition. Since we do not explicitly trace the evolution of the
atmospheric temperature and pressure, carbonate deposition has to be approxi-
mated. We assume the carbon deposition rate to be a step function, characterized
by a constant relatively high early carbonate formation rate, a constant relatively
low late carbonate formation rate and a transition time. We allow the transition
time to vary between 3.5 to 3.0 Ga before the present, covering the scenarios where
carbonate deposition persisted through the Hesperian Era, and the scenarios where
carbonate deposition only occurred during the Noachian Era. Assuming the step
function minimizes the number of free parameters and allows straightforward
comparison with geologic evidence. In reality the carbonate formation rate would
have been variable on small timescales due to transient existence of liquid water on
the surface or in the subsurface. The cumulative amount of carbonate deposition
during the Noachian and Hesperian, that during the Amazonian, and the transition

8

time are three tuning parameters, and the first two are independently constrained
by geologic record.

The standard temperature-dependent formulation of the carbon fractionation
in carbonate formation indicates that carbonate precipitates in open-water systems
at 0°C is ~13%o heavier than the source atmosphere. A temperature of 0 °C was
selected because most of the carbonate rocks are expected to have formed in very
cold water (since it is hard to warm the atmosphere even that much). However, the
carbonates in the Martian meteorite ALH 84001 formed 3.9 Ga before the present
and have high 13C values!®. One of the interpretations of the stable isotopic
features of the carbonates of ALH 84001 is that they formed in an evaporative
environment localized enriched in heavy carbon and oxygen, that is, shallow
subsurface aquifers35. Therefore, we assume tcarbonate = Uprecipitation T %evaporations
where o recipitation = 13%o is the fractionation at precipitation and ®evaporation Varies
from 0 to 50%o, which corresponds evaporation of 0-99.2% of water before
precipitation as calculated by the Rayleigh distillation formula. The upper bound of
Olevaporation COTTesponds to ALH 84001. This treatment is coarse because the acidity
of the residual solution will change as evaporation progresses>®. Another possible
way to increase Ocarbonate ADOVE Uprecipitation 1S that the source CO, was produced
photochemically from a methane-rich background atmosphere®. For our purpose,
it is not necessary to distinguish these possible causes for the large fractionation
factor of carbonate formation suggested by ALH 84001.
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