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Helium, on par with neon, is the most chemically inert element in the Periodic Table. Due to its 

extremely stable closed-shell electronic configuration with a record-high ionization potential 

and zero electron affinity, helium is not known to form thermodynamically stable compounds, 

except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and 

subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a 

thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type 

structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes 

strong electron localization and makes this material insulating. This phase is an electride, with 

electron pairs localized in interstices, forming eight-centre two-electron bonds within empty 

Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 

15 GPa. 



 

Helium (He) is the second (after hydrogen) most abundant element in the universe, and plays an 

enormous role in normal stars and gas giant planets, such as Jupiter and Saturn1. Helium and neon are the 

most inert elements in the Periodic Table. This is easy to understand as the ionization potential of the He 

atom (24.59 eV)2 is highest among all elements, and its electron affinity is zero3. In the last decades, 

many scientists tried to find stable compounds of helium. The most successful example is the HeH+ 

radical4 (and, in general, HenH
+ radicals, n=1-6), stable only in the charged form, extremely aggressive 

and protonating any base. All neutral molecules that have been found in theory or experiment, for 

examples, HHeF5, (HeO)(CsF)6, and LiHe7, are metastable and very high in energy. For instance, HHeF 

has the computed energy of more than 2 eV/atom higher than the mixture of HF molecules and He atoms. 

The only known stable solid compounds involving helium are van der Waals compounds, such as NeHe2
8

 

and He@H2O
9. For inclusion compounds, the enthalpy of formation is close to zero, and removal of He 

atoms has little effect on host’s electronic structure.  

Pressure greatly affects chemistry of the elements – e.g., heavy noble gases become more reactive 

and form compounds with both electronegative and electropositive elements, such as xenon oxides10,11 

and Mg–NG (NG = Xe, Kr, Ar)12. Metallic sodium, when subjected to the pressure of 200 GPa, becomes 

an insulator due to strong core-core orbital overlap leading to interstitial valence electron localization13. 

Furthermore, unexpected compounds, such as Na3Cl, Na2Cl, Na3Cl2, NaCl3, and NaCl7
14, become stable 

under pressure. Here, we performed a large-scale evolutionary search for possible stable compounds of 

helium with a variety of elements (H, O, F, Na, K, Mg, Li, Rb, Cs, etc.). We found that only Na readily 

forms a stable compound with He at pressures accessible to static experiments. Below, we focus on the 

Na-He system. 

Searches for stable compounds were done using the variable-composition evolutionary structure 

prediction algorithm15, as implemented in the USPEX code16. In such calculations, a phase is deemed 

stable if its enthalpy of formation from the elements or any other possible compounds is negative. 

Variable-composition structure searches were performed for the Na-He system at pressures of 0, 150, 

200, 400, 700 and 1000 GPa, allowing up to 36 atoms per primitive cell. We found a new compound 

Na2He (Figs. 1 and 2) that has lower enthalpy than the mixture of elemental Na and He, or any other 

mixture, at pressures above 160 GPa (Fig. 1). The reaction 

2Na + He  →  Na2He                                                             (1) 

is predicted to be exothermic at pressures above 160 GPa, releasing as much energy as -0.51 eV at 500 

GPa. Phonon calculations clearly indicate dynamical stability of Na2He above 100 GPa (Supplementary 

Fig. S1). This means that, once formed, this phase can be quenchable down to 100 GPa, but at and below 



 

50 GPa it is dynamically unstable and therefore unquenchable to ambient conditions. Quasiharmonic free 

energy calculations suggest that temperature has little effect on Gibbs free energy of formation of Na2He: 

e.g., it increases from -0.41 eV at 0 K to -0.39 eV at 800 K at 300 GPa (Supplementary Fig. S2). 
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FIG. 1. Thermodynamics of the Na-He system. (a) Predicted convex hulls of the Na-He system, based on theoretical 

ground states of Na and He at each pressure (Refs. 13,17-19). (b) Enthalpy of formation of Na2He as a function of pressure. 

Our calculated pressures of the cI16-tI19 and tI19-hP4 transitions of Na are 151 GPa and 273 GPa, respectively, similar 

to previous calculations 13. 
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space group Fm-3m with lattice parameter a = 3.95 Å at 300 GPa, and Na atoms occupying the Wyckoff position 8c 

(0.25,0.25,0.25) and He atoms occupying the 4a (0,0,0) positions. 

 

In our experiments, Na was loaded in He medium in a laser-heated diamond anvil cell (DAC) and 

compressed up to 155 GPa (Supplementary Table S1). The sample was monitored using synchrotron X-

ray diffraction (XRD), Raman spectroscopy, and visual observations. The latter verified (Fig. S3) that 

there was He in the DAC high-pressure cavity, as there were transparent colourless areas around Na 

sample, which remained to the highest pressure reached. Below ~110 GPa, only single crystal reflections 

of elemental Na were observed in XRD, and their positions agreed with previously reported structural 

data and equation of state (EOS) 18,21. Above 113 GPa, we detected the appearance of new single-crystal 

reflections, which became stronger after laser heating to T >1500 K. Upon further compression, 

unreacted Na (which remains dominant) in the quenched sample showed the transition sequence cI16-

oP8-tI19 typical of Na at P >113 GPa 18. At P >140 GPa the transformation to tI19 phase was complete. 

Prolonged heating at 140 GPa yielded quasi-continuous diffraction lines (Fig. 3a,b), revealing substantial 

production of a new phase. Our laser heating experiments confirmed that compressed Na has low melting 

temperature, slightly above 300 K near 120 GPa18,22. Heating close to the melting temperature of He 

(~1500 K)23 yields more reaction product, and yield increases during further heating.  

New reflections were assigned to the predicted fluorite-type Na2He (Fig. 3a,b): they can be indexed 

in a cubic structure based on their positions and relative intensities (Table S2), with lattice parameter in 

good agreement with theory (Fig. 3c). Experiments show that Na2He has a much higher melting point 

than pure Na, perhaps above 1500 K at 140 GPa (Fig. 3a and 3b), where pure sodium melts slightly 

above 550 K 22,24, indicating very different energy landscapes and bonding types in Na and Na2He. 

Experiments confirm stability of Na2He, as it is denser than the mixture of Na and He (Fig. 3c) and 

crystallizes from sodium-helium melt.  Our experiments traced this phase on decomposition down to 113 

GPa, and its volume-pressure dependence is in good agreement with theoretical predictions (Fig. 3c). The 

increased yield of the new phase after laser heating (Fig. 3a,b) indicates that low yield of Na2He at near-

room temperature is due to kinetic hindrance for the Na (fluid)-He (solid) reaction. Raman experiments 

on samples quenched to 300 K (Fig. S4) showed the presence of a new broad weak peak at 470 cm-1 in 

addition to peaks which can be assigned to tI19-Na22.  
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However, due to the extremely high ionization potential of helium, the highest among all elements, 

helium does not react with oxygen or fluorine even at the extremely high pressure of 800 GPa. Xenon 

was predicted to react with electropositive elements (e.g. with Mg12) under pressure, but in contrast to 

Xe, He has zero electron affinity and is much less reactive. 

It can be easily demonstrated that Na2He is not an inclusion compound. Formation of inclusion 

compounds involves little electronic redistribution, and host-guest interaction has only moderate effect 

on physical properties. Na2He is very different: its formation is strongly exothermic, and its Na-sublattice 

has a simple cubic structure with 1 valence electron per unit cell and must be metallic, but upon insertion 

of He a wide band gap opens up (Fig. 4). Electronic redistribution due to the insertion of He into the 

simple cubic sodium sublattice (Fig. 4) is also very large, again proving that this is not an inclusion 

compound. We observe a contraction of charge density towards all nuclei, but the main effect is its 

removal from the region occupied by helium and strong buildup in the empty Na8 cubes. Strong non-

nuclear charge density maxima allow us to call this compound an electride28,29.  

Na2He and hP4-Na differ fundamentally from the known low-pressure electrides 30, where 

interstitially localized electrons are unpaired and spin-polarized. Spin pairing increases the density, 

making electron-paired electrides a novel type of compounds stable under pressure. Valence and 

conduction bands are expected to broaden under pressure, leading to gap closure and pressure-induced 

metallization (Wilson model). However, both hP4-Na and Na2He display the opposite behavior: they are 

insulating throughout their stability fields, with band gaps increasing under pressure (Fig. 4b). With 

direct band gaps exceeding 1.8 eV at pressures above ~200 GPa, both Na2He and hP4-Na are expected to 

be optically transparent; for hP4-Na, this prediction was experimentally confirmed13. In our experiments, 

optical transparency of Na2He could not be verified because of the presence of unreacted Na shielding 

the transmitted light. Theoretically, Na2He has an even wider gap than hP4-Na at pressures below 230 

GPa. Interstitial localization of valence electrons can be viewed as a result of overlap of core and valence 

orbitals of neighboring atoms, forcing valence electrons into the voids of the structure. At 300 GPa, the 

Na-Na distance is 1.98 Å, shorter than twice the core radius31 (2.04 Å) of the Na atom. Compression 

leads to further localization of the interstitial electron pair, band narrowing and opening of the band 

gap32. Quantum mechanics predicts that interstitial electron pairs, once localized in space, will tend to 

adopt a spherical shape to minimize their kinetic energy, and our calculations indeed show nearly 

spherical electron localizations (Supplementary Fig. S5), characterized by volumes and radii, as normal 

atoms. 
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energy, all the other atomic basins shrink, and their energy increases. The balance of different factors is 

quite complex, the greatest stabilizing factors being the decrease of the energy of the He atoms by 11.515 

eV and shrinking of 2e (PV decrease by 0.966 eV).  

 
TABLE 1. Change in atomic properties integrated over Bader basins for reaction (1) at 300 GPa –number of electrons N, atomic volume V,  
the PV-term, and the atomic energy E.  
 

 Total Na1 Na2 He 2e 
ΔN 0.000 0.007 -0.067 0.151 -0.094 

ΔV (Ǻ3) -0.207 -0.130 -0.216 0.644 -0.516 
PΔV (eV) -0.388 -0.244 -0.405 1.206 -0.966 
ΔE (eV) -0.018 3.090 7.764 -11.515 0.642 

 

We performed a simple computational experiment, taking a large fcc-supercell of He and replacing 

one He atom with Na as in Ref. 28,29. We found that at pressures ~80 GPa, occupied Na-3s (HOMO) and 

empty He-2s (LUMO) energies become equal, enabling orbital mixing (Fig. S11) and some charge 

transfer from Na-3s to He-2s.  

Further insight is provided by advanced methods, such as solid-state adaptive natural density 

partitioning (SSAdNDP)37,38 and periodic natural bond orbital (NBO) methods39,40 (see Table S6) and 

integrated crystal orbital Hamilton populations (ICOHP)41,42 (Fig. S10). SSAdNDP and NBO give small, 

but puzzling, charge transfer from He-1s to Na-3p, and more expected transfers from He-1s to He-2s, and 

from Na-3s to Na-3p orbitals on increasing pressure. ICOHP shows that Na-Na and especially Na-2e (but 

not Na-He and He-2e) are the only important interactions, and they are both bonding direct covalent 

interactions. This conclusion is consistent with SSAdNDP and NBO analyses, where all electron density 

is assigned to the atoms, and electron pairs occupying empty Na8 cubes emerge as eight-center two-

electron (8c-2e) bonds. These bonds are formed by sp3-hybridized atomic orbitals of sodium as derived 

from the NBO method39,40. If one considers only Na sublattice, on average there is just 1 electron located 

in every Na8 cube. Upon insertion of He into half of all Na8 cubes to form Na2He, He atoms push 

electron density out of the filled Na8He cube to the neighboring empty Na8 cube, enhancing the 

formation of 8c-2e bonds. Even at 0 GPa, He pushes out ~0.4 |e| from its cube, which helps to form 8c-2e 

bond with the occupation number (ON) of 1.40 |e| inside the neighboring empty cube. There are still 

about 0.6 |e|, which can be found in the Na8He cube. Upon increasing pressure, He continues to push out 

the remaining electron density into the empty Na8 cube, increasing the ON of the 8c-2e bond to 1.80 |e| at 

100 GPa, 1.88 |e| at 300 GPa and finally to 1.89 |e| at 500 GPa (Table S6). This 8-center 2-electron 

bonding is essential for stability of Na2He. A complementary view of this is that Na2He is an ionic salt 

(electride), stable thanks to long-range electrostatic interactions, and crystal structure of which is in 



 

perfect harmony with the electronic redistribution. 

Na is a light alkali metal, and is less reactive than the heavier K, Rb and Cs at ambient pressure. Yet, 

our calculations show the absence of thermodynamically stable K-He, Rb-He and Cs-He compounds at 

pressures below 1000 GPa. For Li, we do find that Li5He2 becomes stable at 780 GPa. The difference 

between light (Li and Na) and heavy (K, Rb and Cs) alkali metals was discussed by Winzenick et al.43: 

only heavy alkalis under pressure undergo an s→d electronic transition, making them “incipient 

transition metals”. For example, the electronic configuration of K changes from [Ar]4s1 to [Ar]3d1, and 

the 3d-electron will be rather localized and able to penetrate the core, explaining reduced reactivity and 

absence of stable K-He compounds. Under pressure, Na paradoxically has lower electronegativity and 

higher reactivity than K. Indeed, we find that in A-He and A-Ne (A=Na, K) systems under pressure, Na-

compounds have much lower enthalpies of formation (e.g., Supplementary Fig. S6). High reactivity of 

compressed Na is due to the interstitial electron pair and is consistent with what is known about 

electrides – that they have extremely low work functions and can be used as powerful reducing agents44. 

It is very interesting that, according to our calculations (and consistent with properties of known low-

pressure electrides), the insulating electride phase of Na is more reactive than metallic Na; Li is only a 

weak electride, whereas heavier alkali metals (K, Rb, Cs) are not electrides and less reactive under 

pressure. 

With this in mind, we hypothesized that Na2He with a bare interstitial electron pair might be 

stabilized by a strong acceptor of an electron pair – e.g., oxygen (see Ref. 45). Our structure searches 

showed that indeed Na2O has the same structure as hP4-Na and Na2HeO is isostructural with Na2He, in 

both cases O2- (i.e. oxygen with the absorbed electron pair) occupies the position of “2e”, and both can be 

considered as salts. Importantly, Na2HeO is thermodynamically stable in the Na-He-O system in the 

pressure range 15-106 GPa.  

In conclusion, systematic search for stable compounds of helium has resulted in the prediction and 

experimental verification of a cubic phase Na2He, stable from 113 GPa up to at least 1000 GPa. This 

phase is an electride, i.e. a crystal made of positively charged ionic cores and strongly localized valence 

electrons playing the role of anions. The insertion of He atoms pushes away the electron gas, leading to 

localization of valence electrons and formation of 8-center 2-electron bonds and opening of a wide band 

gap, just like for a salt-like compound. The predicted two compounds, Na2He and Na2HeO, change the 

hitherto bare field of helium chemistry, provide new twists to the chemistry of noble gases, and will have 

impact on our understanding of chemical bonding, and of chemical processes that occur inside giant 

planets. 



 

 

 

METHODS 

Theory: The evolutionary algorithm USPEX16, used here for predicting new stable structures, searches 

for lowest-enthalpy structures at given pressure and is capable of predicting stable compounds and 

structures knowing just the chemical chemical elements involved. A number of applications11,13,14,16,46 

illustrate its power. Structure relaxations were performed using density functional theory (DFT) within 

the Perdew-Burke-Ernzerhof (PBE) functional47 in the framework of the all-electron projector augmented 

wave (PAW) method48 as implemented in the VASP code 49. For Na atoms we used PAW potentials with 

1.2 a.u. core radius and 2s22p63s electrons treated as valence; for He the core radius was 1.1 a.u. and 1s2 

electrons were treated as valence. We used a plane-wave kinetic energy cutoff of 1000 eV, and the 

Brillouin zone was sampled with a resolution of 2π × 0.06 Å-1, which showed excellent convergence of 

the energy differences, stress tensors and structural parameters. The first generation of structures was 

created randomly. All structures were relaxed at constant pressure and 0 K, and the enthalpy was used as 

fitness. The energetically worst structures (40%) were discarded and a new generation was created 30% 

randomly and 70% from the remaining structures through heredity, lattice mutation and transmutation. 

To obtain atomic properties (Bader charges, atomic volumes and atomic energies), perform critical 

point analysis, compute Mulliken charges and deformation density maps we performed all-electron 

calculations using CRYSTAL14 code50. Triple-zeta quality Gaussian basis sets were used for all atoms, 

including also basis functions centered on non-nuclear charge density maxima positions, which are the 

centers of interstitial electron localizations (details of the basis set and grid used to sample direct and 

reciprocal space are reported in Supplementary Materials). The topological properties of charge density 

were obtained using the TOPOND code51  incorporated into CRYSTAL14. Bader volumes and charges 

were also obtained using VASP and code from Ref. 36, and the results are essentially identical to those 

obtained using CRYSTAL14. Crystal Orbital Hamilton Population (COHP) analysis41 was performed 

using periodic localized orbitals as implemented in the TB-LMTO-ASA framework52. We also explored 

the effects of temperature on stability using the quasiharmonic approximation, for which phonon 

calculations were performed for all promising structures using the PHONOPY code53; for each structure, 

phonons were computed at 20 different volumes to predict the Gibbs free energy. 

Experiment: We loaded thin Na (3-5 m) plates of 30 × 30 m2 dimensions in the DAC cavity of 30-40 

m diameter made in preindented to 20 m thickness rhenium gasket in a glove box and then filled the 

rest of the cavity with He gas compressed to 1600 bars. Diamond anvils with 70-100 m central tips 



 

beveled to 300 m outside culet diameter were used. Synchrotron X-ray diffraction was monitored on 

pressure increase. Pressure was determined by measuring the position of the stressed first-order Raman 

diamond edge54. Laser heating was performed at above 120 GPa. X-ray diffraction patterns and 

radiometric temperature measurements were used to characterize the sample state in situ. Laser heating 

remains very local during this procedure as our radiometric measurements and finite element calculations 

show. Thus, we do not expect any reaction with a gasket material (which remains close to room 

temeperature during the heating) or with diamond anvils; this was verified by subsequent X-ray 

diffraction and Raman mapping of the sample cavity including areas near the gasket edge. Raman 

measurements were performed using 488, 532, and 660 nm lines of a solid-state laser. The laser probing 

spot dimension was 4 m. Raman spectra were analyzed with a spectral resolution of 4 cm-1 using a 

single-stage grating spectrograph equipped with a CCD array detector. X-ray diffraction was measured in 

a double-sided laser heating system at the undulator XRD beamline at GeoSoilEnviroCARS, APS, 

Chicago and Extreme Conditions Beamline P02.2 at DESY (Germany), which have online laser heating 

capabilities. Temperature was determined spectroradiometrically. The X-ray probing beam size was ~2-5 

m in both beamlines. 
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