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Abstract

Millions of people regularly obtain insufficient sleep1. Given the impact of sleep deprivation on 

our lives, understanding the cellular and molecular pathways affected by sleep deprivation is 

clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain 

is to produce memory deficits in learning paradigms that are dependent on the hippocampus2–5. 

In this study, we have identified a molecular mechanism by which brief sleep deprivation alters 

hippocampal function. Sleep deprivation selectively impaired cAMP/PKA-dependent forms of 

synaptic plasticity6 in the hippocampus, reduced cAMP signaling, and increased activity and 

protein levels of phosphodiesterase-4 (PDE4), an enzyme that degrades cAMP. Treatment with 

PDE inhibitors rescued the sleep deprivation-induced deficits in cAMP signaling, synaptic 

plasticity, and hippocampus-dependent memory. These findings demonstrate that brief sleep 

deprivation disrupts hippocampal function by interfering with cAMP signaling through increased 

PDE4 activity. Thus drugs that enhance cAMP signaling may provide a novel therapeutic 

approach to counteract the cognitive effects of sleep deprivation.
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To determine the cellular and molecular mechanisms by which a short 5-hour period of 

sleep deprivation affects hippocampal function2, we used in vitro electrophysiological 

recordings to examine the effects of sleep deprivation on hippocampal long-term 

potentiation (LTP), a form of synaptic plasticity that relies on molecular mechanisms that 

are also important for memory consolidation7. We examined several forms of NMDA 

receptor-dependent LTP with different underlying molecular mechanisms to identify 

molecular targets of sleep deprivation. The long-term maintenance of LTP following spaced 

4-train stimulation or theta-burst stimulation (TBS) depends on cyclic AMP (cAMP), 

protein kinase A (PKA), transcription, and translation8–10. Both of these forms of LTP 

were impaired in hippocampal slices from mice that had been deprived of sleep for 5 hours 

(Fig. 1a–b). The increased need for sleep that follows brief sleep deprivation dissipates in 

approximately 2.5 hours11, and we found that the deficit in spaced 4-train LTP also 

recovered with 2.5 hours of rest after 5 hours of sleep deprivation (Supplemental Fig. S4). 

Massed 4-train LTP, which induces a stable form of LTP that depends on translation12, but 

does not require cAMP/PKA signaling12,13, was unimpaired by sleep deprivation (Fig. 1c). 

One-train LTP, a cAMP/PKA-independent form of LTP6 was also unaffected by sleep 

deprivation (Fig. 1d). The lack of an effect of sleep deprivation on massed 4-train LTP and 

1-train LTP suggests that brief sleep deprivation does not affect molecular mechanisms that 

are required for the induction and expression of these forms of LTP, such as NMDA 

receptor activation, Ca2+ influx and activation of Ca2+-calmodulin dependent kinase II 

(CaMKII)8,14,15. Because massed 4-train requires translation, the fact that sleep 

deprivation does not affect this form of LTP suggests that brief sleep deprivation does not 

generally disrupt translational processes, but instead specifically alters mechanisms that 

depend upon cAMP/PKA signaling. Whole-cell recordings from area CA1 confirmed that 

NMDA receptor function was unaffected by sleep deprivation (Supplemental Fig. S3). 

These results contrast with studies using longer periods of sleep deprivation, or sleep 

deprivation that involves exploration of a novel environment, both of which affect the initial 

induction of LTP as well as NMDA receptor function4,16–20. We also did not observe any 

effects of sleep deprivation on basal synaptic properties or short-term plasticity 

(Supplemental Fig. S2), suggesting that the disruption of spaced 4-train and theta-burst LTP 

is in fact due to disruption of signaling mechanisms underlying these forms of LTP and is 

not due to non-specific effects on hippocampal function.

Because of the role of cAMP signaling in 4-train and theta-burst LTP8,13, we next assessed 

the effects of sleep deprivation on LTP induced by specific activation of the cAMP pathway 

using the adenylate cyclase activator forskolin. The long-term maintenance of LTP induced 

by treatment with forskolin (50µM) was impaired in hippocampal slices from sleep-deprived 

mice (Fig. 2a). Using biochemical assays, we found that baseline cAMP levels were 

significantly reduced in the CA1 region of hippocampal slices from sleep-deprived mice, as 

were cAMP levels induced by forskolin treatment (Fig. 2c). These findings demonstrate that 
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sleep deprivation limits the ability of cells within the CA1 region of the hippocampus to 

respond to adenylate cyclase activation. Using immunohistochemistry, we found that 

phosphorylation at Ser133 of CREB, one of the downstream targets of cAMP signaling in 

the hippocampus21, was decreased by sleep deprivation in the CA1 and dentate gyrus (DG) 

regions of the hippocampus (Supplemental Fig. S7). Consistent with our published findings 

that brief sleep deprivation selectively impairs hippocampal function2, no effect of sleep 

deprivation on CREB phosphorylation was observed in the amygdala (Supplemental Fig. 

S7). This demonstrates that deficient cAMP signaling due to sleep deprivation impairs the 

activation of at least one major downstream target (CREB) in vivo. Cyclic nucleotide 

phosphodiesterases (PDEs) are enzymes that provide the sole route for cAMP degradation in 

cells22. We found that co-treatment with IBMX (30µM), a broad-spectrum inhibitor of 

PDEs, rescued forskolin-induced LTP as well as cAMP induction in hippocampal slices 

from sleep-deprived mice (Fig. 2b–c). These findings demonstrate that reversing deficits in 

cAMP signaling ameliorates the deficits in forskolin-induced LTP, and suggest that PDE 

activity might be increased by sleep deprivation.

cAMP-specific PDE4 has a major role in regulating cAMP signaling in the brain22. 

Therefore, we tested if sleep deprivation increased PDE4 levels and/or activity in the 

hippocampus. We found that PDE4-specific cAMP breakdown was increased in SD mice 

(Fig. 3a), whereas non-PDE4 activity was unaffected (SD = 50.6 ± 2.1 pmol/mg/min, NSD 

= 53.4 ± 1.9 pmol/mg/min, p=0.33). In mice and humans, PDE4 isoforms are generated by 

four genes: PDE4A-D22. Immunoblotting with a pan-PDE4A antibody showed a trend in 

sleep-deprived hippocampal tissue towards an increase in a 125 kDa species, which is of a 

size expected for the long PDE4A5, PDE4A10 and PDE4A11 isoforms23 (Supplemental 

Fig. S6). Probing our hippocampal samples with antisera specific for each of these isoforms 

showed that PDE4A5 protein was significantly increased by sleep deprivation in the 

hippocampus, whereas PDE4A10 and PDE4A11 were not detected (Fig. 3b for PDE4A5; 

data not shown for null results with PDE4A10, PDE4A11). Interestingly, transcripts for 

PDE4A5 are selectively expressed in the brain with highest levels seen in hippocampal areas 

CA1 and DG24, the two regions in which reduction in pCREB were observed following 

sleep deprivation (Fig. S7). We also found that sleep deprivation elicited upregulation of 

PDE4 gene expression, although the pattern of changes was somewhat different between 

transcript and protein levels, suggesting that translation regulation mechanisms may be 

involved (Supplemental Fig. S5).

To test whether increased PDE4 activity is responsible for deficits in hippocampal function 

induced by sleep deprivation, we first examined whether the PDE4-selective inhibitor 

rolipram22 could rescue deficits in LTP induced by sleep deprivation. Indeed, rolipram 

treatment (0.1µM) during spaced 4-train stimulation rescued the maintenance of this form of 

LTP in slices from sleep-deprived mice. This dose of rolipram had no effect on 4-train LTP 

in slices from control mice, suggesting that this result was not simply due to a non-specific 

enhancement of LTP (Figs. 3a and 3b). To rule out the possibility of a ceiling effect, we 

assessed the effects of rolipram in slices from sleep-deprived and control mice on 1-train 

LTP, which is normally a transient form of plasticity. Here, rolipram enhanced the 

maintenance of 1-train LTP in control mice. However, rolipram had no significant effect in 
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sleep-deprived mice, demonstrating that sleep-deprived mice have a reduced sensitivity to 

the effects of PDE4 inhibition (Supplemental Fig. S8). These findings suggest that sleep 

deprivation makes it more difficult to reach the threshold for induction of cAMP/PKA-

dependent LTP, consistent with our observation that sleep deprivation increases the activity 

of a specific PDE4 isoform that is known to set the threshold for activation when recruited 

to specific signaling complexes25.

We next assessed whether in vivo PDE4 inhibition could prevent impairments in 

hippocampus-dependent memory consolidation induced by post-training sleep deprivation. 

Immediately following single-trial contextual fear conditioning, mice were either deprived 

of sleep by gentle handling for 5 hours or were left undisturbed in their home cages. Mice 

received 2 IP injections of either rolipram (ROL; 1 mg/kg) or vehicle (VEH), immediately 

and 2.5 hours following training. The timing of these injections was based on data showing 

that the effects of rolipram on hippocampal cAMP levels last for about 3 hours (personal 

communication, Dr. James O’Donnell). Memory was assessed using a 5 minute retrieval test 

in the trained context 1 day after conditioning and in an altered context 2 days after 

conditioning. Context-specific memory, a measure that is particularly dependent on 

hippocampal function26, was measured by subtracting the percent freezing in the altered 

context from the percent freezing in the trained context (see Supplemental Fig. S9 for data 

from these two tests). Sleep deprivation significantly impaired context-specific memory, and 

rolipram treatment rescued this deficit (Fig. 4c). The ability of rolipram to rescue deficits in 

hippocampus-dependent memory produced by sleep deprivation demonstrates that 

disruption of cAMP signaling is responsible for the effects of sleep deprivation in vivo.

A major challenge in the field of sleep research has been to determine how the sleep 

disruptions associated with neurological and psychiatric disorders, aging, and everyday 

living affect cognitive function. These findings are the first to define a molecular mechanism 

underlying the effects of sleep deprivation on hippocampal function at the behavioral and 

synaptic level, and they lay the groundwork for further analysis of the functional 

biochemistry of sleep deprivation and the development of novel therapeutics to ameliorate 

the impact of sleep deprivation. These experiments using the PDE4 inhibitor rolipram are 

the first to rescue synaptic plasticity and memory deficits produced by a brief period of sleep 

deprivation. Our data suggest that if compounds can be developed that block either the 

activity, expression, or targeting of the PDE4A5 isoform, they may prove useful in the 

treatment of the cognitive effects of sleep deprivation. Interestingly, circadian oscillation of 

cAMP in the hippocampus has recently been linked to the persistence of memory27 so such 

drugs may also be useful in treating memory deficits associated with alterations in circadian 

rhythms. It has proven difficult to generate active-site directed inhibitors showing selectivity 

for each of the four PDE4 sub-families because of the highly conserved structure of their 

catalytic unit25, but it may be possible to develop compounds that disrupt the targeting of 

specific PDE4 isoforms from appropriate scaffolds in cells22,25.

Methods Summary

C57BL/6J male mice (2–5 months of age) were housed individually on a 12 hr/12 hr light/

dark schedule with lights on at 7 A.M. (ZT0) and handled for 6 days. Mice were sleep-
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deprived (SD) in their home cages for 5 hours by gentle handling beginning at ZT5 or left 

undisturbed (non-sleep-deprived mice, NSD). For contextual fear conditioning experiments, 

animals were placed in a novel chamber for 3 minutes, and received a 2-second, 1.5 mA 

footshock after 2.5 minutes. Half of the mice were deprived of sleep for 5 hours post-

training. Mice received intra-peritoneal injections of rolipram (ROL; 1 mg/kg) or vehicle 

(2% DMSO in 0.9% saline) immediately and 2.5 hours post-training. Testing of contextual 

memory was performed 24 hours after training in the trained context and 48 hours after 

training in a novel chamber.

Electrophysiological recordings were carried out as previously reported28. 1-train LTP was 

induced by a single 100 Hz, 1-second duration train of stimuli. 4-train LTP consisted of 4 

trains applied with a 5-minute inter-train interval; for massed 4-train LTP a 5-second inter-

train interval was used. Theta-burst stimulation (TBS) consisted of 40-ms duration, 100 Hz 

bursts delivered at 5 Hz for 3 seconds (15 bursts of 4 pulses per burst, for a total of 60 

pulses). Chemical LTP was induced by treatment of slices for 15 minutes with 5µM 

forskolin (FSK) in 0.1% ethanol, or a combination of 50µM forskolin and 30µM 3-

isobutyl-1-methylxanthine (IBMX, in water). Rolipram (0.1µM in 0.1% DMSO) was 

applied for 60 minutes, beginning 30 minutes before tetanization.

cAMP assays on CA1 regions of hippocampal slices 10 minutes after treatment for 15 

minutes with forskolin (50µM), forskolin + IBMX (30µM), or vehicle (0.1% EtOH) were 

performed by radioimmunoassay according to kit instructions. cAMP-specific PDE activity 

assays29 and Western blots for PDE4A530 were performed as previously described.

Full Methods and any associated references are available in the online version of the paper 

at www.nature.com/nature.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Brief sleep deprivation specifically impairs forms of LTP that depend on the 
cAMP/PKA pathway
(a) The maintenance of spaced 4-train LTP was significantly disrupted in slices from sleep-

deprived mice (p=0.03). (b) A similar deficit was observed in LTP induced by theta-burst 

stimulation (TBS) (p=0.003). (c) Massed 4-train LTP was unaffected in hippocampal slices 

from sleep-deprived mice (p=0.67). (d) 1-train LTP was unaffected in hippocampal slices 

from sleep-deprived mice (p=0.97).
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Figure 2. Phosphodiesterase (PDE) inhibition rescues impairments in forskolin-induced cAMP 
levels and LTP produced by brief sleep deprivation
(a) LTP induced by the adenylate cyclase activator forskolin (FSK) was impaired in sleep-

deprived mice (SD) relative to controls (NSD) (p=0.007). (b) LTP induced by co-treatment 

with FSK and the PDE inhibitor IBMX was unaffected by sleep deprivation (p=0.48). (c) 

Sleep deprivation decreased baseline cAMP levels in CA1 regions of vehicle-treated slices 

(p=0.02) and significantly reduced FSK-induced cAMP levels (p=0.04). Co-application of 

FSK and IBMX resulted in similar cAMP levels in CA1 regions from SD and NSD mice 

(p=0.82).
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Figure 3. Sleep deprivation increases PDE4 activity and gene expression in the hippocampus
(a) PDE4 activity was significantly upregulated in hippocampi from SD mice compared with 

NSD mice (p=0.039). (b) The PDE4 isoform PDE4A5 was significantly upregulated by 

sleep deprivation in the hippocampus (p=0.033). A sample blot is shown, with the nearest 

size markers indicated with arrows.
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Figure 4. The PDE4 inhibitor rolipram rescues LTP and memory deficits caused by sleep 
deprivation
(a) Rolipram (ROL) treatment rescued deficits in spaced 4-train LTP due to sleep 

deprivation (p=0.003). (b) However, rolipram showed no further enhancement of spaced 4-

train LTP in NSD mice (p=1.0). The black bar in (a) and (b) represents the time of ROL 

treatment. (c) Sleep deprivation significantly impaired context-specific memory (p=0.02), 

and treatment with rolipram rescued this deficit (p=0.0009) without affecting memory in 

non-sleep-deprived mice (p=0.99).
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