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Cervical cancer accounts for 528,000 new cases and 266,000 deaths 
worldwide each year, more than any other gynaecological tumour1. 
Ninety-five per cent of cases are caused by persistent infections with 
carcinogenic HPVs2. Effective prophylactic vaccines against the most 
important carcinogenic HPV types are available, but the number of 
people receiving the vaccine remains low. Although early cervical 
cancer can be treated with surgery or radiation, metastatic cervical 
cancer is incurable and new therapeutic approaches are needed3.

While most HPV infections are cleared within months, some persist 
and express viral oncogenes that inactivate p53 and RB, leading to 
increased genomic instability, accumulation of somatic mutations, 
and in some cases, integration of HPV into the host genome4. The 
association with cancer risk and histological subtypes varies sub-
stantially among carcinogenic HPV types, but the reasons for these 
differences are poorly understood. Furthermore, clinically relevant 
subgroups of cervical cancer patients have yet to be identified. Here 
we present a comprehensive study of invasive cervical cancer conducted 
as part of The Cancer Genome Atlas (TCGA) project, with a focus on 
identifying novel clinical and molecular associations as well as func-
tionally altered signalling pathways that may drive tumorigenesis and 
serve as prognostic or therapeutic markers.

Samples and clinical data
Primary frozen tumour tissue and blood were obtained from women 
with cervical cancer who had not received prior chemotherapy or radio-
therapy (Supplementary Information 1 and Supplementary Tables 1, 2).  
DNA, RNA and protein were processed as previously described5 
(Supplementary Information 1, 3, 5 and 8). Mutations were called 
for 192 samples (the extended set), while all other platform (aside 
from protein) and integrated analyses were performed on a subset of 
178 samples (the core set). Protein levels were measured on 155 samples 
(119 samples from both the core and extended sets plus 36 additional 
samples). The total number of non-overlapping samples in these three 
sets was 228 (Extended Data Fig. 1a). Of the 178 core-set samples, 
surgery was the primary treatment in 121 cases, median follow-up time 
was 17 months, and 145 patients were alive at the time of last follow-up. 
A committee of expert gynaecological pathologists reviewed most cases 

(Supplementary Information 1 and Extended Data Fig. 1b–g). The core 
set included 144 squamous cell carcinomas, 31 adenocarcinomas and 
3 adenosquamous cancers.

Somatic genomic alterations
Whole-exome sequencing was performed on 192 extended-set tumour–
blood pairs. All samples had at least 32 Mb of target exons covered 
with a median depth of 49×​ (range: 7–351×​) for tumour samples and 
47×​ (range: 9–341×​) for normal samples. Collectively, the samples 
contained 43,324 somatic mutations, including 24,551 missense, 2,470 
nonsense, 9,260 silent, 5,841 non-coding, 535 splice-site, 74 non-stop 
mutations, 475 frameshift insertions and deletions (indels) and 118 
in-frame indels. Eleven tumours with outlier mutation frequencies  
(>​600 per sample) were classified as ‘hypermutant’. The aggregate 
mutation density was 4.04 mutations per Mb across all tumours, and 
2.53 when the hypermutant tumours were excluded.

Fourteen genes that are significantly mutated (SMGs) with false-
discovery rates (FDR) <​ 0.1 were found using the MutSig2CV6 
algorithm (Supplementary Table 4). We identified SHKBP1, ERBB3, 
CASP8, HLA-A and TGFBR2 as novel SMGs in cervical cancer, and 
confirmed that PIK3CA, EP300, FBXW7, HLA-B, PTEN, NFE2L2, 
ARID1A, KRAS and MAPK1 are SMGs, as previously reported7,8 (Fig. 1,  
Extended Data Fig. 2a–g and Supplementary Fig. 6). Supplementary 
Table 4 shows the comparison of SMGs identified in the current 
TCGA set and a previously published dataset8. Mutations in 7 of the 
14 SMGs in the TCGA set were present in at least one squamous cell 
carcinoma and one adenocarcinoma; however, mutations in HLA-A, 
HLA-B, NFE2L2, MAPK1, CASP8, SHKBP1 and TGFBR2 were found 
exclusively in squamous tumours.

PIK3CA had mostly activating helical-domain E542K and E545K 
mutations, with a marked relative decrease in mutations elsewhere in 
the gene (Extended Data Fig. 2g). This observation resembles findings 
in bladder cancer9 and HPV-positive head and neck squamous cell 
cancers (HNSCs)10, but it differs from observations in breast and 
most other cancers11. The underlying nucleotide substitution pattern 
in the E542K and E545K mutations is associated with mutagenesis by 
a subclass of APOBEC cytidine deaminases8,12–15, with 150 out of 192 
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exomes displaying significant (q <​ 0.05) enrichment (up to sixfold) for 
the APOBEC signature. Further, the APOBEC mutation load corre-
lated strongly with the total number of mutations per sample (Extended 
Data Fig. 2h), suggesting that APOBEC mutagenesis is the predominant 
source of mutations in cervical cancers.

We found an average of 88 somatic copy number alterations per 
tumour, fewer than in HNSC, ovarian and serous endometrial carci-
nomas, but more than in endometrioid endometrial carcinomas10,16,17. 
GISTIC2.0 analysis (with a threshold of q <​ 0.25) revealed 26 focal 
amplifications and 37 focal deletions along with 23 recurrently altered 
whole arms (Extended Data Fig. 3c and Supplementary Table 7). Novel 
recurrent focal amplification events were identified (in genomic order) 
at 7p11.2 (EGFR, 17%), 9p24.1 (CD274, PDCD1LG2, 21%), 13q22.1 
(KLF5, 18%) and 16p13.13 (BCAR4, 20%). Other previously reported 
amplification events occurred at 3q26.31 (TERC, MECOM, 78%), 3q28 
(TP63, 77%), 8q24.21 (MYC, PVT1, 42%), 11q22.1 (YAP1, BIRC2, 
BIRC3, 17%), and 17q12 (ERBB2, 17%). Novel recurrent deletions 
were identified at 3p24.1 (TGFBR2, 36%) and 18q21.2 (SMAD4, 28%), 
in addition to previously identified deletions at 4q35.2 (FAT1, 36%) 
and 10q23.31 (PTEN, 31%). A cluster with high copy number altera-
tions mostly contained squamous tumours with amplification events 
involving 11q22 (YAP1, BIRC2, BIRC3) and 7p11.2 (EGFR), whereas 
the cluster containing low copy number variations included most  
adenocarcinomas and was enriched for tumours with deletions in 
TGFBR2 and SMAD4, and gains in ERBB2 and KLF5 (Extended 
Data Fig. 3a, b). Notably, both groups had amplifications involving 
CD274 (PD-L1) and PDCD1LG2 (PD-L2) that correlated significantly 
(P <​ 0.0001) with expression of two key immune cytolytic effector 
genes, granzyme A and perforin18 (Extended Data Fig. 3d). This high-
lights the potential of immunotherapeutic strategies for a subset of 
cervical cancers.

Structural rearrangements were identified by analysis of RNA 
sequencing (RNA-seq) (core set, n =​ 178) and whole-genome 
sequencing (WGS) data with low-pass (n =​ 50) and deep (n =​ 19) 
coverage. Both RNA-seq and WGS detected 22 putative structural 
rearrangements in 14 patients (Supplementary Table 8). In total, 26 
recurrent fusions were found (Supplementary Table 9, with examples 
in Extended Data Fig. 4d). RNA-seq analysis revealed four samples with 
16p13 ZC3H7A–BCAR4 gene fusions, whereby exon 1 of ZC3H7A was 

linked to the last exon of BCAR4. WGS revealed tandem duplication 
and copy number gain of BCAR4 on chromosome 16p13.13 (Extended 
Data Fig. 4c). BCAR4 is a metastasis-promoting long non-coding RNA 
that enhances cell proliferation in oestrogen-resistant breast cancer 
by activating the HER2/HER3 pathway. Lapatinib, an EGFR/HER2 
inhibitor, counteracts BCAR4-driven tumour growth in vitro, and 
warrants evaluation as a possible therapeutic agent in BCAR4-positive 
cervical cancer19.

Integrated analysis of molecular subgroups
Integration of copy number, methylation, mRNA and microRNA 
(miRNA) data using iCluster20 highlighted the molecular heterogeneity  
of cervical carcinomas. Three clusters were identified that largely 
corresponded to mRNA clusters (Supplementary Fig. 9): a squamous 
cluster with high expression of keratin gene family members  
(keratin-high), another squamous cluster with lower expression of 
keratin genes (keratin-low), and an adenocarcinoma-rich cluster  
(adenocarcinoma). Keratin-high and keratin-low clusters included 
133 out of 144 squamous cell carcinomas and the adenocarcinoma 
cluster contained 29 out of 31 adenocarcinomas (Fig. 2). KRAS 
(P =​ 9.7 ×​ 10−5), ERBB3 (P =​ 2.6 ×​ 10−3) and HLA-A (P =​ 0.03) 
mutations were significantly associated with clusters, whereby KRAS 
mutations were absent from the keratin-high cluster and HLA-A muta-
tions were absent from the adenocarcinoma cluster (Fig. 2). Members 
of the SPRR and TMPRSS cornification gene families and the SMGs 
ARID1A (P =​ 0.02), NFE2L2 (P =​ 6.9 ×​ 10−6) and PIK3CA (P =​ 0.01) 
were differentially expressed between keratin-low and keratin-high 
clusters (Extended Data Fig. 4b).

Unsupervised hierarchical clustering of variable DNA-methylation 
probes produced three groups (Extended Data Fig. 5a), including a 
small ‘CpG island hypermethylated’ (CIMP-high) cluster, a CIMP-
intermediate cluster and a CIMP-low cluster that were associated 
with an epithelial–mesenchymal transition (EMT) mRNA score10,21 
(Extended Data Fig. 5b). Most of the samples in the adenocarcinoma 
cluster were CIMP-high, whereas the other iCluster groups contained 
a mixture of CIMP-intermediate and CIMP-low samples (Fig. 2). 
Comparing all cervical carcinomas to 120 normal samples drawn from 
12 TCGA projects, we identified 1,026 epigenetically silenced genes that 
were methylated to a greater extent in cancers than in normal tissues, 
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Figure 1 | Somatic alterations in cervical cancer and associations with 
molecular platform features. a–d, Cervical carcinoma samples ordered 
by histology and mutation frequency (a), clinical and molecular platform 
features (b), SMGs (c), and select somatic copy number alterations (d) 
are presented. SMGs are ordered by the overall mutation frequency and 
colour-coded by mutation type. Novel SMGs identified in squamous 
cell carcinomas are labelled in turquoise text. The number of APOBEC 

signature mutations (red) and other mutations (blue) present in every 
SMG is plotted to the right of the SMG panel and the number of gene-
level somatic copy number alterations across all genes is plotted as gain 
(red) and loss (blue) to the right of the somatic copy number alteration 
panel. CN, copy number; SCNAs, somatic copy number alterations; 
Adeno., adenocarcinomas; Adenosq., adenosquamous cancers; Squamous, 
squamous cell carcinomas.
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including several zinc-finger (ZNF), protease (ADAM, ADAMTS), and 
collagen (COL) genes (Supplementary Tables 11 and 12).

Unsupervised clustering resulted in six miRNA clusters that were 
associated with the iCluster groups (P =​ 1.7 ×​ 10−19) (Extended Data 
Fig. 6a). Samples from the adenocarcinoma cluster almost exclu-
sively overlapped with miRNA cluster 5, and were characterized by 
high expression of miR-375 and low expression of miR-205-5p and  
miR-944 (Supplementary Table 31). Expression levels of tumour 
suppressors miR-99a-5p and miR-203a were significantly higher 
in samples from the keratin-high cluster than samples from the 
keratin-low cluster (Supplementary Table 31; P =​ 0.01 and P =​ 0.008, 
respectively). Among miRNAs with significant and functionally 
validated gene and protein anti-correlations22, one large subnetwork 
involved the miR-200 family and other miRNAs with expression 
patterns that anti-correlated with those of the EMT-related transcrip-
tion factors ZEB1, ZEB2 and SNAI2, the Hippo and p73 transcriptional 
co-factor YAP1, the receptor tyrosine kinases (RTKs) ERBB2, ERBB3 
and AXL, and the hormone receptor ESR1 (Extended Data Fig. 6b, 
Supplementary Figs 17, 18 and Supplementary Table 15).

Reverse phase protein array (RPPA) analysis of 155 samples with 
192 antibodies (Extended Data Fig. 1a and Supplementary Table 17) 
identified three clusters significantly associated with the iCluster 
groups (P =​ 1.8 ×​ 10−4) and EMT mRNA score (Fig. 3a, c, d and 
Supplementary Table 16). Samples from the EMT cluster were enriched 
in the keratin-low cluster, whereas PI3K–AKT and hormone cluster  
samples were enriched in the keratin-high and adenocarcinoma 
clusters, respectively, suggesting distinct pathway activation across 
integrated cervical cancer subtypes. Differential expression levels 
of phosphorylated (p)-MAPK, p-EGFR (Y1068), p-SRC (Y416), 
IGFBP2 and TIGAR between keratin-high and keratin-low clusters 
suggest diverse activation patterns of RTK, MAPK, PI3K and metabolic  
signalling pathways that may underlie the molecular diversity of  
cervical squamous cancers (Fig. 2).

The core members of each RPPA cluster with the highest silhouette 
width (>​0.02, n =​ 115) were associated with five-year survival  
(Fig. 3b; P =​ 6.1 ×​ 10−4), with the EMT group exhibiting worse 
outcome. Notably, this was the only platform where clusters associated 
with outcomes (Supplementary Figs 8, 9, 12 and 22; Supplementary 
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Figure 2 | Multiplatform integrative clustering of cervical cancers.  
a, Integrative clustering of 178 core-set cervical cancer samples using 
mRNA, methylation, miRNA and copy number variation (CNV) data 
identifies two squamous-carcinoma-enriched groups (keratin-low and 
keratin-high) and one adenocarcinoma-enriched group, as shown in the 
feature bars (top). Features presented include histology, HPV clade, HPV 
integration status, UCEC-like status, APOBEC mutagenesis level, mRNA 
EMT score, tumour purity and three SMGs (KRAS, ERBB3 and HLA-A) 
that are significantly associated across the three clusters identified with 
iCluster (ERBB2 is presented for comparison purposes with its family 

member ERBB3). b, The cluster of clusters panel displays subtypes defined 
independently by mRNA, miRNA, methylation, reverse phase protein 
array (RPPA), CNV and PARADIGM data. C1–C6 indicate clusters. Black, 
sample is not represented in the cluster; red, sample is represented in the 
cluster; grey, data not available. c, The heatmaps show select mRNAs, 
miRNAs, proteins and CNVs that are either significantly associated with 
iCluster groups or have been identified as markers in other analyses. The 
heatmap colour scale bar represents the scale for the features presented in 
the heatmaps with a breakpoint of zero represented by white. APOBEC 
mut., APOBEC mutagenesis; inter., intermediate.
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Information 6). Samples in the EMT cluster exhibited high ‘reactive’ 
pathway scores11 (Supplementary Fig. 20), illustrating for the first time 
in cervical cancer the presence of a subset of stromal reactive tumours 
that have high expression of caveolin-1, MYH11 and RAB11, a subset 
which also appears in other diseases23 (Supplementary Table 16). YAP  
was the most significantly differentially expressed protein distinguishing  
samples from the EMT cluster from all others (Supplementary Table 18; 
P =​ 1.7 ×​ 10−15) and YAP1 was significantly amplified in the samples 
from the EMT cluster compared to the hormone (P =​ 1.1 ×​ 10−5) and 
PI3K–AKT cluster (P =​ 6.4 ×​ 10−4) samples. Regulation of the EMT-
related molecules YAP and ZEB1 (refs 24–26) may also be driven by 
significantly lower expression levels of miR-200a-3p in the samples 
from the EMT cluster compared to samples from the other RPPA 
clusters (Extended Data Figs 6b, 7a; P =​ 3.8 ×​ 10−3). These results 
highlight potential roles for YAP and reactive stroma in EMT-regulated 
progression of cervical cancers.

The mutual exclusivity modules in cancer (MEMo) algorithm27 uses 
somatic-mutation and copy number data to identify oncogenic networks 
with mutually exclusive genomic alterations. Because miR-200a  
and miR-200b (miR-200a/b) expression was negatively correlated with 
EMT mRNA scores (Extended Data Fig. 7b, d), we used MEMo to 
examine alterations in miR-200a/b and EMT gene networks and found 
a potential link between the TGFβ​ pathway and miR-200a/b alterations 
in regulating EMT28,29. Deletions and mutations affecting the receptor 
gene TGFBR2, the modulating genes CREBBP and EP300, and the 
transcription factor SMAD4 probably all affect growth-suppressive and 
pro-apoptotic functions driven by TGFβ​ (Fig. 4c) and were observed 
in 30% of squamous cell carcinomas (Fig. 4d). Tumours with both 

hypermethylation and downregulation of miR-200a/b (referred to as 
altered) were restricted to squamous cell carcinomas, were enriched 
in the keratin-low cluster (Fig. 4d and Extended Data Fig. 8; P =​ 0.001 
for both miR-200a and miR-200b), showed significant upregulation of 
both ZEB1 and ZEB2 (Extended Data Fig. 9a–d), and were mutually 
exclusive with alterations in the TGFβ signalling pathway (Fig. 4d). 
Notably, samples with altered miR-200a/b exhibited higher EMT 
mRNA scores than unaltered samples, whereas no significant difference 
was found between samples with or without TGFβ​-pathway altera-
tions (Fig. 4d and Extended Data Fig. 7c, e). These findings highlight 
potential treatment approaches for this subgroup of cervical cancer 
patients, as targeting EMT may render tumours more sensitive to small-
molecule inhibitors and cytotoxic chemotherapy21,30,31.

MEMo analysis also showed differences in therapeutically relevant 
alterations in RTK, PI3K and MAPK pathways across cervical cancers. 
MEMo identified mutual exclusivity modules involving alterations 
within both the PI3K and MAPK pathways (Supplementary Table 27;  
adjusted P =​ 0.06); however, there was a strong tendency for co-
occurrence of ERBB2 and ERBB3 alterations within adenocarcino-
mas (P <​ 0.001, log odds ratio >​ 3), indicating that a subset of these 
tumours may exhibit aberrant HER3 signalling through interactions 
between mutant HER3 and activated HER2 and therefore could 
potentially benefit from HER2- and HER3-targeted therapies32  
(Fig. 4a, b). Although not statistically significant, aberrations in 
PIK3CA also tended to co-occur with PTEN somatic mutations and 
deletions (P =​ 0.078, log odds ratio =​ 0.71), which is similar to endome-
trial tumours with few copy number alterations and suggests potential 
therapeutic benefit from PI3K-pathway-targeting agents17.
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Figure 3 | Proteomic landscape of 
cervical cancer. a, Clustered heatmap of 
samples (columns) and 192 antibodies 
(rows) for 155 samples (112 overlap with 
the core set of 178; see Extended Data 
Fig. 1a). Clusters presented from left to 
right include hormone (dark blue), EMT 
(red) and PI3K–AKT (green). A subset of 
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the clusters is highlighted. Tracks for 
clinical and molecular features are 
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continuous variables were analysed using 
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downregulated expression, red represents 
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represents no change in expression. NA, 
data not available. b, Five-year Kaplan–
Meier survival curves and log-rank test  
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overall survival (OS) across all RPPA 
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core samples (silhouette core; see 
Supplementary Information 8). c, EMT 
mRNA score levels were calculated for 
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clusters. P =​ 0.001 (one-way ANOVA). 
d, Pathway scores for EMT, hormone-
receptor and PI3K–AKT signalling 
pathways are presented for all RPPA 
clusters (x axis); Kruskal–Wallis test used 
to identify  significant pathway score 
differences between the clusters.
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PARADIGM33,34, which integrates copy number, RNA-seq and 
pathway-interaction data, showed markedly different pathway 
activation profiles between squamous carcinomas and adenocarcinomas  
(Extended Data Fig. 10 and Supplementary Fig. 48). PARADIGM 
identified higher inferred activation of p53, p63, p73, AP-1, MYC, 
HIF1A, FGFR3 and MAPK signalling as key distinguishing features 
of squamous cell carcinomas, similar to other squamous cancers35. 
By contrast, adenocarcinomas exhibited higher inferred activation 
of ERα​, FOXA1, FOXA2 and FGFR1 pathways (Extended Data 
Fig. 10, Supplementary Figs 25, 48 and Supplementary Table 18). 
Possible underlying mechanisms for ERα​ upregulation may stem 
from the expression of miR-193b-3p, a direct regulator of ESR1  
that was significantly downregulated in adenocarcinomas compared  
to squamous carcinomas (Fig. 2, Extended Data Fig. 6 and Supple
mentary Table 14; P =​ 0.04), or from oestrogen signalling in stromal 
cells36.

Cross-cancer analysis
We next evaluated the relationship of cervical cancer subtypes with 
endometrial cancer, an adjacent cancer site with hormone-related 
carcinogenesis, and HNSC, a subset of which is caused by HPV. For 
this, hierarchical clustering of cervical, uterine corpus endometrial 
(UCEC)17, and HNSC10 mRNA-expression data was performed. 
Three major groups were observed, with cluster 1 including all UCEC 
samples and most cervical adenocarcinomas and characterized by over-
expression of hormone-receptor genes ESR1 and PGR (Extended Data  
Fig. 4a). Cluster 2 included predominantly squamous cervical carcino-
mas and 23 out of 27 HPV-positive HNSC samples. Cluster 3 included 
few cervical cancers and the remaining HNSC cancers, which were 
mostly HPV-negative. This highlights the similarity of HPV-related 
squamous cancers at different anatomical sites.

Since a subset of cervical cancers clustered with endometrial samples, 
a gene-expression classifier was developed to predict whether carci-
nomas were cervical or endometrial (Supplementary Information 5).  
We classified 8 out of 178 (4.5%) cervical cancer samples as 
endometrial-like (UCEC-like) cancers, which were confirmed to 
be cervical cancers by study pathologists (Extended Data Fig. 1f, g). 
These tumours included 7 out of 9 HPV-negative cancers and 5 of the 8  
were adenocarcinomas. Six UCEC-like cancers were in the adenocarci-
noma cluster and two were in the keratin-low cluster. Despite their low 
number, the UCEC-like tumours accounted for 33%, 27% and 20% of 
mutations in ARID1A, KRAS and PTEN, respectively. They were asso-
ciated with the RPPA hormone and miRNA C6 clusters, and all but one 
sample was CIMP-low and copy number-low (Supplementary Table 1).

HPV genotypes, variants and integration
Of the 178 core-set tumours, 169 (95%) were HPV-positive, 120 (67%) 
had alpha-9 (A9) types (103 HPV16), 45 (25%) had alpha-7 (A7) types 
(27 HPV18), and 9 (5%) were HPV-negative (Supplementary Table 3).  
HPV variants were predominantly European (137 out of 169, 81%  
A variants), and there was a significant association of non-European 
HPV16 variants with cervical adenocarcinomas (Supplementary Table 3;  
odds ratio =​ 5.3, P =​ 3 ×​ 10–3). All HPV-positive cancers had detectable  
expression of HPV E6- and E7-oncogene mRNAs, which encode 
proteins that inhibit p53 and RB function, respectively37,38. Notably, 
HPV18 cancers had significantly higher ratios of unspliced to spliced 
transcripts encoding the active E6 oncoprotein than the HPV16 cancers 
(Extended Data Fig. 11a; P =​ 2 ×​ 10–10), suggesting different functional 
implications of E6 and E7 in cancers associated with different HPV 
genotypes.

HPV A7 types were enriched in the keratin-low and adenocarcinoma 
clusters (P =​ 5 ×​ 10–4). Most HPV clade A7 tumours were CIMP-low,  
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Figure 4 | Mutual exclusivity of somatic alterations within the 
PI3K–MAPK and TGFβR2 pathways. a, Multiple alterations affect 
RTK, AKT and MAPK signalling in both squamous cell carcinomas 
and adenocarcinomas. A schematic diagram of the pathways is shown 
for altered genes along with the percentage of alteration in squamous 
cell carcinomas and adenocarcinomas. Significant P values (P <​ 0.05, 
Student’s t-test) for alteration frequency differences between squamous 
cell carcinomas and adenocarcinomas are listed at the gene level, with 
significantly different genes marked with an asterisk. b, Distinct types of 
alterations (amplification, deletion, missense mutation and truncating 
mutation) affect genes (rows) in these pathways in each sample (columns). 

c, TGFβ​ signalling is frequently altered in cervical tumours. Alterations in 
this pathway are divided between those probably affecting TGFβ​-tumour-
suppressive functions and those affecting the TGFβ​-driven EMT program. 
d, Samples with alterations targeting TGFβ​-tumour-suppressive functions 
do not show significantly different EMT scores compared with all other 
samples; however, samples with low expression/high methylation of  
miR-200a/b have significantly higher EMT scores than all other 
samples. miR-down, samples met double threshold of methylated and 
downregulated as described in Methods. NS, not significant. Percentages 
in b and d, indicate per cent of the total histological subgroup population.
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and HPV-negative tumours formed a distinct subgroup 
within the CIMP-low cluster with a significantly lower mean 
promoter-methylation level than other samples in that cluster 
(Extended Data Fig. 5a; P =​ 5 ×​ 10−3). Samples with the highest rate 
of gene silencing were HPV-positive adenocarcinomas, particularly 
those related to A9 types (t-test P <​ 0.001). Functional epigenetic 
module (Supplementary Information 13) analysis39, which integrates 
DNA-methylation and gene-expression data using protein–protein 
interaction networks, identified inverse correlations between methyla
tion and gene expression in HPV-positive versus HPV-negative cervical 
cancers and HPV-positive (n =​ 36) versus HPV-negative (n =​ 243) 
HNSCs. The analysis revealed 12 statistically significant subnetworks 
for cervical cancer and 11 for HNSCs, with one common subnetwork 
centred around Forkhead Box A2 (FOXA2) (Supplementary Table 19 
and Supplementary Fig. 32). miR-944, miR-767-5p and miR-105-5p 
were the most differentially expressed miRNAs between HPV-positive 
and HPV-negative samples (Supplementary Fig. 14e). miR-944 
expression was also significantly higher, whereas miR-375 expression 
was significantly lower in HPV16-positive squamous cancers compared 
to HPV18-positive squamous cancers (Supplementary Fig. 14d).  
Notably, HPV-negative cancers had a significantly higher EMT mRNA 
score and a lower frequency of the APOBEC mutagenesis signature 
compared with HPV-positive tumours (Extended Data Fig. 11b and 
Supplementary Fig. 27; P =​ 0.02 and P =​ 0.004, respectively).

PARADIGM was used to evaluate molecular pathways differentially 
activated in squamous samples with A7- and A9-HPV infections. We 
observed higher inferred activation of p53 and p63 signalling and 
lower FOXA1 signalling in tumours infected with A9 types (Fig. 5a 
and Supplementary Fig. 23a). Higher SFN pathway activation was also 
observed for A9-positive tumours, which is consistent with the low 
methylation and high gene-expression patterns of SFN found in func-
tional epigenetic module analysis (Fig. 5a and Supplementary Table 19). 
Notably, the SFN-encoded stratifin (also known as 14-3-3σ​) adaptor 
protein has previously been associated with epithelial immortalization 
and squamous cell cancers40,41, altered p53-pathway activation42, and 
Wnt-mediated β​-catenin signalling43.

Viral–cellular fusion transcripts indicating integration of HPV into 
the host genome were observed in 141 out of 169 (83%) HPV-positive 
cancers, including all HPV18-positive cancers. Of these 141 samples, 
90 (64%) had a single HPV integration event, 35 had two events, 

and 16 had three or more events (totalling 220 unique integration 
events) (Supplementary Table 3). HPV integration events affected all  
chromosomes, including some previously described hotspots such as 
3q28 and 8q24 (ref. 44) (Fig. 5b). Genomic loci affected by integra-
tion were characterized by increased somatic copy number alterations 
(P =​ 6.9 ×​ 10−13 for HPV16 and P =​ 0.058 for HPV18) and increased 
gene expression (P =​ 1.6 ×​ 10−11 for HPV16 and P =​ 0.011 for HPV18) 
(Extended Data Fig. 11c, d). In addition, 153 (70%) fusion transcripts 
included known or predicted genes, whereas the remainder included 
intergenic regions (Fig. 5b and Supplementary Table 3).

Conclusion
Through comprehensive molecular and integrative profiling, we 
identified novel genomic and proteomic characteristics that subclassify 
cervical cancers. Integrated clustering identified keratin-low squamous, 
keratin-high squamous, and adenocarcinoma-rich clusters defined by 
different HPV and molecular features (Extended Data Fig. 8). ERBB3, 
CASP8, HLA-A, SHKBP1 and TGFBR2 were identified as SMGs for the 
first time in cervical cancer, with ERBB3 (HER3) immediately applicable  
as a therapeutic target. For the first time in cancer, we report ampli-
fications and fusion events involving the BCAR4 gene, which can be 
targeted indirectly by lapatinib. Further, we identified amplifications in 
CD274 and PDCD1LG2, two genes that encode well-known immuno-
therapy targets. A set of endometrial-like cervical cancers comprised 
predominantly of HPV-negative tumours and characterized by 
mutations in KRAS, ARID1A and PTEN was discovered, with PTEN 
and potentially ARID1A proteins serving as therapeutic targets. 
Importantly, over 70% of cervical cancers exhibited genomic alterations 
in either one or both of the PI3K–MAPK and TGFβ​ signalling pathways 
(Extended Data Fig. 9e), illustrating the potential clinical significance 
of therapeutic agents targeting members of these pathways. For the 
first time, we report distinct molecular pathways activated in cervical 
carcinomas caused by different HPV types, highlighting the biological 
diversity of HPV effects.

Together, these findings provide insight into the molecular subtypes 
of cervical cancers and rationales for developing clinical trials to treat 
populations of cervical cancer patients with distinct therapies.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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squamous carcinomas (n =​ 101 and n =​ 35, respectively). Node colour and 
intensity reflect the level of differential activation. Node size represents 
level of significance. SFN is within a subnetwork identified by functional 
epigenetic module analysis (Supplementary Information 13) as disrupted 

between HPV A9 and A7 squamous cell carcinomas, and is highlighted 
using a bold black outline. rRNA, ribosomal RNA. DST, DST isoform 3.  
b, Circos plot showing frequency (0–100%) of gains and losses for 
regions of each chromosome (outer circle). Lines within the inner circle 
indicate integration breakpoints from the HPV genome (L1, L2, E1, E2, 
E4, E5, E6 and E7 genes) to the human genome as defined in Methods, 
Supplementary Information 2, and Supplementary Table 3. Lines are 
colour coded by HPV clade.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature21386


ARTICLERESEARCH

3 8 4  |  N A T U R E  |  V O L  5 4 3  |  1 6  M A R C H  2 0 1 7

Received 7 December 2015; accepted 14 January 2017. 

Published online 23 January 2017.

1.	 Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and 
major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

2.	 Schiffman, M. et al. Human papillomavirus testing in the prevention of cervical 
cancer. J. Natl. Cancer Inst. 103, 368–383 (2011).

3.	 Uyar, D. & Rader, J. Genomics of cervical cancer and the role of human 
papillomavirus pathobiology. Clin. Chem. 60, 144–146 (2014).

4.	 Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: pathways to 
transformation. Nat. Rev. Cancer 10, 550–560 (2010).

5.	 Cancer Genome Atlas Research Network. Comprehensive genomic 
characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

6.	 Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for 
new cancer-associated genes. Nature 499, 214–218 (2013).

7.	 Chung, T. K. H. et al. Genomic aberrations in cervical adenocarcinomas in Hong 
Kong Chinese women. Int. J. Cancer 137, 776–783 (2015).

8.	 Ojesina, A. I. et al. Landscape of genomic alterations in cervical carcinomas. 
Nature 506, 371–375 (2014).

9.	 Cancer Genome Atlas Network. Comprehensive molecular characterization of 
urothelial bladder carcinoma. Nature 507, 315–322 (2014).

10.	 Cancer Genome Atlas Network. Comprehensive genomic characterization of 
head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

11.	 Cancer Genome Atlas Network. Comprehensive molecular portraits of human 
breast tumours. Nature 490, 61–70 (2012).

12.	 Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. 
Nature 500, 415–421 (2013).

13.	 Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis 
in multiple human cancers. Nat. Genet. 45, 977–983 (2013).

14.	 Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-
mediated cytosine deamination links PIK3CA helical domain mutations to 
human papillomavirus-driven tumor development. Cell Reports 7, 1833–1841 
(2014).

15.	 Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is 
widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

16.	 Cancer Genome Atlas Research Network. Integrated genomic analyses of 
ovarian carcinoma. Nature 474, 609–615 (2011).

17.	 The Cancer Genome Atlas Research Network. Integrated genomic 
characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

18.	 Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and 
genetic properties of tumors associated with local immune cytolytic activity. 
Cell 160, 48–61 (2015).

19.	 Godinho, M. F. E. et al. BCAR4 induces antioestrogen resistance but sensitises 
breast cancer to lapatinib. Br. J. Cancer 107, 947–955 (2012).

20.	 Shen, R., Olshen, A. B. & Ladanyi, M. Integrative clustering of multiple genomic 
data types using a joint latent variable model with application to breast and 
lung cancer subtype analysis. Bioinformatics 25, 2906–2912 (2009).

21.	 Byers, L. A. et al. An epithelial–mesenchymal transition gene signature predicts 
resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic 
target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279–290 
(2013).

22.	 Hsu, S.-D. et al. miRTarBase update 2014: an information resource for 
experimentally validated miRNA-target interactions. Nucleic Acids Res. 42, 
D78–D85 (2014).

23.	 Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome 
Atlas. Nat. Commun. 5, 3887 (2014).

24.	 Seton-Rogers, S. Oncogenes: all eyes on YAP1. Nat. Rev. Cancer 14, 514–515 
(2014).

25.	 Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. 
Cell 158, 171–184 (2014).

26.	 Vandewalle, C., Van Roy, F. & Berx, G. The role of the ZEB family of transcription 
factors in development and disease. Cell. Mol. Life Sci. 66, 773–787 (2009).

27.	 Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis 
identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

28.	 Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to 
mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 
593–601 (2008).

29.	 Massagué, J. TGFβ​ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 
(2012).

30.	 Haslehurst, A. M. et al. EMT transcription factors snail and slug directly 
contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12, 91 (2012).

31.	 Taube, J. H. et al. Core epithelial-to-mesenchymal transition interactome 
gene-expression signature is associated with claudin-low and metaplastic 
breast cancer subtypes. Proc. Natl Acad. Sci. USA 107, 15449–15454 (2010).

32.	 Jaiswal, B. S. et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell 
23, 603–617 (2013).

33.	 Sedgewick, A. J., Benz, S. C., Rabizadeh, S., Soon-Shiong, P. & Vaske, C. J. 
Learning subgroup-specific regulatory interactions and regulator 
independence with PARADIGM. Bioinformatics 29, i62–i70 (2013).

34.	 Vaske, C. J. et al. Inference of patient-specific pathway activities from 
multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, 
i237–i245 (2010).

35.	 Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular 
classification within and across tissues of origin. Cell 158, 929–944 (2014).

36.	 den Boon, J. A. et al. Molecular transitions from papillomavirus infection to 
cervical precancer and cancer: role of stromal estrogen receptor signaling. 
Proc. Natl Acad. Sci. USA 112, E3255–E3264 (2015).

37.	 Roman, A. & Munger, K. The papillomavirus E7 proteins. Virology 445, 
138–168 (2013).

38.	 Vande Pol, S. B. & Klingelhutz, A. J. Papillomavirus E6 oncoproteins. Virology 
445, 115–137 (2013).

39.	 Jiao, Y., Widschwendter, M. & Teschendorff, A. E. A systems-level integrative 
framework for genome-wide DNA methylation and gene expression data 
identifies differential gene expression modules under epigenetic control. 
Bioinformatics 30, 2360–2366 (2014).

40.	 Dellambra, E. et al. Downregulation of 14-3-3σ​ prevents clonal evolution and 
leads to immortalization of primary human keratinocytes. J. Cell Biol. 149, 
1117–1130 (2000).

41.	 Moreira, J. M. A., Gromov, P. & Celis, J. E. Expression of the tumor suppressor 
protein 14-3-3σ​ is down-regulated in invasive transitional cell carcinomas of 
the urinary bladder undergoing epithelial-to-mesenchymal transition. Mol. Cell. 
Proteomics 3, 410–419 (2004).

42.	 Hermeking, H. et al. 14-3-3σ​ is a p53-regulated inhibitor of G2/M progression. 
Mol. Cell 1, 3–11 (1997).

43.	 Chang, T.-C. et al. 14-3-3σ​ regulates β​-catenin-mediated mouse embryonic 
stem cell proliferation by sequestering GSK-3β​. PLoS One 7, e40193  
(2012).

44.	 Wentzensen, N., Vinokurova, S. &  von Knebel Doeberitz, M. Systematic review 
of genomic integration sites of human papillomavirus genomes in epithelial 
dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 64, 
3878–3884 (2004).

Supplementary Information is available in the online version of the paper.

Acknowledgements We would like to acknowledge the late H. Salvesen (the 
University of Bergen), who provided critical clinical and translational insight,  
and we dedicate this manuscript to her memory. We also acknowledge  
L. Gaffney (The Broad Institute) for her work in preparing some of the figures. 
In addition, this study was supported by National Institutes of Health (NIH) 
grants U54 HG003273, U54 HG003067, U54 HG003079, U24 CA143799, U24 
CA143835, U24 CA143840, U24 CA143843, U24 CA143845, U24 CA143848, 
U24 CA143858, U24 CA143866, U24 CA143867, U24 CA143882, U24 
CA143883, U24 CA144025 and P30 CA016672.

Author Contributions The Cancer Genome Atlas research network contributed 
collectively to this work. Biospecimens were collected at the tissue source 
sites (TSSs) and processed by the biospecimen core resource (BCR). Data 
was generated by the genome sequencing and genome data analysis centres, 
with analyses performed by members across the network. Data were stored 
and released through the data coordinating centre (DCC). The NCI project 
coordinator was I. Felau and the overall analysis coordinator and data 
coordinator was C. P. Vellano. Special thanks also go out to TCGA network 
members who made substantial contributions to this work: C. P. Vellano 
(analysis coordinator, data coordinator, co-manuscript coordinator, RPPA 
analysis), N. Wentzensen (co-manuscript coordinator, HPV-analysis subgroup 
co-leader), A. I. Ojesina (co-manuscript coordinator, HPV-analysis subgroup 
co-leader, somatic-alteration analysis), A. G. Robertson (miRNA analysis, HPV 
analysis), M. D. McLellan (mutation calling), L. Danilova (methylation analysis), 
B. A. Murray (copy number and ABSOLUTE analysis), Z. Ju (RPPA analysis), 
J. T. Auman (mRNA-sequencing analysis, fusion analysis), P. Chalise (iCluster 
analysis), C. Yau (PARADIGM pathway analysis), G. Ciriello (MEMo pathway 
analysis), D. A. Gordenin (APOBEC analysis), R. Zuna (pathologist), H. Zhang 
(mutation analysis, Firehose), A. Pantazi (structural-variant-analysis subgroup 
leader, low-pass sequencing), M. H. Bailey (mutation analysis), L. Diao (EMT 
analysis), D. Koestler (methylation data processing, functional epigenetic 
module analysis), K. Mungall (HPV analysis), L. Lim (HPV analysis), R. Bowlby 
(miRNA analysis), S. Sadeghi (HPV analysis), D. Brooks (miRNA analysis),  
C. Sekhar Pedamallu (HPV analysis), K. Chen (fusion analysis), H. Zhao (fusion 
analysis), Z. Chong (fusion analysis), E. Martinez-Ledesma (fusion analysis),  
R. G. Verhaak (fusion analysis), K. M. Leraas (BCR), T. M. Lichtenberg (BCR),  
D. G. Tiezzi (immune-response gene analysis), M. C. Ryan (splicing analysis),  
S. M. Reynolds (regulome explorer analysis), G. B. Mills (project co-chair) and  
J. S. Rader (project co-chair).

Author Information Reprints and permissions information is available at 
www.nature.com/reprints. The authors declare no competing financial 
interests. Readers are welcome to comment on the online version of the paper. 
Correspondence and requests for materials should be addressed to  
C.P.V. (vellcp2@gmail.com), N.W. (wentzenn@mail.nih.gov), A.I.O. (ojesina@uab.
edu) and J.S.R (jrader@mcw.edu).

This work is licensed under a Creative Commons Attribution  
4.0 International (CC BY 4.0) licence. The images or other third 

party material in this article are included in the article’s Creative Commons 
licence, unless indicated otherwise in the credit line; if the material is not 
included under the Creative Commons licence, users will need to obtain 
permission from the licence holder to reproduce the material. To view a  
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature21386
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature21386
mailto:vellcp2@gmail.com
mailto:wentzenn@mail.nih.gov
mailto:ojesina@uab.edu
mailto:ojesina@uab.edu
mailto:jrader@mcw.edu
http://creativecommons.org/licenses/by/4.0/


ARTICLE RESEARCH

The Cancer Genome Atlas Research Network (participants are arranged by 
institution) 
Albert Einstein College of Medicine Robert D. Burk1, Zigui Chen1;  Analytical 
Biological Services Charles Saller2, Katherine Tarvin2;  Barretos Cancer 
Hospital Andre L. Carvalho3, Cristovam Scapulatempo-Neto3, 
Henrique C. Silveira3, José H. Fregnani3;  Baylor College of Medicine 
Chad J. Creighton4, Matthew L. Anderson4, Patricia Castro4;  Beckman 
Research Institute of City of Hope  Sophia S. Wang5;  Buck Institute for 
Research on Aging Christina Yau6, Christopher Benz6;  Canada’s Michael 
Smith Genome Sciences Centre A. Gordon Robertson7, Karen Mungall7, 
Lynette Lim7, Reanne Bowlby7, Sara Sadeghi7, Denise Brooks7, 
Payal Sipahimalani7, Richard Mar7, Adrian Ally7, Amanda Clarke7, 
Andrew J. Mungall7, Angela Tam7, Darlene Lee7, Eric Chuah7, 
Jacqueline E. Schein7, Kane Tse7, Katayoon Kasaian7, Yussanne Ma7, 
Marco A. Marra7, Michael Mayo7, Miruna Balasundaram7, Nina Thiessen7, 
Noreen Dhalla7, Rebecca Carlsen7, Richard A. Moore7, Robert A. Holt7, 
Steven J. M. Jones7, Tina Wong7;  Harvard Medical School Angeliki Pantazi8, 
Michael Parfenov8, Raju Kucherlapati8, Angela Hadjipanayis8, 
Jonathan Seidman8, Melanie Kucherlapati8, Xiaojia Ren8, Andrew W. Xu8, 
Lixing Yang8, Peter J. Park8, Semin Lee8;  Helen F. Graham Cancer Center & 
Research Institute at Christiana Care Health Services Brenda Rabeno9, 
Lori Huelsenbeck-Dill9, Mark Borowsky9, Mark Cadungog9, Mary Iacocca9, 
Nicholas Petrelli9, Patricia Swanson9;  HudsonAlpha Institute for 
Biotechnology Akinyemi I. Ojesina10,11,12;  ILSbio, LLC Xuan Le13;  Indiana 
University School of Medicine George Sandusky14;  Institute of Human 
Virology Sally N. Adebamowo15, Teniola Akeredolu15, Clement Adebamowo15;  
Institute for Systems Biology Sheila M. Reynolds16, Ilya Shmulevich16;  
International Genomics Consortium Candace Shelton17, Daniel Crain17, 
David Mallery17, Erin Curley17, Johanna Gardner17, Robert Penny17, 
Scott Morris17, Troy Shelton17;  Leidos Biomedical Jia Liu18, Laxmi Lolla18, 
Sudha Chudamani18, Ye Wu18;  Massachusetts General Hospital 
Michael Birrer19;  McDonnell Genome Institute at Washington University 
Michael D. McLellan20, Matthew H. Bailey20, Christopher A. Miller20, 
Matthew A. Wyczalkowski20, Robert S. Fulton20, Catrina C. Fronick20, 
Charles Lu20, Elaine R. Mardis20, Elizabeth L. Appelbaum20, 
Heather K. Schmidt20, Lucinda A. Fulton20, Matthew G. Cordes20, Tiandao Li20, 
Li Ding20, Richard K. Wilson20;  Medical College of Wisconsin Janet S. Rader21, 
Behnaz Behmaram21, Denise Uyar21, William Bradley21;  Medical University of 
South Carolina John Wrangle22;  Memorial Sloan Kettering Cancer Center 
Alessandro Pastore23, Douglas A. Levine23, Fanny Dao23, Jianjiong Gao23, 
Nikolaus Schultz23, Chris Sander23, Marc Ladanyi23;  Montefiore Medical 
Center Mark Einstein24, Randall Teeter24;  NantOmics Stephen Benz25;  
National Cancer Institute Nicolas Wentzensen26, Ina Felau26, 
Jean C. Zenklusen26, Clara Bodelon26, John A. Demchok26, Liming Yang26, 
Margi Sheth26, Martin L. Ferguson26, Roy Tarnuzzer26, Hannah Yang26, 
Mark Schiffman26, Jiashan Zhang26, Zhining Wang26, Tanja Davidsen26;  
National Hospital, Abuja, Nigeria Olayinka Olaniyan27;  National Human 
Genome Research Institute Carolyn M. Hutter28, Heidi J. Sofia28;  National 
Institute of Environmental Health Sciences Dmitry A. Gordenin29, Kin Chan29, 
Steven A. Roberts29, Leszek J. Klimczak29;  National Institute on Deafness & 
Other Communication Disorders Carter Van Waes30, Zhong Chen30, 
Anthony D. Saleh30, Hui Cheng30;  Ontario Tumour Bank, London Health 
Sciences Centre Jeremy Parfitt31;  Ontario Tumour Bank, Ontario Institute for 
Cancer Research John Bartlett32, Monique Albert32;  Ontario Tumour Bank, 
The Ottawa Hospital Angel Arnaout33, Harman Sekhon33, Sebastien Gilbert33;  
Oregon Health & Science University Myron Peto34;  Penrose-St Francis 
Health Services Jerome Myers35, Jodi Harr35, John Eckman35, 
Julie Bergsten35, Kelinda Tucker35, Leigh Anne Zach35;  Samuel Oschin 
Comprehensive Cancer Institute, Cedars-Sinai Medical Center 
Beth Y. Karlan36, Jenny Lester36, Sandra Orsulic36;  SRA International 
Qiang Sun37, Rashi Naresh37, Todd Pihl37, Yunhu Wan37;  St Joseph’s Candler 
Health System Howard Zaren38, Jennifer Sapp38, Judy Miller38, 
Paul Drwiega38;  The Eli & Edythe L. Broad Institute of Massachusetts 
Institute of Technology & Harvard University Akinyemi I. Ojesina10,11,12, 
Bradley A. Murray11, Hailei Zhang11, Andrew D. Cherniack11, Carrie Sougnez11, 
Chandra Sekhar Pedamallu11, Lee Lichtenstein11, Matthew Meyerson11, 
Michael S. Noble11, David I. Heiman11, Doug Voet11, Gad Getz11, 
Gordon Saksena11, Jaegil Kim11, Juliann Shih11, Juok Cho11, 
Michael S. Lawrence11, Nils Gehlenborg11, Pei Lin11, Rameen Beroukhim11, 
Scott Frazer11, Stacey B. Gabriel11, Steven E. Schumacher11;  The Research 
Institute at Nationwide Children’s Hospital Kristen M. Leraas39, 
Tara M. Lichtenberg39, Erik Zmuda39, Jay Bowen39, Jessica Frick39, 
Julie M. Gastier-Foster39, Lisa Wise39, Mark Gerken39, Nilsa C. Ramirez39;   
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins 
University Ludmila Danilova40, Leslie Cope40, Stephen B. Baylin40;   
The University of Bergen Helga B. Salvesen41‡;  The University of Texas MD 
Anderson Cancer Center Christopher P. Vellano42, Zhenlin Ju42, Lixia Diao42, 
Hao Zhao42, Zechen Chong42, Michael C. Ryan42, Emmanuel Martinez-
Ledesma42, Roeland G. Verhaak42, Lauren Averett Byers42, Yuan Yuan42, 
Ken Chen42, Shiyun Ling42, Gordon B. Mills42, Yiling Lu42, Rehan Akbani42, 
Sahil Seth42, Han Liang42, Jing Wang42, Leng Han42, John N. Weinstein42, 
Christopher A. Bristow42, Wei Zhang42, Harshad S. Mahadeshwar42, 
Huandong Sun42, Jiabin Tang42, Jianhua Zhang42, Xingzhi Song42, 
Alexei Protopopov42, Kenna R. Mills Shaw42, Lynda Chin42;  University of 

Abuja Teaching Hospital Oluwole Olabode43;  University of Alabama at 
Birmingham Akinyemi I. Ojesina10,11,12;  University of California, Irvine 
Philip DiSaia44;  University of California Santa Cruz Amie Radenbaugh45, 
David Haussler45, Jingchun Zhu45, Josh Stuart45;  University of Kansas 
Medical Center Prabhakar Chalise46, Devin Koestler46, Brooke L. Fridley46, 
Andrew K. Godwin46, Rashna Madan46;  University of Lausanne 
Giovanni Ciriello47;  University of New Mexico Health Sciences Center 
Cathleen Martinez48, Kelly Higgins48, Therese Bocklage48;  University of North 
Carolina at Chapel Hill J. Todd Auman49, Charles M. Perou49, Donghui Tan49, 
Joel S. Parker49, Katherine A. Hoadley49, Matthew D. Wilkerson49, 
Piotr A. Mieczkowski49, Tara Skelly49, Umadevi Veluvolu49, D. Neil Hayes49, 
W. Kimryn Rathmell49, Alan P. Hoyle49, Janae V. Simons49, Junyuan Wu49, 
Lisle E. Mose49, Matthew G. Soloway49, Saianand Balu49, Shaowu Meng49, 
Stuart R. Jefferys49, Tom Bodenheimer49, Yan Shi49, Jeffrey Roach49, 
Leigh B. Thorne49, Lori Boice49, Mei Huang49, Corbin D. Jones49;  University of 
Oklahoma Health Sciences Center Rosemary Zuna50, Joan Walker50, 
Camille Gunderson50, Carie Snowbarger50, David Brown50, Katherine Moxley50, 
Kathleen Moore50, Kelsi Andrade50, Lisa Landrum50, Robert Mannel50, 
Scott McMeekin50, Starla Johnson50, Tina Nelson50;  University of Pittsburgh 
Esther Elishaev51, Rajiv Dhir51, Robert Edwards51, Rohit Bhargava51;  
University of São Paulo, Ribeirão Preto Medical School Daniel G. Tiezzi52, 
Jurandyr M. Andrade52, Houtan Noushmehr52, Carlos Gilberto Carlotti Jr52, 
Daniela Pretti da Cunha Tirapelli52;  University of Southern California 
Daniel J. Weisenberger53, David J. Van Den Berg53, Dennis T. Maglinte53, 
Moiz S. Bootwalla53, Phillip H. Lai53, Timothy Triche Jr53;  University of 
Washington Elizabeth M. Swisher54, Kathy J. Agnew54;  University of 
Wisconsin School of Medicine & Public Health Carl Simon Shelley55;  Van 
Andel Research Institute Peter W. Laird56;  Washington University in St Louis 
Julie Schwarz57, Perry Grigsby57 & David Mutch57

1Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA. 2Analytical 
Biological Services, Inc., Wilmington, Delaware 19801, USA. 3Barretos Cancer Hospital, 
Barretos, Sao Paulo, Brazil. 4Baylor College of Medicine, Houston, Texas 77030, USA. 5Beckman 
Research Institute of City of Hope, Duarte, California 91010, USA. 6Buck Institute for Research 
on Aging, Novato, California 94945, USA. 7Canada’s Michael Smith Genome Sciences Centre, 
BC Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada. 8Harvard Medical School, 
Boston, Massachusetts 02115, USA. 9Helen F. Graham Cancer Center and Research Institute at 
Christiana Care Health Services, Inc., Newark, Delaware 19713, USA. 10HudsonAlpha Institute 
for Biotechnology, Huntsville, Alabama 35806, USA. 11The Eli and Edythe L. Broad Institute 
of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 
02142, USA. 12University of Alabama at Birmingham, Birmingham, Alabama 35294, USA. 
13ILSbio, LLC, Chestertown, Maryland 21620, USA. 14Indiana University School of Medicine, 
Indianapolis, Indiana 46202, USA. 15Institute of Human Virology, Nigeria, Abuja, Nigeria. 
16Institute for Systems Biology, Seattle, Washington 98109, USA. 17International Genomics 
Consortium, Phoenix, Arizona 85004, USA. 18Leidos Biomedical, Rockville, Maryland 20850, 
USA. 19Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 20McDonnell 
Genome Institute at Washington University, St Louis, Missouri 63108, USA. 21Medical College 
of Wisconsin, Milwaukee, Wisconsin 53226, USA. 22Medical University of South Carolina, 
Charleston, South Carolina 29425, USA. 23Memorial Sloan Kettering Cancer Center, New 
York, New York 10065, USA. 24Montefiore Medical Center, Bronx, New York, New York 10461, 
USA. 25NantOmics, Santa Cruz, California 95060, USA. 26National Cancer Institute, Bethesda, 
Maryland 20892, USA. 27National Hospital, Abuja, Nigeria. 28National Human Genome 
Research Institute, Bethesda, Maryland 20892, USA. 29National Institute of Environmental 
Health Sciences, Durham, North Carolina 27709, USA. 30National Institute on Deafness 
and Other Communication Disorders, Bethesda, Maryland 20892, USA. 31Ontario Tumour 
Bank, London Health Sciences Centre, London, Ontario N6A 5A5, Canada. 32Ontario Tumour 
Bank, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. 33Ontario 
Tumour Bank, The Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada. 34Oregon Health and 
Science University, Portland, Oregon 97201, USA. 35Penrose-St Francis Health Services, 
Colorado Springs, Colorado 80906, USA. 36Samuel Oschin Comprehensive Cancer Institute, 
Cedars-Sinai Medical Center, Los Angeles, California 90048, USA. 37SRA International, Fairfax, 
Virginia 22033, USA. 38St Joseph’s Candler Health System, Savannah, Georgia 31406, USA. 
39The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, USA. 
40The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, 
Maryland 21287, USA. 41The University of Bergen, Bergen, Norway. 42The University of 
Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. 43University of Abuja 
Teaching Hospital, Gwagwalada, Abuja, Nigeria. 44University of California, Irvine, Orange, 
California 92668, USA. 45University of California Santa Cruz, Santa Cruz, California 95064, 
USA. 46University of Kansas Medical Center, Kansas City, Kansas 66160, USA. 47University 
of Lausanne, Lausanne, Switzerland. 48University of New Mexico Health Sciences Center, 
Albuquerque, New Mexico 87131, USA. 49University of North Carolina at Chapel Hill, Chapel 
Hill, North Carolina 27599, USA. 50University of Oklahoma Health Sciences Center, Oklahoma 
City, Oklahoma 73104, USA. 51University of Pittsburgh, Pittsburgh Pennsylvania 15213, USA. 
52University of São Paulo, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo 14049-900, 
Brazil. 53University of Southern California, Los Angeles, California 90033, USA. 54University of 
Washington, Seattle, Washington 981095, USA. 55University of Wisconsin School of Medicine 
and Public Health, Madison, Wisconsin 53705, USA. 56Van Andel Research Institute,  
Grand Rapids, Michigan 49503, USA. 57Washington University in St Louis, St Louis,  
Missouri 63110, USA. 
‡Deceased.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ARTICLERESEARCH

METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Samples and data freeze. Each tissue source site provided documentation that 
their IRBs either: a) approved their participation specifically in the TCGA project, 
through an approved protocol, amendment, exemption, or waiver, and the docu-
mentation must include specific mention of TCGA; or b) provided documentation 
that the IRB does not consider participation in TCGA to constitute ‘human subjects 
research’, and therefore does not have purview.

The Core Data Freeze (core set) included 178 samples from cervical carcinoma 
batches 88, 114, 127, 148, 169, 179, 200, 217, 236, 256, 280, 297, 335 and 350 
(Supplementary Table 1). This is a standard data freeze whereby the case list was 
‘frozen’ and analyses used the one set even though other samples came through 
the pipeline. Samples in the core set had mRNA-seq, whole exome DNA-seq 
(WES), miRNA-seq, methylation, SNP6 copy number and clinical data available. 
Additional samples that had multicentre mutation calls and/or RPPA data included 
67 samples from cervical carcinoma batches 88, 114, 127, 148, 169, 179, 200, 217, 
236, 256, 280, 297, 335, 350, 361, 373, 380, 394 and 420 (Supplementary Table 2). Of 
these samples, 14 had mutations called and 60 had RPPA data available; however, 
RPPA data for 17 samples was excluded owing to low protein content within the 
samples (Supplementary Table 2). Mutations were called for 192 samples (extended 
set), while all other platform and integrated analyses (aside from protein) were 
performed on the subset of 178 core-set samples. Protein levels were measured on 
155 samples, which included 119 samples from both the core and extended sets 
as well as 36 samples outside of these sets. The total number of non-overlapping 
samples across core, extended and RPPA datasets is 228 (Extended Data Fig. 1a).
HPV detection, variant calling and transcript analysis. HPV status was deter-
mined using consensus results from MassArray and RNA-seq (Supplementary 
Information 2). MassArray uses real-time competitive polymerase chain reaction 
and matrix-assisted laser desorption/ionization–time-of-flight mass spectros-
copy with separation of products on a matrix-loaded silicon chip array, similar 
to the work described in ref. 45. Two approaches for pathogen detection from 
RNA-seq data were used. The first used the microbial detection pipeline at the 
British Columbia Cancer Agency’s Genome Sciences Centre (BC), which is based 
on BioBloom Tools (BBT, v1.2.4b1)46. The second used the PathSeq algorithm47 
at the Broad Institute (BI) to perform computational subtraction of human reads 
followed by alignment of residual reads to a combined database of human reference 
genomes and microbial reference genomes including HPV. In 97% of samples, com-
plete agreement between MassArray and both RNA-seq approaches was observed. 
The remaining discrepant samples were resolved by majority decision, assigning 
the genotype called by at least two of the methods. RNA-seq data in FASTA format 
was used to identify HPV variants (Supplementary Fig. 1). Unaligned reads were 
taken from the PathSeq analysis and aligned to HPV reference genomes using 
TopHat48 with default parameters49. The HPV variant lineages/sublineages were 
assigned based on the phylogenetic topology and confirmed visually using the SNP 
patterns50. HPV splice junctions from RNA-seq were determined using TopHat. 
Two transcript types were distinguished for HPV16 and HPV18: transcripts 
that included evidence of an unspliced sequence of E6, and transcripts spliced at 
the E6 splice donor site (position 226 for HPV16 and position 233 for HPV18) 
(Supplementary Fig. 2). Read counts for unspliced, spliced, as well as the ratio of 
unspliced/spliced transcripts were categorized into quartiles separately for HPV16 
and HPV18.
HPV integration analysis. Using RNA-seq data, concordance of integration 
events based on alignments of contigs from de novo transcriptome assembly (BC) 
and read alignments (BI) was evaluated (Supplementary Fig. 3). We identified 
method-specific integration events by assigning all sites within a 500-kb sliding 
window to a single integration event located at the median coordinate of that 
assigned sites for that event. An integration event was labelled as ‘confident’ when 
the total read support for each of its supporting integration sites passed centre-
specific read evidence thresholds. To take advantage of differences between the two 
integration methods (that is, contig and read), for the concordance analysis we used 
all method-specific integration events (both confident and non-confident events). 
We labelled an integration event as ‘concordant’ when both methods reported an 
integration event within 500 kb in the same patient’s sample. For some concordant 
events, both methods reported a confident event. An integration event was labelled 
as ‘discordant’ when only one centre reported a confident integration event within 
500 kb (Supplementary Figs 4 and 5). For both intragenic and intergenic concordant  
events, we reported a range of coordinates that extends from the most proximal 
to the most distal supported integration site. We assessed gene-level expression 
relative to somatic copy number and structural-variant data for genes into which 
we had mapped viral–human junctions from RNA sequencing data and for genes 
that were associated with enhancers into which we had mapped RNA junctions.

DNA sequencing and mutation calling. Detailed methods for library hybrid 
capture, read alignments and somatic variant calling are documented in 
Supplementary Information 3. MutSig2CV6 was used to identify significantly 
mutated genes (SMGs) within the cervical cancer exome sequencing data. 
Mutations were analysed for the core set plus 14 samples for a total of 192 extended-
set samples. Eleven samples were identified to exhibit greater than average 
mutations rates and were termed hypermutants (somatic mutations >​ 600). These 
11 samples were excluded from the analysis for identifying SMGs. All three sample 
subsets (all samples, squamous carcinomas only, adenocarcinomas only) without 
hypermutants (Supplementary Table 4) were analysed using an FDR cut-off of  
0.1. FDR values are shown in Supplementary Table 4. SMG analysis using the entire 
sample cohort in from ref. 8 was performed as described previously8.
Copy number analysis. DNA from each tumour or germline sample was 
hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis 
Platform of the Broad Institute as previously described51. Briefly, Birdseed was 
used to infer a preliminary copy number at each probe locus from raw .cel files52. 
For each tumour, genome-wide copy number estimates were refined using tangent 
normalization, in which tumour signal intensities are divided by signal intensities 
from the linear combination of all normal samples that are most similar to the 
tumour16. Individual copy number estimates then underwent segmentation using 
circular binary segmentation53, and segmented copy number profiles for tumour 
and matched control DNAs were analysed using Ziggurat Deconstruction54. 
Significance of copy number alterations were assessed from the segmented data 
using GISTIC2.0 (version 2.0.22)54. For the purpose of this analysis, an arm-level 
event was defined as any event spanning more than 50% of a chromosome arm. For 
copy number-based clustering, tumours were clustered based on copy number at 
regions using GISTIC analysis. Clustering was done in R on the basis of Euclidean 
distance using Ward’s method. Allelic and integer copy number, tumour purity and 
tumour ploidy were calculated using the ABSOLUTE algorithm55.
Detecting structural variants from RNA-seq and WGS data. Integrative analysis 
was performed to identify putative driver fusions using both WGS (low-pass and 
high-coverage) and RNA-seq data. RNA-seq data for 178 core-set samples were 
analysed using the TopHat-Fusion and BreakFusion, PRADA and MapSplice 
algorithms. To identify structural variations in WGS data, 50 low-pass WGS and 
19 high-pass WGS samples were analysed. Detection of structural variations in 
low-pass WGS data was performed using two algorithms, BreakDancer56 and 
Meerkat57, with a requirement for at least two discordant read pairs supporting 
each event and at least one read covering the breakpoint junction. High-pass 
WGS data were analysed to detect somatic structural variations using two runs 
of BreakDancer and one run of SquareDancer (https://github.com/ding-lab/
squaredancer). The gene fusion lists generated by all methods and platforms were 
integrated (see Supplementary Tables 8–10).
APOBEC mutagenesis analysis. Analysis is based on previous findings that 
APOBECs deaminate cytidines predominantly in a tCw motif and that the 
APOBEC mutagenesis signature is composed of approximately equal numbers 
of two kinds of changes in this motif: tCw→​tTw and tCw→​tGw mutations 
(flanking nucleotides are shown in small letters; w =​ A or T). Using mutation 
data from all 192 extended-set samples, we calculated on a per-sample basis the 
enrichment of the APOBEC mutation signature among all mutated cytosines in 
comparison to the fraction of cytosines that occur in the tCw motif among the  
±​20 nucleotides surrounding each mutated cytosine (APOBEC_enrich column in 
data files). The minimum estimate of the number of APOBEC-induced mutations 
in a sample (APOBEC_MutLoad_MinEstimate) was calculated using the formula: 
[tCw→​G +​ tCw→​T]×​[(APOBEC_enrich−​1)/APOBEC_enrich], which allows 
estimation of the number of APOBEC signature mutations in excess of what would 
be expected by random mutagenesis. APOBEC_MutLoad_MinEstimate was calcu-
lated only for samples passing the threshold of FDR <​ 0.05 for APOBEC enrichment  
([BH_Fisher_p-value_tCw] <​ 0.05). Samples with a BH_Fisher_p-value_tCw >​ 0.05 
were given a value of 0. The APOBEC_MutLoad_MinEstimate value shows high 
correlation (0.9–0.95) with all other parameters used to characterize the APOBEC 
mutagenesis pattern, such as APOBEC enrichment, and absolute and relative APOBEC 
mutation loads. For some analyses and figures, the APOBEC_MutLoad_MinEstimate 
parameter was converted into categorical values as follows: no, APOBEC_MutLoad_
MinEstimate =​ 0; low, 0 <​ APOBEC_MutLoad_MinEstimate >​ median of non-zero 
values; high, APOBEC_MutLoad_MinEstimate >​ median of non-zero values. The 
median of non-zero values in the extended set =​ 33.
Methylation analysis. The Illumina Infinium HM450 array58 was used to evaluate 
DNA methylation in the core set of samples from cervical cancer patients. 
Unsupervised consensus clustering was performed with Euclidean distance and 
partitioning around medoids (PAM) using the most variable 1% of CpG-island 
promoter probes. Epigenetically silenced genes were identified as previously 
described59. A total of 120 normal samples were used for this analysis by selecting 
10 samples at random from the 12 TCGA projects that included normal samples.
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RNA-seq analysis. RNA was extracted, converted into mRNA libraries, and paired-
end sequenced (paired 50 nucleotide reads) on Illumina HiSeq 2000 Genome 
Analyzers as previously described5. RNA reads were aligned to the hg19 genome 
assembly using Mapsplice version 12_0760. Gene expression was quantified for  
the transcript models corresponding to the TCGA GAF2.1 (https://gdc-api.nci.nih.
gov/v0/data/a0bb9765-3f03-485b-839d-7dce4a9bcfeb) using RSEM4 (ref. 61) and 
normalized within a sample to a fixed upper quartile. To predict whether a cancer 
sample was from the cervix or the uterus, the data matrix of normalized gene-level 
RSEM values from 170 UCEC samples was merged with the data matrix from the 
core set (n =​ 178) of cervical cancers. This merged dataset was then randomly split 
into a training set (87 cervical carcinoma samples; 86 UCEC samples) and a test 
set (91 cervical carcinoma samples; 84 UCEC samples). A sample was predicted to 
be cervical carcinoma if the t-statistic versus UCEC was significant (P <​ 0.05), but 
was not significantly different from the cervical carcinoma mean (and vice versa for 
the UCEC prediction). A data matrix of RSEM values from 178 cervical carcinoma, 
170 UCEC and 279 HNSC samples was used to identify expression patterns across 
the 3 cancer types. The gene expression matrix was further filtered to only include 
the top 25% most variable genes by mean absolute deviation (n =​ 4,039 genes).
EMT mRNA score analysis. The EMT score was computed as previously 
described10,21. Briefly, the EMT score was the value resulting from the difference 
between the average expression of mesenchymal (M) genes minus the average 
expression of epithelial (E) genes. All values for unavailable data (NA)  
were removed from the calculation. Two-sample t-test and ANOVA were applied 
to each comparison accordingly.
miRNA sequencing and analysis. MicroRNA-sequencing (miRNA-seq) data was 
generated for the core set of tumour samples using methods described previously11. 
We identified miRNAs that have been associated with EMT62–66 and then calculated 
Spearman correlations between the EMT scores and normalized expression 
(reads per million, RPM) for 5p and 3p mature strands for each of the miRNAs 
using MatrixEQTL and filtering by FDR <​ 0.05. An miRNA was considered to 
be epigenetically controlled if the BH-corrected P values were less than 0.01 for 
both (i) a Spearman correlation of miRNA abundance (RPM) to beta for probes in 
promoter regions associated with the miRNAs, and for (ii) a t-test of RPM between 
unmethylated (β <​ 0.1) and methylated (β >​ 0.3) samples (an epigenetically 
controlled pattern). We assessed potential miRNA targeting for all 178 samples 
and then separately for the 144 squamous samples by calculating miRNA–mRNA 
and miRNA–protein (RPPA) Spearman correlations with MatrixEQTL v2.1.1 using 
gene-level normalized abundance RNA-seq (RSEM) data and normalized RPPA 
data. Correlations were calculated with a P value threshold of 0.05, and then the 
anti-correlations were filtered at FDR <​ 0.05. We extracted miRNA–gene pairs that 
were functionally validated in publications reported by miRTarBase v4.5 (ref. 22). 
For miRNA–RPPA anti-correlations, all gene names that were associated with each 
antibody were used. Results were displayed with Cytoscape v2.8.3.
PARADIGM analysis. Integration of copy number, RNA-seq and pathway 
interaction data was performed on the core set of samples using PARADIGM33,34. 
Briefly, PARADIGM infers integrated pathway levels (IPLs) for genes, complexes 
and processes using pathway interactions, genomic and functional genomic data 
from each patient sample. One was added to all expression values, which were 
then log2-transformed and median-centred across samples for each gene. The 
log2-transformed, median-centred mRNA data were rank-transformed based on 
the global ranking across all samples and all genes and discretized (+​1 for values 
with ranks in the highest tertile, −​1 for values with ranks in the lowest tertile and 
0 otherwise) before PARADIGM analysis.

Pathways were obtained in BioPax level 3 format, and included the NCIPID 
and BioCarta databases from http://pid.nci.nih.gov and the Reactome database 
from http://reactome.org. Gene identifiers were unified by UniProt ID and then 
converted to Human Genome Nomenclature Committee’s HUGO symbols using 
mappings provided by HGNC (http://www.genenames.org/). Altogether, 1,524 
pathways were obtained. Interactions from all of these sources were then combined 
into a merged superimposed pathway (SuperPathway). Genes, complexes and 
abstract processes (for example, cell cycle and apoptosis) were retained and hence-
forth referred to collectively as pathway features. The resulting pathway structure 
contained a total of 19,504 features, representing 7,369 protein-coding genes, 9,354 
complexes, 2,092 families, 82 RNAs, 15 miRNAs and 592 abstract processes.

The PARADIGM algorithm infers an IPL for each pathway element that reflects 
the log likelihood that contrasts the probability of activity against inactivity. An 
initial minimum variation filter (at least 1 sample with absolute activity >​0.05) was 
applied, resulting in 15,502 concepts (5,898 protein-coding genes, 7,307 complexes, 
1,916 families, 12 RNAs, 15 miRNAs and 354 abstract processes) with relative 
activities showing distinguishable variation across tumours.
iCluster analysis. Integrative clustering of RNA-seq, methylation, copy number 
and miRNA data was performed using the R package iCluster20. The core set of 
samples was used since all samples in this set had data available across these four 
platforms. RNA-seq, methylation, copy number and mature-strand miRNA datasets 

had 20,531, 395,552, 23,109 and 1,213 features, respectively. The 500 most variable 
features based on the standard deviation from each dataset were selected for the inte-
grative clustering analyses. For analysis involving the RNA-seq and miRNA datasets, 
a log[x + 1] transformation was used in order to deal with skewness in the data67. 
Methylation data was logit transformed to make it closer to normal distribution. The 
CNV data included the regions determined from GISTIC2.0, with CNVs treated as 
a continuous measurement based on the segmentation mean value for the region.
MEMo analysis. High DNA-methylation levels upstream of miR-200a and  
miR-200b corresponded to transcriptional downregulation of the miRNAs 
(Extended Data Fig. 9a). For a sample to be called altered for either miR-200a or 
miR-200b (or both), we required both high DNA-methylation level upstream of 
the miRNA (β >​ 0.3) and low miRNA expression (log2[RPM] <​ 9.3 for miR-200a 
and log2[RPM] <​ 9 for miR-200b). Binary calls were given to altered and unaltered 
samples based on this double threshold (1 =​ altered, 0 =​ unaltered).

The mutual exclusivity modules in cancer (MEMo) algorithm27 was run on all 
core-set samples. MEMo was first run on 27 regions of recurrent copy number 
gain, 36 regions of copy number loss and 22 recurrently mutated genes. In order 
to include alterations for miR-200a and miR-200b in the MEMo analysis, a 
custom network was designed where each miRNA was connected to its known 
and validated targets (see above). Second, this network was merged with the com-
prehensive pathway network used by MEMo to search for modules of altered 
genes that include at least one of the miRNAs. Extracted modules were tested 
for mutual exclusivity using statistical framework of MEMo (Supplementary  
Table 27). A Student’s t-test was performed for comparison of the EMT mRNA 
scores between groups.
Data availability. The primary and processed data used in analyses can be down-
loaded by registered users from https://gdc-portal.nci.nih.gov/ and the TCGA 
publication page (https://tcga-data.nci.nih.gov/docs/publications/cesc_2016/).
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Extended Data Figure 1 | Sample sets and histological patterns of 
cervical cancer. a, Summary of sample numbers and degree of overlap 
between the core, extended and RPPA datasets. b, Example of a large-cell 
non-keratinizing squamous cell carcinoma. Tongues of highly atypical 
polygonal neoplastic squamous cells infiltrate through a fibrotic stroma. 
The cells show abundant eosinophilic cytoplasm with pleomorphic 
nuclei and prominent mitotic figures. Although the tumour cells contain 
abundant cytokeratin filaments, this tumour has traditionally been termed 
non-keratinizing because of the absence of characteristic keratin pearls.  
c, An example of a large-cell keratinizing squamous cell carcinoma.  
Nests of atypical squamous cells infiltrate through a fibrotic stroma.  
In addition, this tumour shows highly eosinophilic keratin pearls with 
small, inky dark nuclei that imperfectly mimic the normal keratinization 
that is found in the epidermis. This differentiation pattern is aberrant 
in the cervix in which the squamous epithelium is normally a non-
keratinizing squamous mucosa. d, An example of an endocervical 
adenocarcinoma (well differentiated). Closely set, atypical glands with 
enlarged nuclei and scattered mitotic figures infiltrate through the 

connective tissue of the cervix. The tall columnar tumour cells show 
basally placed, crowded, enlarged nuclei that show frequent mitotic 
figures. Compared with normal endocervical cells, the tumour cells  
show relative loss of intra-cytoplasmic mucin and are frequently called 
mucin-depleted, although most, but not all endocervical adenocarcinomas 
show varying amounts of intracytoplasmic mucin at least focally.  
e, Adenosquamous carcinoma of cervix. This tumour shows both nests of 
non-keratinizing squamous cell carcinoma and glands composed of tall 
columnar adenocarcinoma reflecting the origin of most cervical cancers 
in the transformation zone of the cervix in which both squamous and 
glandular cells normally differentiate. Despite this biphasic differentiation 
potential, adenosquamous carcinomas are relatively uncommon in the 
cervix. f, UCEC-like HPV-negative endocervical adenocarcinoma from 
a radical hysterectomy specimen. The endometrium in the uterus was 
benign. g, UCEC-like HPV-positive endocervical adenocarcinoma from 
a radical hysterectomy specimen. The endometrium in the uterus was 
benign. All samples were stained with haematoxylin and eosin (20×​). 
Scale bar, 100 μ​m.
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Extended Data Figure 2 | SMGs and the role of APOBEC in cervical 
cancer mutagenesis. a–f, High-confidence somatic mutations in SMGs 
among 192 exome-sequenced samples in the extended case set are shown. 
Domains are labelled according to Gencode 19, corresponding to Ensembl 
74. Mutations at canonical intronic splice acceptor (e−​1 and e−​2) are 
labelled based on proximity to the nearest coding exon. Panels display 
somatic mutations detected in novel cervical cancer SMGs, with HLA-B 
included for comparison with its family member HLA-A. Each axis is the 
protein-coding portion of a gene and each highlighted section represents 
the UniProt functional domain. Vertical lines indicate the boundaries 
of multiple annotation sources within common domain annotations 
as outlined in Supplementary Table 5. Horizontal lines distinguish 
overlapping domains. Circles represent a single mutation and  
are coloured based on mutation type. Mutations present in squamous  

cell carcinomas are black, whereas those present in adenocarcinomas are 
pink. g, PIK3CA mutations and recurrence are shown in a stacked circle 
plot, as above. Additionally, lolliplot sticks are coloured red if the mutation 
type coincides with patterns of APOBEC mutagenesis. h, The minimal 
estimated number of APOBEC-induced mutations (APOBEC_MutLoad_
MinEstimate column in Supplementary Table 1) strongly correlates 
with total number of mutations in a sample, as well as with the number 
of single-nucleotide variants (SNVs) in G:C pairs that are the exclusive 
substrate for mutagenesis by APOBEC cytidine deaminases. Although 
correlation with mutagenesis in A:T base pairs, which cannot be mutated 
by APOBEC enzymes, is statistically significant (two-tailed P =​ 0.047), it is 
very weak. Pearson correlation and R2 were calculated for all 192 exome-
sequenced samples, including samples with zero values. Only samples with 
non-zero values of APOBEC_MutLoad_MinEstimate are presented.
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Extended Data Figure 3 | See next page for caption.
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Extended Data Figure 3 | Copy number alterations in cervical cancer. 
a, A log2-centred heatmap of somatic copy number alterations across 
178 core-set cervical tumours. The x axis includes samples that have 
been ordered based on the cluster assignment. The y axis is based 
on genomic position, from 1p to Xq. Features associated with copy 
number clusters are annotated with asterisks; *​P <​ 0.05; *​*​P <​ 0.01. 
b, GISTIC2.0 amplification and deletion plots within copy number 
clusters. Chromosomal locations for peaks of significantly recurrent focal 
amplifications (red) and deletions (blue) are plotted by −​log10 q value for 
the high (CN High) and low (CN Low) copy number clusters. Peaks are 
annotated with cytoband and candidate driver genes. The total number 
of genes in the peak region is indicated in parentheses. Peaks with more 
than 30 genes in the peak region are excluded. Any genes annotated have 

a significant positive correlation with mRNA expression. c, Chromosomal 
locations for peaks of significantly recurrent focal amplifications (red) and 
deletions (blue) are plotted by −​log10 q value for all core set samples. Peaks 
are annotated with cytoband and candidate driver genes. The total number 
of genes in the peak region is indicated in parentheses. Peaks consisting 
of more than 30 genes in the peak region are excluded. Annotated genes 
have a significant positive correlation with mRNA expression. d, Cytolytic 
activity (CYT) associations with PD-L1 and/or PD-L2 amplification. 
Each bar represents a single tumour and the height of that bar represents 
the z score of the cytolytic activity of that tumour compared to the rest 
of the cohort. Bars are coloured according to their PD-L1 and/or PD-L2 
amplification status and sorted from the highest to the lowest z score.
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Extended Data Figure 4 | See next page for caption.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ARTICLE RESEARCH

Extended Data Figure 4 | Gene-expression patterns and fusion genes 
found in cervical cancer. a, Hierarchical clustering (uncentred correlation 
with centroid linkage as the clustering method) was performed on 4,039 
expressed and highly variable genes across samples from 178 cervical, 
170 endometrial and 279 head and neck cancer patients. Normalized 
gene-level RSEM values were median-centred before clustering and 
relative increased expression values are indicated in red and relative 
decreased expression values are indicated in blue. Samples from patients 
with cervical (CESC, light blue), endometrial (UCEC, purple) and head 
and neck (HNSC, orange) cancer are categorized by different colours 
as indicated. Also included are indications of HPV status, histology of 
cervical and endometrial cancers, and tissue site for head and neck cancer 
samples. Select genes are noted to the right of their locations on the 
heatmap. b, Box plots of the three differentially expressed SMGs and top 

six significantly differentially expressed non-SMGs across the iCluster 
groups using Kruskal–Wallis test. All genes are significantly different 
between the keratin-low and keratin-high clusters. Significant P values 
across keratin-low and keratin-high clusters are presented. c, A schematic 
of BCAR4 tandem duplication in one case (C5-A3HF), detected by 
analysis of somatic copy number (top) and structural variation (middle). 
Split reads and genomic breakpoints indicating the tandem duplication 
are shown. At the RNA level (bottom) the last exon of BCAR4 forms a 
fusion gene with the first exon of ZC3H7A (red bars indicate the location 
of mRNA breakpoints; NR_024049 shown as BCAR4 representative 
transcript). d, Schematic of recurrent fusions (CPSF6–C9orf3,  
ARL8B–ITPR1 and MYH9–TXN2) or fusions with known occurrences 
in other cancer types (FGFR3–TACC3), detected by at least two RNA-seq 
fusion callers in 178 samples. Red bars indicate the mRNA breakpoints.
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Extended Data Figure 5 | Unsupervised clusters of DNA methylation 
data. a, Heatmap showing β values of 178 core-set samples ordered by 
CIMP clusters. Samples are presented in columns and the CpG island 
promoter CpG loci are presented in rows. An annotation panel on the right 
of the heatmap indicates CpG loci that are differentially methylated within 
a particular feature (see Supplementary Table 13). All features (marked 

with an asterisk) are significantly associated with DNA-methylation 
clusters (Fisher’s Exact test P <​ 0.01), except APOBEC mutagenesis level, 
UCEC-like status and HPV integration status. b, Box plots of the EMT 
mRNA score and tumour purity by CIMP clusters.  
*​P <​ 0.05; *​*​P <​ 0.01 (Student’s t-test).
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Extended Data Figure 6 | miRNA clusters and miRNA-gene/protein 
anti-correlations in cervical cancer. a, Unsupervised clustering for 
miRNA profiles across 178 core-set tumour samples. Top to bottom: a 
normalized abundance heatmap for the fifty 5p or 3p strands that were 
highly ranked as differentially abundant by a SAMseq multiclass analysis; 
a silhouette width profile calculated from the consensus membership 
matrix; covariates with associated P values; and a summary table of 
the number of samples in each cluster. The scale bar shows row-scaled 
log10[RPM + 1] normalized abundances. Blue triangles mark selected 
cancer-associated miRs that were both differentially abundant across the 

subtypes and abundant in at least one subtype. b, Subnetworks of potential 
targeting relationships for a subset of miRNAs, as significance-thresholded 
(FDR <​ 0.05) miRNA–mRNA and miRNA–protein anti-correlations that 
are supported by functionally validated publications. For genes (nodes), 
colour distinguishes those that are only present in mRNA data (grey) 
from those that are present in both mRNA and RPPA data (green). Edges 
represent anti-correlations, and colour distinguishes anti-correlations 
between miRNA and mRNA (blue); and miRNA and unphosphorylated 
protein (green). In the n =​ 178 core-set cohort, no correlations satisfying 
FDR <​ 0.05 were reported between miRNA and phosphorylated protein.
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Extended Data Figure 7 | EMT-associated miRNAs and their 
relationship to miRNA clusters and TGFβR2 somatic alterations. 
a, Normalized miR-200a-3p abundance (RPM) across RPPA clusters 
for all 112 (top) and 92 squamous (bottom) samples of the core set for 
which RPPA data are available. P values presented are from two-sided 
Kolmogorov–Smirnov tests for RPPA-based EMT cluster versus  
non-EMT cluster samples. For n =​ 112 samples, median miR-200a-3p 
RPM =​ 296.4 within the EMT cluster (n =​ 29) and 410.0 (n =​ 83) in 
non-EMT cluster samples. For squamous samples, median miR-200a-3p 
RPM =​ 296.4 (n =​ 29) within the EMT cluster and 393.4 (n =​ 63) in  
non-EMT cluster samples. EK-A2R7, which is in the hormone RPPA 
cluster, has an RPM value of 4,267 and is not shown. Results are not 
presented for adenocarcinoma samples separately owing to limited  

sample numbers (n =​ 18 from the core set with RPPA data available).  
b, Negative and positive Spearman correlation coefficients (FDR <​ 0.05) 
between EMT mRNA score and normalized abundance (RPM) for miRNA 
mature strands (n =​ 178). miRNAs that have been reported as associated 
with EMT (see Methods) are highlighted by blue bars. c, Normalized 
abundance heatmap of miRNAs most strongly negatively and positively 
correlated with EMT mRNA scores, with samples grouped by miRNA 
cluster and sorted by EMT score within each cluster. Somatic mutations 
(MUT) and deletions (HOMDEL) are shown for TGFBR2, CREBBP, EP300 
and SMAD4. Methylation and concomitant downregulated expression 
alterations (ALT) as defined in Methods for miR-200a/b are also shown. 
miRNAs in blue represent those highlighted by blue bars in b. d, e, Same as 
b, c, for the n =​ 144 squamous tumour samples.
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Extended Data Figure 8 | Distinguishing features of cervical cancer 
integrated molecular subtypes. a, Integrative clustering of 178 core-set 
samples from patients with cervical cancer using mRNA, methylation, 
miRNA and copy number data identified three iCluster groups: keratin-
low, keratin-high and adenocarcinoma-rich (adenocarcinoma). Relative 
frequencies of various cervical cancer classifications defined by histology, 
HPV clade, CNVs, methylation, miRNA and RPPA are plotted. The key 
for each feature is shown at the bottom. For each category, the statistically 
significantly enriched features in each cluster are highlighted with 
asterisks and include the name of the enriched feature. Each category was 
significantly associated with the clusters (χ2 test; P <​ 0.05). The width of 

each plot is scaled according to the number of samples within each cluster.  
b, The frequencies of somatic alterations and additional novel features that 
distinguish the clusters, specifically those that do not occur in all three 
clusters, are plotted. The ‘somatic mutations’ panel shows the presence 
or absence of mutations for 7 of the identified SMGs. The ‘copy number 
alterations’ panel shows select copy number alterations (high-level 
amplifications and focal deletions) that are differentially present across the 
iCluster groups. The ‘additional features’ panel highlights miscellaneous 
features that also distinguish the clusters, including the presence of miR-
200a/b alterations, UCEC-like samples and BCAR4-fusion events. The key 
for each feature is shown on the right.
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Extended Data Figure 9 | miR-200a/b associations with EMT-regulating 
genes and somatic alterations within RTK, PI3K, MAPK and TGFβR2 
pathways in cervical cancer. a, Expression levels for miR-200a and miR-
200b compared to DNA-methylation level at their promoter. Samples were 
called altered if the miRNAs were concurrently hypermethylated (β >​ 0.3) 
and downregulated (red). b, mRNA expression levels for ZEB2, a target of 
both miR-200a and miR-200b, in subsets of miR-200a/b altered samples. 
ZEB2 is upregulated in samples with concurrent hypermethylation and 

downregulation of the miRNAs. c, mRNA expression levels of both ZEB1 
and ZEB2 in miR-200a/b hypermethylated/downregulated (altered)  
and all other (WT) samples. d, Correlations of miR-200a and miR-200b  
expression with multiple genes involved in EMT signalling across 
squamous cell carcinomas and adenocarcinomas. e, Extent of genetic 
alterations and miRNA downregulation in the RTK, PI3K, MAPK and 
TGFβ​ pathways across all cervical tumours.
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Extended Data Figure 10 | Pathway biomarkers differentiating 
squamous cell carcinomas and adenocarcinomas. a, Cytoscape display 
of the largest interconnected regulatory network of PARADIGM pathway 
features that are differentially activated between squamous cell carcinomas 
and adenocarcinomas connected through hubs with ≥​10 downstream 
targets. Hubs with ≥​10 downstream targets are labelled. Genes showing 
mRNA–miRNA expression anti-correlation with strong supporting 

evidence are highlighted with a thicker black outline and are labelled. 
Top differentially expressed genes relating to immune function are also 
labelled. Node size is proportional to significance of differential activation. 
b, Zoom-in display of the p63 sub-network neighbourhood. First 
neighbours (upstream or downstream) of four p63 complexes (bold text) 
are displayed in this view.
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Extended Data Figure 11 | HPV integration and molecular 
characteristics in cervical cancer. a, E6 unspliced/spliced ratio for 
HPV16 and HPV18 intragenic, enhancer and intergenic sites. HPV16, 
median =​ 0.44 (n =​ 102); HPV18, median =​ 0.93 (n =​ 40). The P value is 
from a two-sided Kolmogorov–Smirnov test. b, Distribution of RNA-seq-
based EMT score for HPV-negative (HPV−​) and HPV-positive (HPV+​)  
samples (n =​ 178). The P value was calculated as in a. c, Distributions of 
somatic copy number alterations and mRNA abundance ranks (left) and 

distribution functions for somatic copy number alterations and mRNA 
abundance ranks with 500 random samples shown close to the diagonals 
(grey) (right) for genomic loci with integrated HPV16. d, Distributions 
as in c for genomic loci with integrated HPV18. Benjamini–Hochberg-
corrected P values for the somatic copy number alteration and mRNA 
abundance ranks are medians of the P values from Kolmogorov–Smirnov 
tests for all random samples.
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