Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences

Abstract

The observation of persistent oscillatory signals in multidimensional spectra of protein–pigment complexes has spurred a debate on the role of coherence-assisted electronic energy transfer as a key operating principle in photosynthesis. Vibronic coupling has recently been proposed as an explanation for the long lifetime of the observed spectral beatings. However, photosynthetic systems are inherently complicated, and tractable studies on simple molecular compounds are needed to fully understand the underlying physics. In this work, we present measurements and calculations on a solvated molecular homodimer with clearly resolvable oscillations in the corresponding two-dimensional spectra. Through analysis of the various contributions to the nonlinear response, we succeed in isolating the signal due to inter-exciton coherence. We find that although calculations predict a prolongation of this coherence due to vibronic coupling, the combination of dynamic disorder and vibrational relaxation leads to a coherence decay on a timescale comparable to the electronic dephasing time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modelling the linear absorption spectrum of indocarbocyanine.
Figure 2: Effect of energy fluctuations on states A, B and C.
Figure 3: Temporal enhancement of inter-exciton coherence.
Figure 4: Signatures of inter-exciton coherence in two-dimensional spectroscopy.
Figure 5: Decomposition of the different pathways contributing to peak X.

Similar content being viewed by others

References

  1. Sundström, V. Femtobiology. Annu. Rev. Phys. Chem. 59, 53–77 (2008).

    Article  Google Scholar 

  2. Cheng, Y. C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).

    Article  CAS  Google Scholar 

  3. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  CAS  Google Scholar 

  4. Hybl, J. D., Albrecht, A. W., Gallagher Faeder, S. M. & Jonas, D. M. Two-dimensional electronic spectroscopy. Chem. Phys. Lett. 297, 307–313 (1998).

    Article  CAS  Google Scholar 

  5. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  CAS  Google Scholar 

  6. Schlau-Cohen, G. S. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nature Chem. 4, 389–395 (2012).

    Article  CAS  Google Scholar 

  7. Myers, J. A. et al. Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex. J. Phys. Chem. Lett. 1, 2774–2780 (2010).

    Article  CAS  Google Scholar 

  8. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  9. Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    Article  CAS  Google Scholar 

  10. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  CAS  Google Scholar 

  11. Wendling, M. et al. Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B 104, 5825–5831 (2000).

    Article  CAS  Google Scholar 

  12. Abramavicius, D. & Mukamel, S. Exciton dynamics in chromophore aggregates with correlated environment fluctuations. J. Chem. Phys. 134, 174504 (2011).

    Article  Google Scholar 

  13. Olbrich, C., Struempfer, J., Schulten, K. & Kleinekathoefer, U. Quest for spatially correlated fluctuations in the fmo light-harvesting complex. J. Phys. Chem. B 115, 758–764 (2011).

    Article  CAS  Google Scholar 

  14. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mančal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  CAS  Google Scholar 

  15. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nature Phys. 9, 113–118 (2013).

    Article  CAS  Google Scholar 

  16. Tiwari, V., Peters, W. & Jonas, D. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    Article  CAS  Google Scholar 

  17. Womick, J. & Moran, A. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011).

    Article  CAS  Google Scholar 

  18. Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2009).

    Article  Google Scholar 

  19. Rätsep, M. & Freiberg, A. Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J. Lumin. 127, 251–259 (2007).

    Article  Google Scholar 

  20. Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The 1st step in vision—femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article  CAS  Google Scholar 

  21. Hou, B., Friedman, N., Ottolenghi, M., Sheves, M. & Ruhman, S. Comparing photoinduced vibrational coherences in bacteriorhodopsin and in native and locked retinal protonated Schiff bases. Chem. Phys. Lett. 381, 549–555 (2003).

    Article  CAS  Google Scholar 

  22. Hayes, D., Griffin, G. B. & Engel, G. Engineering coherence among excited states in synthetic heterodimer systems. Science 340, 1431–1434 (2013).

    Article  CAS  Google Scholar 

  23. Christensson, N. et al. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. J. Phys. Chem. B 115, 5383–5391 (2011).

    Article  CAS  Google Scholar 

  24. Turner, D. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2, 1904–1911 (2011).

    Article  CAS  Google Scholar 

  25. Turner, D. B. et al. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).

    Article  CAS  Google Scholar 

  26. Butkus, V., Zigmantas, D., Valkūnas, L. & Abramavičius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

    Article  CAS  Google Scholar 

  27. Chibisov, A. K. et al. Photorelaxation processes in covalently linked indocarbocyanine and thiacarbocyanine dyes. J. Phys. Chem. 99, 886–893 (1995).

    Article  CAS  Google Scholar 

  28. Mustroph, H. et al. Relationship between the molecular structure of cyanine dyes and the vibrational fine structure of their electronic absorption spectra. ChemPhysChem 10, 835–840 (2009).

    Article  CAS  Google Scholar 

  29. Holstein, T. Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959).

    Article  CAS  Google Scholar 

  30. Davydov, A. S. Solitons in molecular systems. Phys. Scr. 20, 387–394 (1979).

    Article  CAS  Google Scholar 

  31. HyperChem v. 7; http://www.hyper.com.

  32. Philpott, M. R. Theory of the coupling of electronic and vibrational excitations in molecular crystals and helical polymers. J. Chem. Phys. 55, 2039–2054 (1971).

    Article  Google Scholar 

  33. Spano, F. C. Absorption and emission in oligo-phenylene vinylene nanoaggregates: the role of disorder and structural defects. J. Chem. Phys. 116, 5877–5891 (2002).

    Article  CAS  Google Scholar 

  34. Mukamel, S. Principles of Nonlinear Spectroscopy (Oxford Univ. Press, 1999).

    Google Scholar 

  35. Fidder, H., Knoester, J. & Wiersma, D. Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171, 529–536 (1990).

    Article  CAS  Google Scholar 

  36. Kjellberg, P., BrĂĽggemann, B. & Pullerits, T. Two-dimensional electronic spectroscopy of an excitonically coupled dimer. Phys. Rev. B 74, 024303 (2006).

    Article  Google Scholar 

  37. Chenu, A., Christensson, N., Kauffmann, H. F. & ManÄŤal, T. Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci. Rep. 3, 2029 (2013).

    Article  Google Scholar 

  38. ManÄŤal, T. et al. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory. J. Chem. Phys. 132, 184515 (2010).

    Article  Google Scholar 

  39. Nemeth, A. et al. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. J. Chem. Phys. 132, 184514 (2010).

    Article  Google Scholar 

  40. Hamer, F. M. The Cyanine Dyes and Related Compounds (Wiley, 1964).

    Book  Google Scholar 

  41. Mushkalo, I. L., Dyadyusha, G. G. & Turova, L. S. A macrocyclic bis-cyanine dye. Tetrahedron Lett. 21, 2977–2980 (1980).

    Article  CAS  Google Scholar 

  42. Mushkalo, I. L., Sogulyaev, Y. A. & Tolmachev, A. I. Macrocyclic bisindocarbocyanines. Ukr. Khim. Zh. 57, 1177–1181 (1991).

    CAS  Google Scholar 

  43. Prokhorenko, V. I., Halpin, A. & Miller, R. J. D. Coherently-controlled two-dimensional photon echo electronic spectroscopy. Opt. Express 17, 9764–9779 (2009).

    Article  CAS  Google Scholar 

  44. Kane, D. J. & Trebino, R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quant. Electron. 29, 571–579 (1993).

    Article  Google Scholar 

  45. Quimby, R. Photonics and Lasers: An Introduction Ch. 17 (Wiley, 2006).

    Book  Google Scholar 

  46. Jansen, T. L. C. & Knoester, J. Nonadiabatic effects in the two-dimensional infrared spectra of peptides: application to alanine dipeptide. J. Phys. Chem. B 110, 22910–22916 (2006).

    Article  Google Scholar 

  47. Torii, H. Effects of intermolecular vibrational coupling and liquid dynamics on the polarized Raman and two-dimensional infrared spectral profiles of liquid N,N-dimethylformamide analyzed with a time-domain computational method. J. Phys. Chem. A 110, 4822–4832 (2006).

    Article  CAS  Google Scholar 

  48. Tempelaar, R., van der Vegte, C. P., Knoester, J. & Jansen, T. L. C. Surface hopping modeling of two-dimensional spectra. J. Chem. Phys. 138, 164106 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Prokhorenko, H. Kauffmann and F. Spano for helpful discussions regarding interpretation of the results, and E. Pelletier for assistance with the laser system. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (to R.S.M., R.J.D.M.) and the Max Planck Society (to R.J.D.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.H. and P.J.M.J. performed the measurements. R.T. and T.L.C.J. performed the calculations. A.H., R.T., P.J.M.J. and T.L.C.J. analysed the data. A.H. constructed the experimental set-up. R.S.M. synthesized the compound. A.H. and R.T. wrote the manuscript. R.J.D.M. and J.K. supervised the project.

Corresponding author

Correspondence to R. J. Dwayne Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpin, A., Johnson, P., Tempelaar, R. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nature Chem 6, 196–201 (2014). https://doi.org/10.1038/nchem.1834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing