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Electronic properties like current flow are generally independent of the electron’s spin an-

gular momentum, an internal degree of freedom present in quantum particles. The spin

Hall effects (SHEs), first proposed 40 years ago1, are an unusual class of phenomena where

flowing particles experience orthogonally directed spin-dependent Lorentz-like forces, anal-

ogous to the conventional Lorentz force for the Hall effect, but opposite in sign for two spin

states. Such spin Hall effects have been observed for electrons flowing in spin-orbit cou-

pled materials such as GaAs or InGaAs2, 3 and for laser light traversing dielectric junctions4.

Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting

spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spa-

tially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce

and measure the requisite spin-dependent Lorentz forces, in excellent agreement with our
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calculations. This atomtronic circuit element behaves as a new type of velocity-insensitive

adiabatic spin-selector, with potential application in devices such as magnetic5 or inertial6

sensors. In addition, such techniques — for both creating and measuring the SHE — are

clear prerequisites for engineering topological insulators7, 8 and detecting their associated

quantized spin Hall effects in quantum gases. As implemented, our system realized a laser-

actuated analog to the Datta-Das spin transistor9, 10.

The spin Hall effect (SHE) is generated by spin-dependent forces transverse to a particle’s

motion — akin to the Lorentz force — that can act on electrons2, 3, 11, photons4, or as here, neutral

atoms. Each of these has an internal, or “spin,” degree of freedom that can be either up or down,

creating a (pseudo-)spin 1/2 system. In materials, microscopic spin-orbit coupling (SOC) induces

the SHE in one of two primary ways: via an intrinsic mechanism driven directly by the SOC12, or

via an extrinsic mechanism which additionally requires scattering from impurities1, 13. The motion

of spins in systems with a SHE is strikingly similar to the motion of charges in an external magnetic

field, but with equal and opposite effective Lorentz forces for each of the two spin states. Thus,

just as the Lorentz force gives rise to the Hall effect for charged particles, spin-dependent Lorentz

forces (SDLFs) generate spin Hall effects.

In the Hamiltonian description of quantum mechanics, forces are described in terms of asso-

ciated potentials. For example, a magnetic field B = ∇×A is generated from a vector potential

A that enters into the Hamiltonian Ĥ = (p̂ − q0Â)2/2m with canonical momentum p̂, charge

q0, and mass m. We engineered a vector potential A that depends on an effective spin degree of

freedom with opposite sign for the two effective spin states. This can create a SDLF and SHE
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when the spins move perpendicular to the resulting spin-dependentB.

More formally, this vector potential can be expressed as a vector of 2 × 2 matrices, leading

to a generalized relationship between the vector potential Ǎ and magnetic field14

B̌ = ∇× Ǎ− i

~
Ǎ× Ǎ. (1)

The Heisenberg equations of motion show that B̌ is the generalized magnetic field in a spin-

dependent Lorentz force law (Methods). The first term in eq. 1 is analogous to the conventional

magnetic field, while the second term is only non-zero when the vector components of Ǎ do not

all commute, i.e., Ǎ is non-Abelian. The generalized Lorentz force for the two spin states can be

equal and opposite, for example, when B̌ = B0σ̌3ez, where B0 describes the field’s magnitude and

σ̌1,2,3 are the 2× 2 Pauli matrices.

There are two different classes of vector potentials (unrelated by gauge transformations) that

lead to this magnetic field, each exploiting different terms in eq. 1. For example, in 2D mate-

rial systems, almost every possible form of linear SOC — combinations of linear Dresselhaus15 or

Rashba16 — is equivalent to a spatially uniform non-Abelian vector potential with−i
(
Ǎ× Ǎ

)
/~ ∝

σ̌3ez (see Methods and Ref. 17). In contrast, we engineered a spin-orbit coupled Hamiltonian with

a spatially-dependent Abelian vector potential that produces ∇× Ǎ ∝ σ̌3ez.

The relationship between these two distinct vector potentials is unusual. While the equa-

tions of motion describe the same SDLF leading to an intrinsic SHE, the associated energy spectra

are different (e.g. in the 2D material systems discussed above,
[
B̌, Ĥ

]
6= 0, implying that B̌ is

time-dependent in the Heisenberg picture). Still, both can give rise to time-reversal (TR) invariant
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topological insulators (TIs). The −i
(
Ǎ× Ǎ

)
/~ case mirrors the typical situation in materials

where the intrinsic SOC leads to topological band structure8. The ∇ × Ǎ case leads to the most

simple conceptual example of a TI: two superimposed quantum Hall systems with equal but oppo-

site magnetic fields18 (a single quantum Hall system is a TI, but with broken TR symmetry). Both

types of vector potentials exhibit the quantum spin Hall effect leading to TIs; the latter type of TI

is impractical in material systems, but is a direct extension of the quantum gas SHE demonstrated

in this work19 (Methods and Supplementary Information).

We realized the SHE with ultracold atoms following the proposal of Ref. 20 by subject-

ing pseudospin-1/2 87Rb Bose-Einstein condensates (BECs) to spin- and space-dependent vector

potentials. Two “Raman lasers” with wavelength λ, counterpropagating along ex, coupled the

|f = 1;mF = 0,−1〉 = |↑, ↓〉 spin states comprising our pseudo-spin-1/2 system (in analogy to

the spin-1/2 electron) with strength Ω (Fig. 1a). λ determines the single-photon recoil energy

ER = ~2k2
R/2m, momentum ~kR = 2π~/λ and velocity vR = ~kR/m, where m is the mass of a

87Rb atom and 2π~ is Planck’s constant. In this configuration, the Hamiltonian describing motion

along ex includes an effective SOC term21–24, altering the dispersion relation as shown in Fig. 1b.

This modified dispersion features two degenerate wells each displaced from zero by an amount

A = kR

[
1− (~Ω/4ER)2]1/2

for ~Ω < 4ER (see Methods Summary). Particles with momenta

near these minima can be thought of as dressed spin states |↑′, ↓′〉 (which we will colloquially refer

to as spin states) in the presence of a vector potential Ǎ = Aσ̌3ex. Given that Ω depends on the

intensity of the Raman lasers, A inherits the spatial dependence of the Raman lasers’ Gaussian

intensity profile.
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The spatial dependence of A gives rise to a SHE in our quantum gas20, 25. To probe the

mechanism underlying the SHE, we abruptly changed A and observed spin-dependent shearing of

the atomic cloud (Fig. 2). We then observed — for a time-independent A — the resulting SHE

using two techniques: (i) we propelled atoms in either |↑′〉 or |↓′〉 along ey and detected a spin-

dependent Lorentz-like response along±ex (Fig. 3); and (ii) using a mixture of both dressed spins,

we used the SDLF to realize a spin transistor (Fig. 4).

These experiments began with 5× 104 atom BECs prepared in |↑〉, |↓〉, or mixtures thereof,

confined in a crossed-beam optical dipole trap with typical frequencies (ωx, ωy, ωz)/2π≈ (35, 35, 100) Hz.

The λ = 790.13 nm Raman laser beams, traveling along ±ex, had 170 µm waists (1/e2 radius).

We moved the BECs along ey, sampling this inhomogeneous Raman laser profile, by displacing

the appropriate trap beam. At any given initial y-position y0, we then adiabatically turned on the

Raman lasers in 150 ms, Raman-dressing the BEC21 and transforming our initial spin states into

their dressed counterparts, at rest26, 27 (Methods).

We explored the spin- and space-dependence of the vector potential A(y) by observing the

response of BECs to abrupt temporal changes inA. WhenA depended on y, these changes sheared

the BECs’ density distribution. We prepared spin-polarized BECs at a variable position y0 (Meth-

ods). Each Raman-dressed BEC therefore sampled a range of Raman coupling strengths across its

40 µm diameter (Fig. 2a). Upon suddenly turning off the Raman lasers, the BEC — initially at rest

— experienced a spin-dependent “electric” force −∂A/∂t resulting from a time-changing vector

potential along ex
28. We probed this system by switching off the dipole trap and the Raman beams

in less than 1 µs and absorption-imaging the atoms after a 30 ms time-of-flight (TOF, common to
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all of our measurements).

As A(y) depended on both spin and y-position, we observed a spin- and y0-dependent

shear29 in the density distribution (Fig. 2b) after TOF, described by n(x, y, z) ∝ 1 − (x/Rx)2 −

(y/Ry)
2− (z/Rz)

2−sxyxy/(RxRy), where Rx,y,z are the Thomas-Fermi radii. The spatial depen-

dence ofA is quantified by the shear coefficient sxy obtained by fitting this distribution (integrated

along ez) to the TOF BEC density distribution. The spin-dependent nature of the vector potential

is evident in the opposite sign of the shear for each spin (Fig. 2b-f) and in that the magnitude of

the shear coefficient follows the local derivative of the vector potential at the BEC’s center.

We first observed the SHE using spin-polarized BECs. This would be atypical in condensed

matter systems, where both spins are usually present. After preparing a spin-polarized BEC at

a position y0 between ymin = −135 µm and ymax = −95 µm (gray shaded region in Fig. 2a,

a region over which the SDLF was both reasonably large and uniform), we suddenly displaced

the center of the harmonic trap to yf , either ymax or ymin. This displacement can formally be

understood as resulting from an applied potential with gradient V ′. The atoms accelerated to a final

y-momentum ~Ky in ≈ 7 ms (1/4 of the ey-trap period). During this time, the SDLF accelerated

the atoms perpendicular to their instantaneous momentum, resulting in a final x-momentum ~Kx.

By waiting this quarter-period after trap displacement, we ensured that the atoms always arrived

at yf (regardless of y0). Subsequently, the trap was turned off suddenly (toff < 1 µs), the Raman

lasers were turned off slowly compared to dressed state band gaps (∼500 µs), and the atoms

were imaged after TOF to determine their final momentum (Fig. 3b). With this turn-off procedure,

the atoms experienced a force −∂A/∂t along ex (independent of y0) that offset the final center of
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mass position after TOF (Methods). We calibrated this zero-momentum TOF-position by detecting

atoms released from rest at yf .

Each spin-polarized BEC acquired a momentum along ex that was directed oppositely for

the two spins and related to its final momentum along ey, demonstrating an intrinsic spin Hall

effect. We modeled the dynamics of each spin (Methods, solid curves in Fig. 3b) by solving the

Heisenberg equations of motion. As our atoms remain in the lowest-energy band plotted in Fig. 1b,

the Heisenberg equations of motion reduce to classical dynamics subject to Fig. 1b’s spin-orbit-

coupled dispersion curves. The model predicts both Kx and Ky as a function of initial and final

trap displacement. We leave Ω as a fit parameter, the value of which is within 15% of our calibrated

value. The results of this model are plotted along with the data in Fig. 3b.

Next, we realized the spin Hall effect in a configuration analogous to solid systems by using

mixtures of both spins. In the presence of both spins, we define average spin and particle current

densities 〈js〉 =
〈
j↑′
〉
−
〈
j↓′
〉

and
〈
jp
〉

=
〈
j↑′
〉

+
〈
j↓′
〉
, where the average current density for spin i

(either ↑′ or ↓′) is 〈ji〉 =
∫
V
ni(r)vi(r)dr/V , with density n, velocity v, and in-situ BEC volume V .

An equal current of each spin moving in the same direction corresponds to a pure particle current,

while an equal current of each spin moving in opposite directions gives a pure spin current.

This third class of experiments started with BECs in a mixture of both spins (Methods).

We generated a pure particle current using the trap displacement technique described above. As

before, the system evolved under the SDLF for ≈ 7 ms, after which time the atoms were released

from the trap and the Raman lasers adiabatically turned off (Methods). Each TOF image contained
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information about both dressed spin states, allowing us to simultaneously determine the spin and

particle currents. We modeled the resulting spin current along ex as a function of coupling strength

Ω and potential gradient V ′, and Fig. 4a shows the system’s spin response 〈js,x〉 = 〈js〉 · ex. By

varying one parameter at a time (black lines in Fig. 4a), we measured the spin current as a function

of V ′ (Fig. 4b) or as a function of Ω (Fig. 4c). In both cases the experiment agrees with our model.

Despite the universal existence of the SHE in spin-orbit coupled metals and semiconductors,

the technology for studying the spin Hall effect was developed only recently. Soon afterwards,

the SHE was exploited to develop spintronic devices11. In this spirit, our experiment describes

an externally actuated “atomtronic” bipolar spin transistor9, 10, where Ω plays the role of the tran-

sistor’s gate voltage and the potential gradient V ′ is analogous to the drain-source voltage. The

spin current turns on sharply at ~Ω ≈ 1 ER (Fig. 4c), with a final spin current set by the poten-

tial gradient. Meanwhile, for a given Raman coupling (“gate voltage”), the spin current turns on

smoothly with positive or negative particle current (Fig. 4b). This similarity between our system

and a field-effect transistor (FET) is further highlighted in Fig. 4b, where the three black curves

modeling our system’s response at three different Raman coupling strengths are compared to the

characteristic response of an FET’s drain current ID as a function of drain-source voltage VDS at

three different gate-source voltages VGS .

In atomic systems, other techniques can separate particles by spin, such as the well-known

Stern-Gerlach (SG) effect. Our technique complements these, as the spin-dependent force depends

not on the atoms’ position (as in the SG effect), but on their velocity. For example, a SHE device

with a finite interaction region will deflect an incoming atomic beam by an amount independent
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of its entering velocity; though an increase in initial velocity decreases the interaction time, the

perpendicular force increases (for interaction times much less than 2πm/B̂). For devices using

the SG effect, the deflection depends only on the interaction time, which changes with initial

velocity. A spin transistor might operate using either our SDLF or a SG-type force, but its behavior

will be quite different. For example, using our transistor as the input and output beam splitter in

Mach-Zehnder-type inertial sensors5 could yield coherent adiabatic momentum splitting that is

independent of the atoms’ longitudinal velocity profile.

We demonstrated an intrinsic spin Hall effect in a quantum gas using a precisely engineered

spin- and space- dependent vector potential. Systems such as this — with the currently available

experimental parameters — are candidates for ac gravity gradiometers, when applied to dilute

clouds where interaction effects are negligible6. In addition, TR invariant TIs manifest the quan-

tum spin Hall effect (QSHE)18. Using current technologies, our method for producing the SHE

could produce the QSHE in an ultracold gas of fermionic 40K (Methods, Supplementary Material).

Despite the technical challenges, the simplicity of our setup — two atomic spin states and two

counterpropagating lasers — makes our approach an appealing method for achieving the QSHE.

In similar parameter regimes, a Bose gas may realize exotic interacting topological insulators19, 30.

Methods Summary

System Preparation AB0 = 2.1 mT bias magnetic field lifted the degeneracy of the |f = 1,mF = 0,±1〉

spin states in 87Rb’s electronic ground state manifold, leading to an energy level splitting ∆E =

2π~× 15 J between |mF = −1〉 and |mF = 0〉, matching the ~ δω energy difference between the
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Raman laser beams’ photons. Due to the large bias field, the |mF = +1〉 spin state was detuned

from Raman resonance by 17.8 ER, and was inactive in our experiments.

In the limit of zero Raman coupling, each dressed spin continuously connects to a bare spin

with quasimomentum |q| = 1 kR. To load a specific dressed spin, we started with a BEC in

|mF = −1 〉, |mF = 0 〉, or a mixture thereof, and turned on the Raman lasers in 150 ms. During

spin-polarized experiments, we prevented the undesired population of the other dressed spin by

applying a detuning ~δ = ∆E − ~ δω = 0.15ER during the ramp up of Ω, then shifting to

resonance (δ = 0) with a 1 ms ramp of B0. An acousto-optic modulator shifted the position of the

dipole trap beam propagating along ex, allowing controlled translation of the atomic sample along

ey.

Dressed states The single particle properties of our system are well-described by the Hamiltonian21

Ĥ =
~2
(
q̂2 + k̂2

y + k̂2
z

)
2m

1̌ +
~Ω

2
σ̌1 −

~2kRq̂

m
σ̌3 + ER1̌ (2)

for resonant Raman coupling, as we use here. The eigenenergies

E±(q) +
~2
(
k2
y + k2

z

)
2m

,with E±(q) =
~2q2

2m
+ ER ±

√(
~Ω

2

)2

+

(
~2kRq

m

)2

(3)

define a pair of effective dispersion relations, the lower of which, E−(q), is plotted for ky = kz = 0

in Fig. 1b for a selection of coupling strengths.
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Methods

System Preparation AB0 = 2.1 mT bias magnetic field lifted the degeneracy of the |f = 1,mF = 0,±1〉

spin states in 87Rb’s electronic ground state manifold, leading to an energy level splitting ∆E =

2π~× 15 J between |mF = −1〉 and |mF = 0〉, matching the ~ δω energy difference between the

Raman laser beams’ photons. Due to the large bias field, the |mF = +1〉 spin state was detuned

from Raman resonance by 17.8 ER, and was inactive in our experiments.

In the limit of zero Raman coupling, each dressed spin continuously connects to a bare spin

with quasimomentum |q| = 1 kR. To load a specific dressed spin, we started with a BEC in

|mF = −1 〉, |mF = 0 〉, or a mixture thereof, and turned on the Raman lasers in 150 ms. During

spin-polarized experiments, we prevented the undesired population of the other dressed spin by

applying a detuning ~δ = ∆E − ~ δω = 0.15ER during the ramp up of Ω, then shifting to

resonance (δ = 0) with a 1 ms ramp of B0. An acousto-optic modulator shifted the position of the

dipole trap beam propagating along ex, allowing controlled translation of the atomic sample along

ey.

Dressed states The single particle properties of our system are well-described by the Hamiltonian21

Ĥ =
~2
(
q̂2 + k̂2

y + k̂2
z

)
2m

1̌ +
~Ω

2
σ̌1 −

~2kRq̂

m
σ̌3 + ER1̌ (4)

for resonant Raman coupling, as we use here. The eigenenergies

E±(q) +
~2
(
k2
y + k2

z

)
2m

,with E±(q) =
~2q2

2m
+ ER ±

√(
~Ω

2

)2

+

(
~2kRq

m

)2

(5)
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define a pair of effective dispersion relations, the lower of which, E−(q), is plotted for ky = kz = 0

in Fig. 1b for a selection of coupling strengths.

Quantum Spin Hall Effect Our technique for producing the spin Hall effect can be extended

to realize the quantum spin Hall effect (QSHE) in 2D ultracold Fermi gases. A simple example

system that exhibits the quantum spin Hall effect can be constructed by overlapping two filling

factor ν = 1 integer quantum Hall (IQHE) systems with opposite magnetic field and therefore

opposite Chern numbers18. While this construct — spatially overlapping two separate electron

systems that each experience an opposite magnetic field — is artificial, the quantum spin Hall effect

can arise from an equal mixture of spins experiencing strong opposite spin-dependent “magnetic”

fields.

To understand how this might work intuitively, consider our effective pseudospin Hamilto-

nian in 2D for ~Ω < 4 ER (ignoring the optical confinement, the scalar light shift from the Raman

lasers, and the zero-energy shift from the Raman dressing)

Ĥ =
1

2m∗
(
p̂1̌−Aσ̌3ex

)2
,

with 1̌ the 2×2 identity matrix,A = ~kR

[
1− (~Ω/4ER)2]1/2

the Raman laser-induced vector po-

tential, p̂ the canonical momentum, and m∗ the effective mass tensor of our particles. Here, pseu-

dospin is a good quantum number and the system can be thought of as two independent systems

that respond oppositely to temporal and spatial gradients of A. By introducing a large non-zero

curl for A, each spin state taken separately could be driven to the IQHE regime, thereby creating a

QSHE in a system composed of an equal mixture of both spins.
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Our specific proposal to extend our work and realize the QSHE uses 40K confined in a

quasi-2D geometry in the ex − ey plane. Two Raman lasers counter-propagating along ex cou-

ple together two magnetic sublevels in the |f = 9/2〉 ground state manifold. Tailoring the Raman

lasers (using a spatial light modulator31–34, for instance) to have a position-dependent coupling

~Ω(y) = 4ER

√
L2
y − y2/Ly for y ∈ (0, Ly] along ey produces a linearly-varying A. Each pseu-

dospin experiences an oppositely-directed uniform synthetic magnetic field with cyclotron fre-

quency ωc = ~kR/mLy for y ∈ (0, Ly].

To reach the QSHE regime, the thermal energy scale kBT , Fermi energy EF, and cyclotron

energy ~ωc must satisfy kBT < EF ≈ ~ωc (so that the Fermi energy falls in the gap between the

ground and first Landau-levels). Here, kB is Boltzmann’s constant and T is the temperature. The

cyclotron frequency therefore sets the energy scales necessary to see a QSHE. For realistic system

sizes of 5 – 10 µm, the cyclotron frequency is ωc/2π ≈ 100 Hz. In the Online Supplementary

Materials we make this argument rigorous for our actual experimental configuration.

Figure 2 Notes The Raman coupling strength in Fig. 2a was measured as described in refs. 23,35.

For the data in Figs. 2b-f, the aspect ratio of the BEC was adjusted from its typical cylindrical

symmetry to be 50% longer along ey than ex by adjusting the optical trap, and the atom number

was maintained > 105.

Measurement and Analysis To measure the atoms’ momenta, the optical confinement was turned

off suddenly while the Raman lasers’ intensity was linearly ramped to zero in 0.5 to 1 ms. This

procedure transferred each dressed spin to a bare spin moving with an x-momentum equal to its
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quasimomentum q̂ and a y-momentum equal to its in-trap y-momentum Ky. A magnetic field

gradient applied for a few ms during the 30 ms TOF separated the two bare spins along ey via

the Stern-Gerlach effect, after which we measured the atomic density distribution and obtained

its mean position. To determine the atoms’ in situ momenta, we referenced the measured TOF

positions to the TOF positions observed for atoms under the same experimental conditions, but at

rest. For example, when the trap was suddenly displaced as in Figs. 3 or 4, the reference position

was determined by adiabatically dressing the atoms at the final trap position and measuring the

TOF position. Subtracting the TOF position of the suddenly-displaced atoms from the reference

TOF position allowed us to determine the in-trap momentum.

This measurement of the momenta contained two contributions which biased the TOF posi-

tions away from the actual momentum. If the atoms do not reach their equilibrium position in the

trap before TOF begins, our subtraction procedure does not yield the actual velocity, as this initial

displacement is interpreted as momentum after TOF. According to our simulations, this resulted in

a systematic underestimation of the momentum along ex and ey. In addition, to compensate grav-

ity during displacement of the optical trap, the overall intensity of the optical trapping beams was

increased by 25% at the same time the position of the optical trap was changed. Due to the com-

petition between the optical trap and the near-linear spatial dependence of the energy minimum of

the Raman-dressed bands, this power increase shifted the equilibrium position of the atoms along

ey even in the absence of an optical trap displacement. We measured the equilibrium position of

our atoms by increasing the power of the optical trap for ≈ 7 ms but not displacing it, leading to a

small difference in our measured zero momentum from the actual zero momentum. These effects,
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up to a 20% momentum correction, were all included in our simulations.

Small fluctuations in our laboratory magnetic bias field lift the energy degeneracy of the two

pseudospin states, leading to fluctuations in the pseudospin population distribution. When work-

ing with a mixture of pseudospins, we discarded any measurement for which the population of

one spin state was greater than 150% of the other, resulting in up to 60% of the data from each se-

quence being omitted from analysis. In addition, when both dressed spins were used together, there

was an initial spatial segregation of the spins due to a repulsive interaction between them21, 26, 27.

Although the in-situ spatial distribution of the spins was modified before the experiment began,

this interaction energy did not significantly affect our momentum measurements, since the in situ

displacement was small compared to the typical TOF displacements giving the momentum signal.

Simulations Since transitions between the dressed-spin bands are energetically suppressed due

to the large energy gap between bands (compared to the energy of the dynamics), the Heisenberg

equations of motion for our system were the same as Hamilton’s classical equations of motion

in the lowest band. In our simulation, the classical Hamiltonian included the modified position-

dependent dispersion relation along ex (Fig. 1b), the scalar potential from the Raman beams, the

scalar potential from the optical dipole trap, and the gravitational potential. The dispersion relation

was calculated by diagonalizing our system’s spin-orbit coupled Hamiltonian21 and retaining only

the lowest energy band. It is the position-dependent modified dispersion relation that drives the

observed SHE. The solutions to Hamilton’s coupled differential equations yielded values for the

position and momentum (or quasimomentum) in all three spatial directions as a function of time.

For a given dressed spin, the simulated mechanical momentumKx was the difference between q(t)
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and the location of the minimum of the dispersion curve associated with that dressed spin. Our

model does not predict values of Ky > 1.2 ~kR, but this can be explained by deviations of our

optical trap from the ideal Gaussian beams used in our model.

Linear Dresselhaus and Rashba spin-orbit coupling as a vector potential Consider the Rashba

and linear Dresselhaus spin-orbit coupling Hamiltonians in 2D36,

ȞR =
α

~
(p̂xσ̌2 − p̂yσ̌1) , and ȞD =

β

~
(p̂yσ̌2 − p̂xσ̌1) ,

where σ̌123 are the Pauli spin matrices, p̂i is the momentum along the i ∈ {ex, ey, ez} spatial direc-

tion, and α (β) is the strength of the Rashba (Dresselhaus) SOC. The total Hamiltonian containing

both of these terms,

ȞSOC =
p̂2

2m
+HD +HR,

can be expressed as

HSOC =
1

2m

(
1̌p̂− Ǎ

)2 − m

~2
1̌
(
α2 + β2

)
,

with

Ǎ = −m
~

(ασ̌2 − βσ̌1, βσ̌2 − ασ̌1, 0) . (6)

The generalized magnetic field from this vector potential is

B̌ = ∇× Ǎ− i

~
Ǎ× Ǎ = B̌ =

[
2m2

~3

(
α2 − β2

)
σ̌3

]
ez. (7)

Lorentz Force A generalized magnetic field defined by equation (7) gives a generalized Lorentz

force law. Following Sakurai37, we start with a Hamiltonian

H =
1

2m
(1̌p̂− Ǎ)2.
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containing a non-Abelian vector potential in three spatial dimensions with a finite number of inter-

nal degrees of freedom. The Heisenberg equation of motion for the position x̂ is

dx̂i
dt

=
1

i~
[x̂i, H] =

1

m

(
1̌p̂i − Ǎi

)
≡ 1

m
Π̌i.

We identify Π̌ as the particle’s mechanical momentum. The commutator [Πi,Πj] = i~εijkB̌k, or

B̌ = ∇×Ǎ− i
~Ǎ×Ǎ defines the generalized magnetic field (εijk is the Levi-Civita symbol). For

Abelian vector potentials, Ǎ commutes along different directions, and this definition of B̌ reduces

to the familiar B = ∇×A.

We derive the Lorentz force law starting with the Heisenberg equation of motion for the

mechanical momentum

dΠ̌

dt
= m

d2x̂

dt2
=

1

i~
[Π̌, H].

For an individual component

[Π̌i, H] =
i~
2m

(
B̌kΠ̌j − B̌jΠ̌k + Π̌jB̌k − Π̌kB̌j

)
,

which is the ith component of the symmetrized Lorentz force law

F = m
d2x̂

dt2
=

1

2

(
dx̂

dt
× B̌ − B̌ × dx̂

dt

)
.

Since the B̌ field from linear combinations of Rashba and Dresselhaus SOC [equation (7)]

and the B̌ from our experiment are both proportional to σ̌3, the equation of motion for the mechan-

ical momentum in the two cases are the same. However, for the vector potential in equation (6), B̌

does not commute with the Hamiltonian, leading to an additional Heisenberg equation of motion
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for B̌ which must be included. Despite this additional complexity, the SDLF generates the SHE in

both situations.

Gauge Invariance The magnetic field defined by equation (7) is not gauge-invariant. The defi-

nition of gauge transformations is generalized in any discussion of non-Abelian vector potentials.

For the SU(2) symmetry group, a gauge transform is a position-dependent unitary rotation in spin-

space38, 39

ψ → V̌ (x̂)ψ, with V̌ (x̂) = exp[α(x̂) · σ̌],

whereα is an arbitrary vector of functions of x̂ and σ̌ is the vector of 2× 2 Pauli matrices including

the identity. Under this gauge transformation, the Lagrangian must remain unchanged, requiring

the magnetic field to transform according to40

B̌ → V̌ (x̂)B̌V̌ †(x̂).

Despite the lack of gauge invariance of the magnetic field, an Abelian magnetic field cannot be

gauge transformed to a non-Abelian field.

This definition for gauge transforms can be generalized to a gauge with generators from any

continuous symmetry group by replacing σ̌ with a vector of the generators of the symmetry group.

For instance, in the case of a scalar vector potential from classical electrodynamics with U(1)

symmetry, the generator of the symmetry group is a scalar, and the gauge transformation becomes

the familiar position-dependent phase.
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Supplementary Material

Introduction In the Methods, we argued on the basis of our simple conceptual picture of equal and

opposite synthetic magnetic fields that our scheme can realize a quantum spin Hall effect (QSHE).

Here we make this argument rigorous by solving the full Raman-coupled Hamiltonian for a 2D

fermionic system that is extended along ex; has a Raman coupling profile Ω(y); and is confined in

a potential Vtot(y) = Vbox(y) + Vcomp(y) along ey, where the two terms are a box potential

Vbox(y) =

{
0 for y ∈ (0, Ly)

∞ otherwise
,

along with a compensation potential Vcomp(y) described below. Lx and Ly describe the system’s

extent along ex and ey. Assuming that the atoms remain everywhere in the lowest band of dressed

states, the stationary Schrödinger equation is

Eψ(x, y) =

[
E−
(
−i ∂
∂x
,Ω(y)

)
− ~2

2m

∂2

∂y2
+ Vtot(y)

]
ψ(x, y), (8)

where E−(q̂,Ω) are energies of the ground-band Raman dressed states (the double well pictured

in Fig. 1 of the manuscript). As with the solution to the case of an electron moving in a uniform

magnetic field expressed in the Landau gauge, this problem can be solved by taking a separable

wavefunction of the form ψ(x, y) = exp(iqx)fq(y). With this ansatz, the Hamiltonian reduces to

the 1D problem

Eqfq(y) =

{
− ~2

2m

d2

dy2
+

[
Vtot(y) + E− (q,Ω(y))

]}
fq(y), (9)

with an additional q-dependent “potential’; this would be harmonic for a charged particle in a

uniform magnetic field. Here, E−(q,Ω(y)) contributes an additional scalar potential dependent on
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Ω: as Ω increases and the minima of the two wells move together, they also move downwards in

energy by − [~Ω(y)]2 /16ER. A compensation potential Vcomp(y) is added to cancel this term. For

non-trivial profiles Ω(y), the resulting Vcomp(y) is also complicated, but in the specific proposal

described below, we see that the conventional gaussian laser profiles suffice for both.

Full model While the approximation that atoms remain in the ground band provides a useful

conceptual framework for discussing this system, we can solve the full two level problem with

equal ease. Following the same reasoning leading to Eq. (9), the full 1D spinful Hamiltonian

describing motion along ey is

Eqχq(y) =

{[
− ~2

2m

d2

dy2
+

~2 (q2 + k2
R)

2m
+ Vtot(y)

]
1̌ +

~Ω(y)

2
σ̌1 −

~2kRq

m
σ̌3

}
χq(y), (10)

where χq(y) =
{
f ↑q (y), f ↓q (y)

}
is a two component wavefunction; 1̌ is the 2× 2 identity; and σ̌1,2,3

are the Pauli matrices.

In the Methods, our conceptual example used a carefully selected Ω(y) giving a spatially

homogeneous spin-dependent magnetic field with magnitude B0. This conceptual nicety is not

important for realizing the QSHE; the simple gaussian profiles

~Ω(y) = 4ERe
−2(y/w0)2 , and Vcomp(y) = αERe

−4(y/w0)2

are sufficient to create a QSHE system. w0 is the 1/e2 radius of the Raman lasers and α sets the

scale of the compensation potential (α = 1 is the compensation predicted by considering only

the energy of the band minima). In practice, we find a robust QSHE for w0 ≈ Ly (optimal for

w0 = 1.15Ly) and α ≈ 1 (α = 0.995 leads to a slightly more uniform gap). The proposed

geometry is depicted in Fig. 5a. In practice, a separate compensation laser is not required, and
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the ac Stark shift from the Raman laser beams suffices. In this case, one selects one Raman beam

to have a much larger beam waist than the other; recalling that the Raman coupling Ω ∝
√
I1I2

(where I1,2 are the beam intensities), this implies that Ω is largely shaped by the profile of the

smaller beam, to the 1/2-power. In contrast, the ac Stark shift is still given by the intensity, and

therefore scales like Ω2, as required.

The four smallest eigenenergies of this Hamiltonian are plotted as a function of q in Fig. 5b,

showing that each state is specified by two quantum numbers, q and a Landau-level-like index

N . We numerically verified that the low-energy spectra of the approximate [Eq. (9)] and exact

[Eq. (10)] Hamiltonians are indistinguishable. This is because atoms always reside near the local

minima in E−(q,Ω(y)). Near these minima, the band spacing E+(q,Ω(y)) − E−(q,Ω(y)) > 4ER

even as Ω → 0, large compared to the 200 Hz ≈ 0.05ER interval between eigenenergies depicted

in Fig. 5b.

For very small Fermi energy, EF,1 (pale horizontal line in Fig. 5b), the full SHE analogy is

revealed, with four points at the Fermi energy, corresponding to the depicted edge modes on the top

and bottom of the system (Fig. 5b, empty circles). Figure 5c (dashed curves) plots the computed

density distribution of those eigenstates, showing that they reside on the system’s edge, and on a

given edge, the two spins’ edge states counterpropagate with opposite group velocities (direction

indicated by the sign of the density curves).

However, for the larger (and more practical) Fermi energy EF,2, the two edge states at the

system’s bottom (with q ≈ 0) hybridize as the two minima comprising our pseudo-spins merge,
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while the edge states at the top remain robust (solid red and blue curves in Fig. 5c). Earlier, we

made analogy to the most simple model QSHE system which consists of a pair of superimposed

IQHE systems, one for each spin, with equal and opposite magnetic field. The vanishing edge

states on one boundary of our system have a similar analog. In this case, we consider a single

IQHE system in which the microscopic spin smoothly twists from up to down while moving across

the system along ey. If such a system is folded so that the original bottom edge overlaps with the

top edge, the resulting system has overlapping spin-dependent edge states on the top side and not

on the bottom (where the fold is); the apparent edge on the folded side is illusory.

Physical parameters To estimate the number of fermions required, we consider a uniform

system with length Lx, constraining q to be a multiple of δq = 2π/Lx. Here the edge states are

well-isolated for a Fermi momentum kF ≈ kR = 2π/λ (solid red and blue circles in Fig. 5b).

Since this energy is fully in the gap, it implies that states with |q| ≤ kF are occupied. Thus, the

number of states below the Fermi energy is NF = 2Lx/λ. For example, when Lx = 50λ the atom

number will be NF = 100, and the proposed system with height Ly = 7.75λ has a reasonable 6:1

aspect ratio. With these ≈ 100 atoms, the Fermi energy will lie in the gap between the N = 0

and N = 1 bands, which are spaced by ≈ 200 Hz ≈ 10 nK. As with existing proposals for

creating topological matter with cold atoms41–49, the required energy scales and atom numbers are

low, but within the scales that have already been realized in the lab50, 51. In this case, to identify the

existence of edge states, a recent technique proposed by Goldman et. al.52 could be implemented

to directly image the spin-dependent motion of edge states.

Conclusion This proposal requires: (1) a box potential along ey, e.g., Ref. 53, (2) a conven-
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tional harmonic potential along ex, (3) gaussian Raman laser beams, (4) an anti-confining gaussian

laser compensating for the Ω(y) dependence of the band-minima along ey; and (5) confinement

in 2D in the x − y plane. This novel method for creating the QSHE has advantages over previ-

ous proposals for creating the QSHE in a quantum gas41–49. Our conceptually simple method for

designing the vector potential relies on only two lasers and two atomic states, making the exper-

imental implementation relatively easy. One of the major stumbling blocks in using alkali atoms

for the QSHE is the large photon scattering rate from the Raman lasers for alkali fermions, which

leads to significant heating of the sample45. Our approach here ameliorates this concern by using

low coupling strengths (~Ω < 4 ER over the entire sample), requiring less laser intensity.
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Figure 1 | Experiment schematic. a Raman beams with frequencies ω and ω+δω propagating along
ex coupled two states in 87Rb’s f = 1 ground state manifold. Dynamic control of an optical trapping
beam propagating along ex allowed for movement of the BEC along ey, giving a time- and position-
dependent Raman coupling. The Raman coupling altered the free-particle dispersion along ex,
creating double wells21 in quasimomentum q. These modified dispersions E(q) are shown in b for
the three different y-positions marked in a. We associate states near the minimum of each well
with dressed spins, and identify the location of the minima with a synthetic vector potential A.
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Figure 2 | Spin Hall currents. a Raman coupling strength versus y-position, fit with the Raman
laser’s Gaussian profile. In this figure, uncertainties reflect the standard deviation of ≈ 5 mea-
surements. b The observed shear coefficient sxy (see text) was opposite for each spin and the
magnitude followed the derivative of a Gaussian function (solid lines). c-f Representative 2D spin-
momentum distributions observed after TOF at different y-positions. For the data in b - f, the
magnitude of the effect was enhanced by elongating the BEC along ey (Methods), sampling a
greater range of the vector potential. The measurements in Figs. 3 and 4 were taken in the portion
of the laser shaded in gray in a, where the curl of A is large and nearly uniform.
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to the data with Ω as the only free parameter (Methods). The resulting Ω is within 15% of our
measured coupling strength of 2.5(2) ER at y = −115 µm, the center of the spatial region sampled
by the atoms during the measurements (gray shaded region in Fig. 2a). Uncertainties reflect the
standard deviation of ≈ 5 measurements.
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Figure 5 | Quantum spin Hall effect. a Side view of laser geometry including: λ ≈ 770 nm Raman
lasers; λ ≈ 532 nm compensation lasers and box lasers; and a λ ≈ 1064 nm harmonic trap laser
for confinement along ex. b Energies for QSHE geometry using ~Ω(y) = 4ER exp
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]
, where Ly = 7.75λ, w0 = 1.15Ly, and α = 0.995. For EF,1 =

142 Hz, the empty red and blue symbols at q = ±0.97kR and the empty light-red and light-blue
symbols at q = ±0.25kR mark the points at the Fermi surface. For EF,2 = 233 Hz, the solid red
and blue symbols at q = ±1.03kR mark the states at the Fermi surface. c Density distributions
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indicate the direction of propagation for that state, corresponding the the group velocity in b.
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