Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus

Subjects

Abstract

The holotype of Deinocheirus mirificus was collected by the 1965 Polish–Mongolian Palaeontological Expedition at Altan Uul III in the southern Gobi of Mongolia1. Because the holotype consists mostly of giant forelimbs (2.4 m in length) with scapulocoracoids2, for almost 50 years Deinocheirus has remained one of the most mysterious dinosaurs. The mosaic of ornithomimosaur and non-ornithomimosaur characters in the holotype has made it difficult to resolve the phylogenetic status of Deinocheirus3,4. Here we describe two new specimens of Deinocheirus that were discovered in the Nemegt Formation of Altan Uul IV in 2006 and Bugiin Tsav in 2009. The Bugiin Tsav specimen (MPC-D 100/127) includes a left forelimb clearly identifiable as Deinocheirus and is 6% longer than the holotype. The Altan Uul IV specimen (MPC-D 100/128) is approximately 74% the size of MPC-D 100/127. Cladistic analysis indicates that Deinocheirus is the largest member of the Ornithomimosauria; however, it has many unique skeletal features unknown in other ornithomimosaurs, indicating that Deinocheirus was a heavily built, non-cursorial animal with an elongate snout, a deep jaw, tall neural spines, a pygostyle, a U-shaped furcula, an expanded pelvis for strong muscle attachments, a relatively short hind limb and broad-tipped pedal unguals. Ecomorphological features in the skull, more than a thousand gastroliths, and stomach contents (fish remains) suggest that Deinocheirus was a megaomnivore that lived in mesic environments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deinocheirus mirificus.
Figure 2: Skull of Deinocheirus mirificus (MPC-D 100/127).
Figure 3: Postcranial skeletons of Deinocheirus mirificus (MPC-D 100/127, MPC-D 100/128).
Figure 4: Phylogenetic relationships of Deinocheirus mirificus within Ornithomimosauria.

Similar content being viewed by others

References

  1. Kielan-Jaworowska, Z. Third (1965) Polish–Mongolian Palaeontological Expedition to the Gobi Desert and western Mongolia. Bull. de l’Acad. Pol. Sci. Cl. II 14, 249–252 (1966)

    Google Scholar 

  2. Osmólska, H. & Roniewicz, E. Deinocheiridae, a new family of theropod dinosaurs. Palaeontol. Polonica 21, 5–19 (1970)

    Google Scholar 

  3. Makovicky, P. J., Kobayashi, Y. & Currie, P. J. in The Dinosauria (eds Weishampel, D. B., Dodson, P. & Osmólska, H. ) 137–150 (Univ. California Press, 2004)

    Book  Google Scholar 

  4. Kobayashi, Y. & Barsbold, R. Ornithomimids from the Nemegt Formation of Mongolia. J. Paleontol. Soc. Korea 22, 195–207 (2006)

    Google Scholar 

  5. Osmólska, H., Roniewicz, E. & Barsbold, R. A new dinosaur Gallimimus bullatus n. gen., n. sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia. Palaeontol. Polonica 27, 103–143 (1972)

    Google Scholar 

  6. Schmitz, L. & Motani, R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705–708 (2011)

    Article  ADS  CAS  Google Scholar 

  7. Bailey, J. B. Neural spine elongation in dinosaurs: sailbacks or buffalo-backs? J. Paleontol. 71, 1124–1146 (1997)

    Article  Google Scholar 

  8. Barsbold, R. et al. A pygostyle from a non-avian theropod. Nature 403, 155–156 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Xu, X., Cheng, Y., Wang, X. & Chang, C. Pygostyle-like structure from Beipiaosaurus (Theropoda, Therizinosauroidea) from the Lower Cretaceous Yixian Formation of Liaoning, China. Acta Geol. Sin. 77, 294–298 (2003)

    Article  Google Scholar 

  10. Zelenitsky, D. K. et al. Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338, 510–514 (2012)

    Article  ADS  CAS  Google Scholar 

  11. Persons, W. S. IV., Currie, P. J. & Norell, M. A. Oviraptorid tail forms and functions. Acta Palaeontol. Pol. 59, 553–567 (2014)

    Google Scholar 

  12. Schwarz-Wings, D. et al. Mechanical implications of pneumatic neck vertebrae in sauropod dinosaurs. Proc. R. Soc. B 277, 11–17 (2010)

    Article  Google Scholar 

  13. Currie, P. J. Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia. Can. J. Earth Sci. 40, 651–665 (2003)

    Article  ADS  Google Scholar 

  14. Makovicky, P. J. et al. A giant ornithomimosaur from the Early Cretaceous of China. Proc. R. Soc. B 277, 191–198 (2010)

    Article  Google Scholar 

  15. Kobayashi, Y. & Barsbold, R. Reexamination of a primitive ornithomimosaur, Garudimimus brevipes Barsbold, 1981 (Dinosauria: Theropoda), from the Late Cretaceous of Mongolia. Can. J. Earth Sci. 42, 1501–1521 (2005)

    Article  ADS  Google Scholar 

  16. Holtz, T. R., Jr The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). J. Vertebr. Paleontol. 14, 480–519 (1995)

    Article  Google Scholar 

  17. Choiniere, J. N., Forster, C. A. & de Klerk, W. J. New information on Nqwebasaurus thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood Formation in South Africa. J. Afr. Earth Sci. 71–72, 1–17 (2012)

    Article  Google Scholar 

  18. Benson, R. B. J. et al. Rates of dinosaur mass body evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014)

    Article  Google Scholar 

  19. Wings, O. & Sander, P. M. No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. Proc. R. Soc. B 274, 635–640 (2007)

    Article  Google Scholar 

  20. Zanno, L. E. & Makovicky, P. J. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc. Natl Acad. Sci. USA 108, 232–237 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Zanno, L. E., Gillette, D. D., Albright, L. B. & Titus, A. L. A new North American therizinosaurid and the role of herbivory in ‘predatory’ dinosaur evolution. Proc. R. Soc. B 276, 3505–3511 (2009)

    Article  Google Scholar 

  22. Mallon, J. C. & Anderson, J. S. Skull ecomorphology of magaherbivorous dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE 8, e67182 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Norell, M. A., Makovicky, P. J. & Currie, P. J. The beaks of ostrich dinosaurs. Nature 412, 873–874 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Whitlock, J. A. Inferences of diplodocid (Sauropoda: Dinosauria) feeding behavior from snout shape and microwear analyses. PLoS ONE 6, e18304 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Carrano, M. T., Janis, C. M. & Sepkoski, J. J., Jr Hadrosaurs as ungulate parallels: lost lifestyles and deficient data. Acta Palaeontol. Pol. 44, 237–261 (1999)

    Google Scholar 

  26. Russell, D. A. & Dong, Z. The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People’s Republic of China. Can. J. Earth Sci. 30, 2107–2127 (1993)

    Article  ADS  Google Scholar 

  27. Lautenschlager, S. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution. Proc. R. Soc. B 281, 20140497 (2014)

    Article  Google Scholar 

  28. Jerzykiewicz, T. & Russell, D. A. Late Mesozoic stratigraphy and vertebrates of the Gobi Basin. Cretac. Res. 12, 345–377 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

Information gained from Zofia Kielan-Jaworowska and Wojtec Skarzynski (who respectively found and excavated the holotype) allowed us to refind the original quarry at Altan Uul III. Thanks go to all members of Korea-Mongolia International Dinosaur Expedition (KID) in 2006 and 2009. The KID expedition was supported by a grant to Y.-N.L. from Hwaseong City, Gyeonggi Province, South Korea. Research support was from Korea Institute of Geosciences and Mineral Resources, Korea and Paleontological Center of Mongolian Academy of Sciences, Mongolia.

Author information

Authors and Affiliations

Authors

Contributions

Y.-N.L. designed the project; Y.-N.L., R.B., P.J.C., Y.K. and H.-J.L. collected fossils and performed the research; P.J.C., P.G., F.E. and T.C. helped to repatriate the poached parts of the specimen so that they could be studied. H.-J.L. assembled figures; Y.-N.L. developed and wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Yuong-Nam Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Skull of Deinocheirus mirificus (MPC-D 100/127).

a, In right lateral view. b, Line drawing in right lateral view. Scale bar, 10 cm. Abbreviations: an, angular; ar, articular; d, dentary; ect, ectopterygoid; EMF, external mandibular fenestra; j, jugal; l, lacrimal; mx, maxilla; oc, occipital condyle; pl, palatine; po, postorbital; pra, prearticular; prf, prefrontal; qj, quadratojugal; sa, surangular; scl, sclerotic ring; spl, splenial.

Extended Data Figure 2 Comparisons of femur length.

a, Skull length. b, Skull height. c, Snout length. d, Pubic boot length. e, Tibia length. f, Metatarsal III length in Tyrannosauridae and Ornithomimidae. The green triangle is Deinocheirus and the green square is Garudimimus.

Extended Data Figure 3 Fourth (upper) and seventh (lower) cervical vertebrae (a–f), and pygostyle (g–l) of Deinocheirus mirificus (MPC-D 100/127).

a, In anterior view. b, In posterior view. c, In left lateral view. d, In right lateral view. e, In dorsal view. f, In ventral view. g, In anterior view. h, In posterior view. i, In left lateral view. j, In right lateral view. k, In dorsal view. l, In ventral view. Scale bars, 5 cm.

Extended Data Figure 4 Dorsal vertebra 12 of Deinocheirus mirificus (MPC-D 100/128).

a, Specimen in left lateral view. b–d, Reconstructions (b, in left lateral view; c, in anterior view; d, in posterior view). Purple and red colours indicate lamina and fossae, respectively. Green colours indicate new terms used for Deinocheirus. Scale bar, 10 cm. Abbreviations: acpl, anterior centroparapophyseal lamina; cpof, centropostzygapophyseal fossa; cprf, centroprezygapophyseal fossa; cprl, centroprezygapophyseal lamina; d, diapophysis; ipol, infrapostzygapophyseal lamina; mcdl, middle centrodiapophyseal lamina; mcpaf, middle centroparapophyseal fossa; mcpdf, middle centropostdiapophyseal fossa; pa, parapophysis; pacdf, parapophyseal centrodiapophyseal fossa; pacprf, parapophyseal centroprezygapophyseal fossa; papcdl, parapophyseal posterior centrodiapophyseal lamina; pcdl, posterior centrodiapophyseal lamina; po, postzygapophysis; pocdf, postzygapophyseal centrodiapophyseal fossa; podl, postzygodiapophyseal lamina; posdf, postzygapophyseal spinodiapophyseal fossa; pr, prezygapophysis; ppdl, paradiapophyseal lamina; ppsdf, posterior postzygapophyseal spinodorsal fossa; ppsvf, posterior postzygapophyseal spinoventral fossa; prdl, prezygodiapophyseal lamina; presdf, prezygapophyseal spinodiapophyseal fossa; prpadf, prezygapophyseal paradiapophyseal fossa; prpl, prezygoparapophyseal laimina; prsdf, prezygapophyseal paradiapophyseal fossa; s, neural spine; sdl, spinodiapophyseal lamina; spof, spinopostzygapophyseal fossa; spol, spinopostzygapophyseal lamina; sprf, spinoprezygapophyseal fossa; sprl, spinoprezygapophyseal lamina.

Extended Data Figure 5 Right pedal digit II and unguals of Deinocheirus mirificus (MPC-D 100/127).

a, b, Digit II in dorsal and ventral views. Isolated right pedal phalanx II-2 was collected in 2009 and perfectly fits into the impression in the matrix attached to the poached phalanx II-1 (the red dot and solid lines indicate the contact face of the bone boundary with matrix, and the dotted area is matrix). c, Ungual of digit III in dorsal and ventral views. d, Ungual of digit IV in dorsal and ventral views. Scale bar, 10 cm.

Extended Data Figure 6 Strict consensus topology of six most parsimonious reconstructions of theropod relationships found in the phylogenetic analysis of 568 characters and 96 taxa.

Values indicate Bremer support derived from the BREMER.RUN script supplied by TNT.

Extended Data Figure 7 Stomach contents of Deinocheirus mirificus (MPC-D 100/127).

a, Photo to show in situ gastralia, gastroliths, and stomach contents. Blue and green arrows represent gastralia and gastroliths. Red rectangle is an area of scattered fish remains and gastroliths. Red circle is an area where broken fish bones are aggregated. b, Enlarged photo of scattered fish remains (vertebrae, scales) with gastroliths in a.

Extended Data Table 1 Allometric comparisons between ornithomimosaurs (or ornithomimids) and tyrannosaurids derived from the power equation y = bxk (solved using logarithmic translation Log y = k(Log x) + b)

Supplementary information

Supplementary Information

This file contains Supplementary Text for the discovery of MPC-D 100/127 and 100/128, an additional description of Deinocheirus mirificus, Cladistic analysis and Supplementary References. (PDF 458 kb)

Supplementary Data

This file contains Supplementary Data for measurements of MPC-D 100/127 and 100/128. (XLSX 24 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YN., Barsbold, R., Currie, P. et al. Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus. Nature 515, 257–260 (2014). https://doi.org/10.1038/nature13874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13874

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing