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Melanoma genome sequencing reveals frequent
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Melanoma is notable for its metastatic propensity, lethality in the
advanced setting and association with ultraviolet exposure early in
life1. To obtain a comprehensive genomic view of melanoma in
humans, we sequenced the genomes of 25 metastatic melanomas
and matched germline DNA. A wide range of point mutation rates
was observed: lowest in melanomas whose primaries arose on non-
ultraviolet-exposed hairless skin of the extremities (3 and 14 per
megabase (Mb) of genome), intermediate in those originating from
hair-bearing skin of the trunk (5–55 per Mb), and highest in a
patient with a documented history of chronic sun exposure (111
per Mb). Analysis of whole-genome sequence data identified
PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac
exchange factor 2)—a PTEN-interacting protein and negative regu-
lator of PTEN in breast cancer2—as a significantly mutated gene
with a mutation frequency of approximately 14% in an independent
extension cohort of 107 human melanomas. PREX2 mutations
are biologically relevant, as ectopic expression of mutant PREX2
accelerated tumour formation of immortalized human melanocytes
in vivo. Thus, whole-genome sequencing of human melanoma
tumours revealed genomic evidence of ultraviolet pathogenesis
and discovered a new recurrently mutated gene in melanoma.

To gain a comprehensive view of the genomic landscape in human
melanoma tumours, we sequenced the genomes of 25 metastatic
melanomas and peripheral blood obtained from the same patients
(Supplementary Table 1). Two tumours (ME015 and ME032) were
metastases from cutaneous melanomas arising on glabrous (that is,
hairless) skin of the extremities, representing the acral subtype. The
other tumours were primarily metastases from melanomas originating
on hair-bearing skin of the trunk (the most common clinical subtype).
Further, ME009 represented a metastasis from a primary melanoma of
a patient with a clinical history of chronic ultraviolet exposure.

We obtained 59-fold mean haploid genome coverage for tumour
DNA and 32-fold for normal DNA (Supplementary Table 2). On
average, 78,775 somatic base substitutions per tumour were identified,
consistent with prior reports3,4 (Supplementary Table 3). This corre-
sponded to an average mutation rate of 30 per Mb. However, the
mutation rate varied by nearly two orders of magnitude across the
25 tumours (Fig. 1). The acral melanomas showed mutation rates

comparable to other solid tumour types (3 and 14 mutations per
Mb)5,6, whereas melanomas from the trunk harboured substantially
more mutations, in agreement with previous studies3,7,8. In particular,
sample ME009 exhibited a striking rate of 111 somatic mutations per
Mb, consistent with a history of chronic sun exposure.

In tumours with elevated mutation rates, most nucleotide substitu-
tions were C R T or G R A transitions consistent with ultraviolet
irradiation9. The variations in mutation rate correlated with differ-
ences in the ultraviolet mutational signature. For example, 93% of
substitutions in ME009 but only 36% in acral melanoma ME015 were
C R T transitions (Fig. 1); these tumours contained the highest and
lowest base mutation rates, respectively (111 and 3 mutations per Mb).
Interestingly, the acral tumour ME032 also showed a discernible
enrichment of ultraviolet-associated mutations (Fig. 1). Thus, genome
sequencing readily confirmed the contribution of sun exposure in
melanoma aetiology.

In agreement with prior studies7,9, we detected an overall enrich-
ment for dipyrimidines at C R T transitions. Analysis of intragenic
C R T mutations yielded a significant bias against such mutations on
the transcribed strand for most melanomas, consistent with transcrip-
tion-coupled repair (Supplementary Fig. 1)3,7,10. Most commonly,
C R T mutations occurred at the 39 base of a pyrimidine dinucleotide
(CpC or TpC; Supplementary Fig. 2). In contrast, the C R T mutations
in sample ME009 (with hypermutation and chronic sun exposure
history) more often occurred at the 59 base of a pyrimidine dinucleotide.
As expected, the acral tumour ME015 exhibited mutation patterns
observed in non-ultraviolet-associated tumour types11, such as an
increased mutation rate at CpG dinucleotides relative to their overall
genome-wide frequency (Supplementary Fig. 2). These different muta-
tional signatures suggest a complex mechanism of ultraviolet mutagenesis
across the clinical spectrum of melanoma, probably reflecting distinct
histories of environmental exposures and cutaneous biology.

We detected 9,653 missense, nonsense or splice site mutations in
5,712 genes (out of a total of 14,680 coding mutations; Supplementary
Tables 4 and 5), with an estimated specificity of 95% (Supplementary
Methods). A mutation of BRAF, BRAFV600E, was present in 16 of 25
tumours (64%), including the acral melanoma ME015. NRAS was
mutated in 9 of 25 tumours (36%) in a mutually exclusive fashion with
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BRAF, with the exception of one non-canonical substitution
(NRAST50I) in the hypermutated sample ME009. We also identified 6
insertions and 34 deletions in protein coding exons (Supplementary
Table 6), including a 21-base-pair (bp) in-frame deletion involving exon
11 of the KIT oncogene in the acral tumour ME032 (Supplementary
Fig. 3). KIT mutations occur in 15% of acral and mucosal melanomas12,
and melanoma patients with activating KIT mutations in exon 11 have
demonstrated marked responses to imatinib treatment13.

We identified an average of 97 structural rearrangements per
melanoma genome (range: 6–420) (Supplementary Table 7). In addi-
tion to displaying a wide range of rearrangement frequencies, the
proportion of intrachromosomal and interchromosomal rearrange-
ments varied widely across genomes. ME029, which harboured the
largest number of rearrangements (420), contained only 8 inter-
chromosomal events (Fig. 2a). In contrast, ME020 and ME035 con-
tained 95 and 90 interchromosomal rearrangements, respectively
(Fig. 2a). In both cases, the vast majority of interchromosomal rearrange-
ments were restricted to two chromosomes. This pattern is reminiscent
of chromothripsis14, a process involving catastrophic chromosome
breakage that has been observed in several tumour types15,16.

106 genes harboured chromosomal rearrangements in two or more
samples (Supplementary Table 8). Many recurrently rearranged loci
contain large genes or reside at known or suspected fragile sites17;
examples include FHIT (six tumours), MACROD2 (five tumours)
and CSMD1 (four tumours). On the other hand, several known cancer
genes were also recurrently rearranged, including the PTEN tumour
suppressor (four tumours) and MAGI2 (three tumours), which
encodes a protein known to bind and stabilize PTEN. MAGI2 was also
found disrupted in recent whole-genome studies of prostate cancer18

and a melanoma cell line7. Rearrangements involving the 59 untrans-
lated region of the ataxin 2-binding protein 1 gene (A2BP1) were
observed in 4 tumours. A2BP1 encodes an RNA binding protein whose
genetic disruption has been linked to spinocerebellar ataxia and other
neurodegenerative diseases. A2BP1 undergoes complex splicing regu-
lation in the central nervous system and other tissues19; in melanoma,
these rearrangements may disrupt a known A2BP1 splice isoform or
enable a de novo splicing product. Together, these results suggest that
chromosomal rearrangements may contribute importantly to melanoma
genesis or progression.

An acral melanoma (ME032) harboured the second-largest number
of total rearrangements (314; Fig. 2a). We employed high-throughput

PCR followed by massively parallel sequencing to successfully validate
177 of 182 events tested in this sample, confirming its high rate of
rearrangement. The elevated frequency of genomic rearrangements in
acral melanomas has been reported previously20. In comparison,
ME032 exhibited one of the lowest base-pair mutation rates of the
melanomas examined (22nd out of 25 samples), suggesting that dif-
ferent tumours might preferentially enact alternative mechanisms of
genomic alteration to drive tumorigenesis.

As noted above, many rearrangements in ME032 involved multiple
breakpoints within a narrow genomic interval. One such event dis-
rupted the ETV1 locus. We previously demonstrated an oncogenic role
for ETV1 in melanoma, whose dysregulated expression was associated
with upregulation of microphthalmia-associated transcription factor
(MITF)21, the master melanocyte transcriptional regulator and a
melanoma lineage survival oncogene22. We validated six distinct
rearrangements (four interchromosomal translocations) in ME032
involving breakpoints within ETV1 introns (Fig. 2b). These events join
regions of ETV1 to distal loci on chromosomes 8, 9, 11 and 15. In
support of their possible functional relevance, these rearrangements
were associated with high-level ETV1 amplification in this tumour.

A second complex rearrangement involved the PREX2 locus.
PREX2 encodes a phosphatidylinositol 3,4,5-trisphosphate RAC
exchange factor recently shown to interact with the PTEN tumour
suppressor and modulate its function2. We validated nine somatic
rearrangements in the vicinity of PREX2 (six interchromosomal trans-
locations), including five with intronic breakpoints (Fig. 2c, Sup-
plementary Fig. 4). One event joined specific intronic regions of
PREX2 and ETV1. Like ETV1, PREX2 is highly amplified in this
tumour, as verified by FISH (fluorescence in situ hybridization) analysis
(Fig. 2d, Supplementary Fig. 5). The presence of these complex struc-
tural rearrangements in addition to amplification may indicate multiple
mechanisms of PREX2 dysregulation in melanoma. More generally,
these findings raised the possibility that sites of complex rearrangement
might denote genes of functional importance in melanoma.

Next, we calculated the mutational significance of each gene based
on the number of mutations detected, gene length and background
mutation rates (Table 1, Supplementary Table 9) (see Methods).
Eleven genes were found to be significantly mutated across the 25
samples (Q , 0.01, where Q is the false discovery rate adjusted
P-value). As expected, the two most significant genes were BRAF
and NRAS, mutated in 16 and 9 samples, respectively. Interestingly,
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Figure 1 | Elevated mutation rates and spectra indicative of ultraviolet
radiation damage. Top bar plot shows somatic mutation rate of 25 sequenced
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PREX2 scored as one of the top significant genes (Table 1).
Furthermore, four samples harboured nonsense truncation mutations
in PREX2, more than any of the other genes identified as statistically
significant in this analysis. PREX2 mutations have occasionally been
reported in colon, lung and pancreatic cancer23, albeit at low frequen-
cies. Here, we detected 13 non-synonymous point mutations in
PREX2—including 4 nonsense mutations—and 1 synonymous muta-
tion, with 11 of 25 melanomas harbouring at least 1 non-synonymous
mutation. The mutations were distributed throughout the entire
length of PREX2 (Fig. 3a, green circles), and 13 of 14 mutations were
non-synonymous, suggestive of positive selection. An analysis of the
mutant allele frequencies and estimated tumour purities indicates that
at least two mutations are homozygous. One melanoma, ME018,
harbours three missense mutations, two of which (I534M and
G1581R) appear to co-occur on a single allele based on their observed
mutation frequencies. Notably, a PREX2 nonsense mutation was
detected in ME032, in addition to the rearrangements and amplifica-
tion of this locus present in this tumour (Fig. 2c). This PREX2
mutation was truncating (E824*), removing the carboxy-terminal
region with homology to an inositol phosphatase domain. Based on
the allele frequency of this mutation, we infer that it occurs on the

non-amplified allele. Taken together, whole-genome sequencing of
this 25-sample discovery cohort identified PREX2 as a candidate mel-
anoma gene whose amplifications, rearrangements or mutations
appeared to undergo positive selection in human melanoma genesis.

To determine the prevalence of PREX2 mutations in melanoma, we
performed bidirectional capillary sequencing in an extension cohort of
107 tumour/normal pairs, comprising 45 tumours and 62 short-term
cultures collected from multiple institutions and geographic regions
(Supplementary Table 10). We identified 23 somatic base pair muta-
tions and one frame-shift insertion in PREX2 in this cohort (Fig. 3a;
Supplementary Table 11), 15 of which represented non-synonymous
changes. We therefore inferred a 14% frequency of non-synonymous
PREX2 mutations in this melanoma cohort.

Discrepant non-synonymous:synonymous ratios were observed
between the tumour samples and short-term cultures in the extension
cohort. In line with results from the discovery cohort, 100% of PREX2
mutations detected across 45 tumour samples were non-synonymous
in nature (n 5 4), consistent with positive selection. In contrast, only
55% of the sequence mutations found in the 64 short-term cultures
were non-synonymous (a ratio of 11:9). Conceivably, these findings
may indicate that subsets of melanoma cells capable of robust growth
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Figure 2 | Hubs of rearrangement breakpoints affect known and putative
oncogenes. a, Circos plots representing four melanoma genomes with notable
structural alterations. Interchromosomal and intrachromosomal
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breakpoints associated with ETV1 in melanoma ME032. c, Location of
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d, Confirmation of high-level amplification and rearrangement of PREX2 in
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FISH probes to the PREX2 gene region is delineated as bars. Lack of co-
localization of red and green probes is indicative of break-apart.
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in vitro may have experienced reduced selective pressure for PREX2
mutations. Alternatively (or in addition), the PREX2 locus may exhibit
an enhanced ‘local’ mutation rate, a by-product of which is the pro-
duction of variants that undergo positive selection in vivo.

To demonstrate the functional relevance of PREX2 mutations in
melanoma tumorigenesis, we ectopically expressed six representative
mutations (three truncation variants and three non-synonymous point
mutations predicted to carry functional impact24) in TERT-immortalized
human melanocytes engineered to express NRAS(G12D) (PMEL-
NRAS*)21. These melanocytic lines were transplanted into immuno-
deficient mice alongside control melanocytes expressing either wild-type
PREX2 or GFP (green fluorescent protein). Overexpression of all three
truncated variants as well as a point mutant (G844D) of PREX2 signifi-
cantly accelerated in vivo tumorigenesis when compared to GFP control
or wild-type PREX2-expressing melanocytes (Fig. 3b, Supplemen-
tary Fig. 6). These results therefore affirmed the aforementioned
genomic data suggesting that PREX2 mutations may undergo positive
selection in vivo. Although the spectrum of PREX2 mutations in human
melanoma (Fig. 3a) is reminiscent of inactivating mutations, our
findings suggest that PREX2 somatic mutations generate truncated or
variant proteins that gain oncogenic activity in melanoma cells.

In summary, following recent efforts to characterize whole genomes
from several haematologic and solid tumours, we provide the first (to our
knowledge) high-resolution view of the genomic landscape across a
spectrum of metastatic melanoma tumours. The analysis reveals global

genomic evidence for the role of ultraviolet mutagenesis in melanoma,
and identifies several recurrently mutated and rearranged genes not
previously implicated in this malignancy. In particular, we discovered
that PREX2 mutations are both recurrent and functionally consequential
in melanoma biology. Although its precise mechanism(s) of action
remains to be elucidated in melanoma, PREX2 appears to acquire
oncogenic activity through mutations that perturb or inactivate one or
more of its cellular functions. This pattern of mutations may exemplify a
category of cancer genes that is distinct from ‘classic’ oncogenes (often
characterized by highly recurrent gain-of-function mutations) and
tumour suppressors (inactivated by simple loss-of-function alterations).
Instead, (over)expression of certain cancer genes with distributed muta-
tion patterns may promote tumorigenicity either through dominant
negative effects or more subtle dysregulation of normal protein functions.

Cancer genomics has enabled the discovery and rational application
of the first truly effective targeted therapy for metastatic melanoma:
BRAF mutations predict sensitivity to selective RAF inhibitors25–27.
However, the emergence of acquired resistance is rapid and often
driven by other genomic events28. Our genomic exploration of the
melanoma genomes revealed a large number of complex alterations
that probably affect many other genes in addition to PREX2.
Understanding how this spectrum of genomic aberrations contributes
to melanoma genesis and progression should provide new insights into
tumour biology, therapeutic resistance and development of treatment
regimens aimed at durable control of this malignancy.

Table 1 | Significantly mutated genes in 25 melanoma tumours.
Rank Gene Total number of

covered bases
Samples with
non-synonymous mutations

Non-synonymous
mutations

Nonsense
mutations

Synonymous
mutations

P value Q value

1 BRAF* 56,520 12 12 0 0 ,10215 ,10211

2 NRAS 14,160 9 9 0 0 4 3 10-15 4 3 10211

3 MUC4 77,038 19 42 0 17 2 3 10211 2 3 1027

4 PREX2 127,041 11 13 4 1 2 3 1028 8 3 1025

5 GOLGA6L6 18,902 5 6 0 1 6 3 1027 2 3 1023

6 VCX3B 7,132 4 4 0 1 7 3 1027 2 3 1023

7 POTEH 21,545 5 7 0 1 8 3 1027 2 3 1023

8 OR2T33 21,978 5 5 0 1 9 3 1027 2 3 1023

9 C1orf127 53,004 6 6 0 0 2 3 1026 3 3 1023

10 PRG4 100,212 8 9 0 1 3 3 1026 6 3 1023

11 MST1 46,400 8 12 0 4 5 3 1026 9 3 1023

*BRAFV600E mutations were detected in four additional samples by exon capture on manual review of Illumina sequencing data (shown in Fig. 1).
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METHODS SUMMARY
The complete genomes of 25 metastatic melanomas and patient-matched germ-
line samples were sequenced to approximately 303 and 303 haploid coverage,
respectively, on an Illumina GAIIx sequencer (5 cases), and approximately
653 and 323 haploid coverage, respectively, on an Illumina HiSeq 2000 sequencer
(20 cases) as paired-end 101-nucleotide reads. Read pairs were aligned to the
reference human genome (hg19) using BWA29. Somatic alterations (single base
substitutions, small insertions and deletions, and structural rearrangements) were
identified according to their presence in the tumour genome and absence from the
corresponding normal genome. A subset of rearrangements was validated by PCR
and an independent sequencing technology in order to assess the specificity of the
detection algorithm. Fluorescence in situ hybridization (FISH) was performed to
confirm the high level amplification and rearrangement of PREX2. Significantly
mutated genes were identified by comparing the observed mutations to the
background mutation rates calculated for different sequence context categories
per tumour sample. 40 exons of PREX2 were sequenced by PCR and bidirectional
capillary sequencing in a validation panel of 107 additional melanoma tumours
and short term cultures; mutations were confirmed as somatic by sequencing
matched normal DNA. For gain of function studies, PREX2 mutation constructs
were engineered and introduced to PMEL cell lines by lentiviral transduction. To
assess the oncogenic roles of PREX2 mutants, PMEL-NRAS* cells were injected
subcutaneously into NUDE mice, and tumour growth was measured over time. A
complete description of the materials and methods is provided in Supplementary
Information.
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