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SUPPLEMENTARY INFORMATION 

SUPPLEMENTARY FOOTNOTES 

Footnote S1. Amplitude of gravity-induced receiver deflections. It has not been known whether the antennal 

receiver may really be deflected by gravity. The gravitational force imposed on objects near the earth’s surface is 

F = m   X , where m is the mass of the object and X&& is the acceleration due to gravity (ca. 9.8 m/s2). The 

apparent mass of the fly’s antennal receiver is ca. 
12

105 kg, as judged from the free fluctuations of the 

arista-tip1, so the force gravity imposes is ca. 50 pN. Because the steady-state stiffness XFKsteady /=  of the 

arista-tip is ca. 50 N/m (See Albert et al.2), gravity will displace the arista-tip by a distance X  of ca. 1 m. This 

displacement amplitude evoked calcium-signals (Supplementary Fig. S3a) and seems well within the dynamic 

range of the subgroup-CDE JO neurons’ response, which spans arista-tip displacements between ca. 0.1 and 4 

m (Fig. 4e, JO-B + JO-AB > ricin toxin flies). 

Footnote S2. Stimulus amplitude and receiver vibrations. The pulse songs of courting males reach particle 

velocities of up to ca. 2.8 mm/s (95 dB)3. Following a previous report4, we presented the songs at pressure 

amplitudes of up to ca. 100 dB, which, under far-field conditions, corresponds to particle velocities of up to ca. 5 

mm/s. This latter particle velocity will displace the arista-tip by ca. 1 m (See Göpfert et al.5).  

Footnote S3. Hyperpolarisation of JO neurons. We found that JO neurons are not only activated (depolarised) 

when stretched but are also deactivated (hyperpolarised) when compressed. This deactivation is consistent with 

the correlations of transducer gating in the antennal receiver’s mechanics2, which suggests that the stationary 

open probability of the transducer channels in JO neurons is ca. 0.5. Accordingly, deflecting the receiver 

forwards increase the transducer open probability in the JO neurons of the anterior region while reducing the 

probability in the posterior region. Together, auditory anatomy and transducer characteristics suffice to account 

for the opposing calcium signals observed in response to static receiver deflections. 

Footnote S4. Distribution of the flies in the counter-current apparatus. In the negative gravitaxis assay, flies 

were distributed into six tubes by being asked five times to climb up or to stay (Fig. 3a). If the population of the 

flies is genetically homogeneous and if each fly acts independently and has a constant probability of climbing up 

in all trials, the final distribution of the flies is expected to match a binomial distribution6. By comparing 

measured distributions to binomial distributions with the measured partition coefficient Cf (the probability of 

fly’s climbing at each trial), we confirmed that the distribution of intact wild-type flies and flies with ablated 
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aristae can be regarded as binomial (p < 0.05, Fisher’s exact test). We thus calculated the partition coefficient Cf 

as 

Cf =

Nk(k 1)
k=1

n

(n 1) Nk
k=1

n
 

where n  is the number of tubes (6), and Nk  is the number of the flies in the kth tube6.  

Footnote S5. Definition of aberrant gravitaxis. We used two criteria to define abnormal gravitaxis (Fig. 3b, c and 

Supplementary Fig. S4b). First, statistically significant changes in negative gravitaxis were determined from the 

differences in the partition coefficient Cf between the four data sets (negative gravitaxis and phototaxis of the 

flies with and without neuronal silencing, judged by RM-ANOVA and Student’s t-test). If alterations in negative 

gravitaxis in flies with selectively silenced JO neurons were due to the general locomotion defects, similar 

alterations would be observed also in phototaxis behaviour, i.e., 

Cfg,c Cfg,s = Cfp,c Cfp,s 

where Cfg,c , Cfg,s ,Cfp,c , and Cfp,s  are the partition coefficients for negative gravitaxis without silencing 

(Cfg,c ), negative gravitaxis with silencing (Cfg,s ), phototaxis without silencing (Cfp,c ), and phototaxis with 

silencing ( Cfp,s ), respectively. If the differences between Cfg,c – Cfg,s  and Cfp,c – Cfp,s  were not 

significantly different, they were rejected by RM-ANOVA. On the other hand, if the neural silencing selectively 

abolishes gravitactic behaviour, changes in gravitaxis will be larger than in phototaxis, i.e., 

Cfg,c Cfg,s > Cfp,c Cfp,s 

Here, the gravitaxis changes will not be rejected by RM-ANOVA. If abnormal gravitaxis was detected by 

RM-ANOVA (p < 0.05), Student’s t-test was performed between Cf values of control and experimental flies to 

certify the statistical significance.  

 Because this criterion does not take into account the absolute Cf value, we set a second criterion. In 

wild-type controls, most of the flies ended up in the 5th and 6th tubes after the five trials, resulting in high Cf 

values (0.92 ± 0.04 in negative gravitaxis and 0.90 ± 0.02 in phototaxis, see Fig. 3b and Supplementary Fig. S4a). 

If flies show impaired gravitaxis and climb or stay randomly (Cf = 0.5), however, most flies will end up in the 

3rd and 4th tubes. If the score of the 5th and 6th tubes (right bar in the three-bar chart) was smaller than that of 

the 3rd and 4th tubes (middle bar in the three-bar chart), flies were judged to behave abnormal. In the ideal 

binomial distribution, the score of the 3rd and 4th tubes equals that of the 5th and 6th tubes when Cf = 2/3. We 

therefore regarded the results with Cf < 2/3 as aberrant behaviours. The evaluation based on the first and second 

criteria matched well for all cases except for JO-all > tetanus toxin and JO-AB > tetanus toxin (Supplementary 

Fig. S4b), which displayed general locomotion defects.  
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Footnote S6. Higher-order neurons innervating the AMMC. We were able to confirm that higher-order neurons 

AMMC-A1 and AMMC-B2, the giant fibre neuron (GFN), and the AMMC-CE1 arborise exactly in the same 

area as the terminals of JO neurons, because the lines used for visualising these neurons label both higher-order 

neurons and JO neurons. To visualise the arborisations of higher-order neurons selectively, we ablated the 

antennae of the flies and prepared the brain samples seven days later so that JO neuron-derived GFP signals 

would not exist in the brain (Fig. 6a left panel, b left panel). For Fig. 6a, left panel, GFP signals of unrelated 

neurons were erased manually from the confocal section dataset before 3D reconstruction to highlight the 

morphology of the AMMC-associated neurons. 

Footnote S7. Connection between JO neurons and giant fibre neurons. The GFN reportedly receives sensory 

input from JO neurons7 and preferentially responds to bimodal stimulation, i.e. vision and mechanical antennal 

deflection. Because of the difficulty of establishing a behavioural paradigm to test for such bimodal sensory 

input, whether and how sound stimulation affects the jump response of the flies remains unclear. 

Footnote S8. Fly and mammalian sound/gravity sensory systems. In both flies and mammals, sound and gravity 

are detected by distinct groups of mechanosensory cells. The afferent fibres project through single nerves – 

antennal nerve (AN) in Drosophila8 and the eighth cranial nerve (N. VIII) in mammals9,10 – but terminate in 

spatially segregated primary centres (AMMC zones AB and CE in Drosophila and cochlear and vestibular nuclei 

in mammals9,10). Binaural interactions occur between the secondary auditory centres (inferior VLP in Drosophila 

and superior olivary complex as well as inferior colliculus in mammals9,11). Apart from the ascending pathway to 

the secondary centres (cerebellum etc.), the primary centre in the mammalian vestibular pathway has descending 

pathways directly to the spinal cord, influencing neck motoneurons and ascending proprioceptive afferents12. 

Similarly, the primary gravity centre of the fly (AMMC zone CE) has direct connections to the thoracic ganglia, 

possibly regulating reflexes as is the case in the mammalian vestibular system13. In Drosophila, also the auditory 

pathway has a direct connection to the thoracic ganglia via a single specific neuron, the GFN14. 

Footnote S9. Heterogeneity in the JO neurons. The JO consists of two types of scolopidia that house two and 

three JO neurons and constitute 90% and 10% of the whole population, respectively15. In transgenic flies in 

which JO neuron subgroups A, B, or CE are selectively labelled, most of the labelled JO neurons seem 

accompanied by one or two unlabeled neurons8, suggesting that a single scolopidium can contain JO neurons of 

different subgroups. Thus, the neurons proper rather than the entire scolopidia seem specialised for detecting 

gravity and sound. 

Subgroups CE of JO neurons respond to both small deflection caused by gravity and large displacements 

as imposed by air-jets and wind (see accompanying manuscript). Calcium imaging of these neurons showed 

amplitude-dependent responses with very similar spatial patterns (Supplementary Fig. S3c), suggesting that the 

neurons that respond to small and large displacements spatially overlap inside JO. The most straightforward 

interpretation of this observation is that gravity and wind activate the same neurons. Considering the low spatial 

resolution of the imaging system, however, it is also conceivable that small and large deflections are detected by 

different sets of JO neurons that are extensively intermingled in the JO array. Because of the limited spatial 
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resolution of the current imaging system and the lack of more specific GAL4 driver lines to label a smaller subset 

of subgroups CE neurons, the question of whether the same or different CE neurons respond to gravity and wind 

remains unsolved. 

Footnote S10. Genotypes of experimental flies. Figure 1: F-GAL4; UAS-cameleon2.1-76 (JO-all > cam2.1). 

Figure 2: a, c, d, e, NP1046; UAS-cameleon2.1-82 (JO-B > cam2.1), UAS-cameleon2.1-82; JO15/TM6b 

(JO-AB > cam2.1), and NP6250; UAS-cameleon2.1-76 (JO-CE > cam2.1). Figure 3: b, Canton-S. c, NP1046/+ 

(> +) and NP1046/+; tub-GAL80ts/+; UAS-TNT/+ (JO-B > tetanus toxin), NP6250/+ (> +) and NP6250/tub- 

GAL80ts; UAS-TNT/+ (JO-CE > tetanus toxin), NP6303/+ (> +) and NP6303/tub-GAL80ts; UAS-TNT/+ (JO- 

ACE > tetanus toxin). Figure 4: b, c, Canton-S. d, NP1046/+ (> +) and NP1046/+; tub-GAL80ts/+; UAS-TNT/+ 

(JO-B > tetanus toxin), NP6250/+ (> +) and NP6250/tub-GAL80ts; UAS-TNT/+ (JO-CE > tetanus toxin), 

NP6303/+ (> +), and NP6303/tub-GAL80ts; UAS-TNT/+ (JO-ACE > tetanus toxin). e, NP1046/+; eyFLP/ 

UFWTRA19 (JO-B > ricin toxin), NP1046/+; NP6250/+; eyFLP/UFWTRA19 (JO-B + JO-CE > ricin toxin), 

and NP1046/+; eyFLP/+; JO15/UFWTRA19 (JO-B + JO-AB > ricin toxin). Figure 5: a, b, F-GAL4/UAS > CD2, 

y > CD8::GFP; eyFLP/+ (F-GAL4 > mCD8::GFP), and eyFLP/UAS > CD2, y > CD8::GFP; nompC-GAL4.25/+ 

(nompC-GAL4 > mCD8::GFP). Figure 6: a, NP1046; UAS-GFP S65T (T2), NP2802/UAS-GFP S65T (T2). b, 

NP6250/UAS-GFP S65T (T2), NP1593/UAS-GFP S65T (T2). 
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Supplementary Figures 
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Figure S1 | Movement of the antennal receiver and role of the TRPV channel Nanchung (Nan). a, Tiny 

movement (~ 5 m) of the antennal receiver in response to external forcing as seen from the above (yellow) and 

free fluctuation in the absence of forcing (blue). The stimulus-induced movement was sufficiently large to evoke 

robust calcium signals in JO neurons. b, Reciprocal fluorescent changes ( F/F) between ECFP (blue line) and 

EYFP (yellow line) and the resulting ratio change ( R/R, red line) (mean + SD; n = 5 repetitions). Black 

horizontal bars indicate the stimulus duration (3 s). Mechanically evoked ratio changes were observed in 

heterozygous control flies of nan36a 16 (Top) but largely reduced in homozygous mutants (Bottom). Interestingly, 

a small response to static deflection persisted in nan mutants, which is consistent with the idea that Nan is not 

required for transduction but for electrical signal propagation from the site of transduction down to the antennal 

nerve5. Probably, the remnant responses in the mutants are too week to evoke action potentials, as no compound 

action potentials are detectable in recordings from their antennal nerves16. Fly genotypes: elavc155-GAL4; 

UAS-cameleon2.1-76; nan36a/nan36a (elav > cam2.1 nan36a homozygote), and elavc155-GAL4; UAS-cameleon2.1- 

76; nan36a/TM3Ser (elav > cam2.1 nan36a heterozygote). 
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Figure S2 | Distribution of the JO neuron subgroups analysed in this study. The target of JO neurons in the 

brain – the antennal mechanosensory and motor centre (AMMC) – can be subdivided into five zones (zones 

A-E; top panels, 3D reconstruction of confocal serial sections with the area of each zone overlaid)8. Single-cell 

labelling and comparison of various GAL4 driver lines has shown that most JO neurons innervate only a single 

zone, and that neurons targeting the same zone have their cell bodies in a characteristic area of JO8. Each GAL4 

driver line labels various combinations of such subgroups (bottom, schema). 



5www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature07810

The neural basis of Drosophila gravity sensing and hearing: Supplementary Information 

– 6 – 

Centre

Anterior Posterior

Stimulus (3 s)

JO-AB > cam2.1

< 5 µm

Static deflection 244 Hz sinusoid

ca. 10 µm Δ
R

 / R
 (

%
)

0
1
2

< 5 µm

ca. 10 µm

JO-CE > cam2.1

Static deflection 244 Hz sinusoid

Δ
R

 / R
 (

%
)

0
2
4

JO-B > cam2.1

ca. 10 µm

ca. 100 µm

Stimulus (3 s)

Pulse song 19 Hz sinusoid

Δ
R

 / R
 (

%
)

0

1

2

JO-CE > cam2.1
Static deflection

ca. 5 µm
ca. 100 µm

a

b c
Δ

R
 / R

 (
%

)

0

1

Δ
R

 / R
 (

%
)

0

4

2

 

Figure S3 | Responses of JO neuron subgroups AB and CE to mechanical stimuli of varying amplitude. a, 

Superimposed time traces of ratio changes across the somata array in subgroups AB (left) and CE (right), evoked 

by small (< 5 m) and medium (ca. 10 m) displacement of the arista. Black horizontal bars show stimulus 

duration (3 s). Dashed horizontal lines indicate zero ratio changes. In subgroups AB, small and medium 

displacements of the arista evoked ratio changes of similar levels. In subgroups CE, on the other hand, smaller 

displacements evoked smaller responses, documenting amplitude-dependent calcium signals. b, Superimposed 

time traces of the ratio changes across the JO somata array in vibration-sensitive subgroup B, evoked by medium 

(10 m) and very large (100 m) displacements of the arista. In spite of the different vibration amplitudes, the 

response amplitude of subgroup B neurons remains largely the same. c, Amplitude distribution of the ratio 

changes in subgroup CE neurons across the somata array (mean ± SD, n = 3 repetition). As in a, right panel, 

calcium signals to small (5 m, orange bars) and very large (100 m, black bars) arista displacements increase 

with the stimulus amplitude. Both stimuli, however, evoke very similar spatial response patterns, suggesting that 

the neurons producing these responses may be the same. Genotypes: NP1046; UAS-cameleon2.1-82 (JO-B > 

cam2.1), UAS-cameleon2.1-82; JO15/TM6b (JO-AB > cam2.1), and NP6250; UAS-cameleon2.1-76 (JO-CE > 

cam2.1).  

 

Figure S4 | Negative gravitaxis, phototaxis, and soft sound responses in JO strains. a-c, To assess whether 

the genetic silencing of JO neuron subgroups selectively abolishes gravitactic behaviour, we measured the 

phototaxis behaviour under the same experimental condition except for light source placed above the apparatus 

(mean ± SD; > 4 trials for each experiment except for JO-all > GAL80
ts

; UAS-tetanus toxin at the restrictive 

temperature. *p < 0.01; Student’s t-test calculated after RM-ANOVA. Cases in which the partition coefficient Cf 

is smaller than 2/3 are highlighted. For statistical analyses, see Supplementary Information footnotes S4, S5). a, 

Phototaxis of flies with ablated antennae. When their antennae were ablated, flies showed significantly lower 

level of negative gravitaxis (See Fig. 3b) than phototaxis (RM-ANOVA, p < 0.05; Student’s t-test, p < 0.05. See 

Supplementary Information footnote S5). b, Aberrant behaviour caused by genetic silencing using GAL80
ts

 and 

UAS-tetanus toxin. Silencing all JO neuron subgroups (JO-all) and subgroups AB (JO-AB) abolishes both 
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negative gravitaxis and phototaxis behaviours (the partition coefficients Cf between 0.08 and 0.38), indicating 

general locomotion defects. c, Specific defects in negative gravitaxis. Silencing subgroups B, CE and ACE did 

not abolish phototaxis (partition coefficients Cf between 0.72 and 0.82). d, Courtship chain indices of the flies 

with genetically silenced JO neurons during stimulation with soft (70-80 dB) sound (mean ± SEM, > 5 trials for 

each experimental group). JO-B > Tetanus toxin flies formed courtship chains less often than controls (1
st

 panel), 

though this difference is not significant (n.s.: p > 0.05, Mann-Whitney U-tests). Silencing subgroups CE and 

ACE did not significantly alter chaining behaviour, either, suggesting that subgroup A neurons labelled by 

JO-ACE driver do not play significant roles. This is probably because (1) faint sounds broadcast via a 

loudspeaker cause particle velocities in the near-field that are still sufficiently large to be detected by flies 

without subgroup A, (2) the JO-ACE driver does not drive expression of tetanus toxin in all subgroup A neurons, 

and/or, (3) male flies do not require subgroup A-mediated sensitive hearing in this behavioural paradigm.  

Genotype in a: Canton-S (wild type). Genotypes in b: F-GAL4/+ (JO-all > +) and F-GAL4/tub-GAL80
ts

; UAS- 

TNT/+ (JO-all > tetanus toxin), JO15/+ (JO-AB > +) and tub-GAL80
ts

/+; UAS-TNT/JO15 (JO-AB > tetanus 

toxin). Genotypes in c: NP1046/+, NP1046/+; tub-GAL80
ts

/+; UAS-TNT/+ (JO-B > tetanus toxin), NP6250/+, 

NP6250/tub-GAL80
ts

; UAS-TNT/+ (JO-CE > tetanus toxin), NP6303/+, NP6303/tub-GAL80
ts

; UAS-TNT/+ 

(JO-ACE > tetanus toxin). 
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Figure S3 | Responses of JO neuron subgroups AB and CE to mechanical stimuli of varying amplitude. a, 

Superimposed time traces of ratio changes across the somata array in subgroups AB (left) and CE (right), evoked 

by small (< 5 m) and medium (ca. 10 m) displacement of the arista. Black horizontal bars show stimulus 

duration (3 s). Dashed horizontal lines indicate zero ratio changes. In subgroups AB, small and medium 

displacements of the arista evoked ratio changes of similar levels. In subgroups CE, on the other hand, smaller 

displacements evoked smaller responses, documenting amplitude-dependent calcium signals. b, Superimposed 

time traces of the ratio changes across the JO somata array in vibration-sensitive subgroup B, evoked by medium 

(10 m) and very large (100 m) displacements of the arista. In spite of the different vibration amplitudes, the 

response amplitude of subgroup B neurons remains largely the same. c, Amplitude distribution of the ratio 

changes in subgroup CE neurons across the somata array (mean ± SD, n = 3 repetition). As in a, right panel, 

calcium signals to small (5 m, orange bars) and very large (100 m, black bars) arista displacements increase 

with the stimulus amplitude. Both stimuli, however, evoke very similar spatial response patterns, suggesting that 

the neurons producing these responses may be the same. Genotypes: NP1046; UAS-cameleon2.1-82 (JO-B > 

cam2.1), UAS-cameleon2.1-82; JO15/TM6b (JO-AB > cam2.1), and NP6250; UAS-cameleon2.1-76 (JO-CE > 

cam2.1).  

 

Figure S4 | Negative gravitaxis, phototaxis, and soft sound responses in JO strains. a-c, To assess whether 

the genetic silencing of JO neuron subgroups selectively abolishes gravitactic behaviour, we measured the 

phototaxis behaviour under the same experimental condition except for light source placed above the apparatus 

(mean ± SD; > 4 trials for each experiment except for JO-all > GAL80
ts

; UAS-tetanus toxin at the restrictive 

temperature. *p < 0.01; Student’s t-test calculated after RM-ANOVA. Cases in which the partition coefficient Cf 

is smaller than 2/3 are highlighted. For statistical analyses, see Supplementary Information footnotes S4, S5). a, 

Phototaxis of flies with ablated antennae. When their antennae were ablated, flies showed significantly lower 

level of negative gravitaxis (See Fig. 3b) than phototaxis (RM-ANOVA, p < 0.05; Student’s t-test, p < 0.05. See 

Supplementary Information footnote S5). b, Aberrant behaviour caused by genetic silencing using GAL80
ts

 and 

UAS-tetanus toxin. Silencing all JO neuron subgroups (JO-all) and subgroups AB (JO-AB) abolishes both 
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negative gravitaxis and phototaxis behaviours (the partition coefficients Cf between 0.08 and 0.38), indicating 

general locomotion defects. c, Specific defects in negative gravitaxis. Silencing subgroups B, CE and ACE did 

not abolish phototaxis (partition coefficients Cf between 0.72 and 0.82). d, Courtship chain indices of the flies 

with genetically silenced JO neurons during stimulation with soft (70-80 dB) sound (mean ± SEM, > 5 trials for 

each experimental group). JO-B > Tetanus toxin flies formed courtship chains less often than controls (1
st

 panel), 

though this difference is not significant (n.s.: p > 0.05, Mann-Whitney U-tests). Silencing subgroups CE and 

ACE did not significantly alter chaining behaviour, either, suggesting that subgroup A neurons labelled by 

JO-ACE driver do not play significant roles. This is probably because (1) faint sounds broadcast via a 

loudspeaker cause particle velocities in the near-field that are still sufficiently large to be detected by flies 

without subgroup A, (2) the JO-ACE driver does not drive expression of tetanus toxin in all subgroup A neurons, 

and/or, (3) male flies do not require subgroup A-mediated sensitive hearing in this behavioural paradigm.  

Genotype in a: Canton-S (wild type). Genotypes in b: F-GAL4/+ (JO-all > +) and F-GAL4/tub-GAL80
ts

; UAS- 

TNT/+ (JO-all > tetanus toxin), JO15/+ (JO-AB > +) and tub-GAL80
ts

/+; UAS-TNT/JO15 (JO-AB > tetanus 

toxin). Genotypes in c: NP1046/+, NP1046/+; tub-GAL80
ts

/+; UAS-TNT/+ (JO-B > tetanus toxin), NP6250/+, 

NP6250/tub-GAL80
ts

; UAS-TNT/+ (JO-CE > tetanus toxin), NP6303/+, NP6303/tub-GAL80
ts

; UAS-TNT/+ 

(JO-ACE > tetanus toxin). 
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Figure S5 | Selective ablation of JO neuron subgroups and compound action potential (CAP) assay in the 

antennal nerve. a-c, Selective expression of ricin toxin A chain abolishes GFP expression in JO neurons. 

Antennae were mounted in 50% glycerol/PBS. Confocal sections were taken with an LSM 510 META 

laser-scanning microscope (Carl Zeiss). In control flies (left panels), GFP is expressed in subgroups of JO 

neurons (arrowheads). No such GFP signals were observed in the flies expressing both GFP and ricin toxin 

(right panels), as is expected for the inhibition of protein synthesis by ricin. Bright-field images of the same 

samples are shown at the bottom. D, dorsal; M, medial; a2, the second antennal segment; a3, the third antennal 

segment. d, Apoptosis of JO neurons triggered by expression of ricin toxin. Heads of newly hatched flies were 

fixed in 3% paraformaldehyde and embedded in TissueTek (Sakura). Cryosections of 16- m thickness were 

subjected to TUNEL staining (green) using the In Situ Cell Death Detection Kit, Fluorescein (Roche) according 

to the protocol provided by the manufacturer. Antibody 22C10 (1:10; Developmental Studies Hybridoma Bank) 

was used for visualising sensory neurons (magenta). Alexa Fluor 546-conjugated anti-mouse IgG (1:1500; 

Invitrogen) was used as a secondary antibody. Left: in wild-type control flies, no TUNEL-positive JO neurons 

are detected. Right: in flies expressing ricin toxin, punctate TUNEL-positive signals are seen in JO neurons 

(arrowheads). e, CAP responses of JO neurons of a wild-type fly to pure tones (sinusoidal sound wave) of six 

different frequencies (19, 38, 76, 152, 244, and 488 Hz). The displacement characteristic of the CAP remained 

constant when the stimulus frequency was altered, providing a frequency-independent measure of the 

mechanical sensitivity of JO. f, Contribution of different subgroups of JO neurons to the intensity characteristics 

of the CAP response. Left: If the absolute CAP amplitudes in AB- and BCE-ablated flies were approximately the 

same, one would expect that the intensity characteristics obtained for these flies (Hill-fits, green and black curves, 

respectively, same as in Fig. 4e) together sum up to an intensity profile (blue curve) that is clearly different from 

that of controls (red curve). Right: We found that the absolute peak amplitude of the remnant CAPs in 

AB-ablated flies is ca. 4 times smaller than that of BCE-ablated flies. (Note that graphs in Fig. 4e and S5e 

present relative CAP value.) Because of this difference, the intensity curves of AB-ablated and BCE-ablated flies 

sum up to an intensity profile (blue curve) that closely resembles that observed in controls (red curve). 

Genotypes in a: NP1046/+; UAS-GFP S65T/+; eyFLP/TM6b (JO-B > GFP; eyFLP), and NP1046/+; UAS-GFP 

S65T/+; eyFLP/UFWTRA19 (JO-B > GFP; eyFLP+ricin toxin). Genotypes in b: eyFLP/UAS-GFP S65T; JO15/ 

TM6b (JO-AB > GFP; eyFLP), and eyFLP/UAS-GFP S65T; JO15/UFWTRA19 (JO-AB > GFP; eyFLP+ricin 

toxin). Genotypes in c: NP6250/UAS-GFP S65T; eyFLP/TM6SbTb (JO-CE > GFP; eyFLP) and NP6250/UAS- 

GFP S65T; eyFLP/UFWTRA19 (JO-CE > GFP; eyFLP+ricin toxin). Genotypes in d: Canton-S (wild type), and 

NP1046/+; eyFLP/UFWTRA19 (JO-B > GFP; eyFLP+ricin toxin). Genotype in e: Canton-S (wild type). 

Genotypes in f: NP1046/+; eyFLP/+; JO15/UFWTRA19 (AB ablated), NP1046/+; NP6250/+; eyFLP/ 

UFWTRA19 (BCE ablated), and Canton-S (Control). 
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Figure S6 | AMMC zones and the target areas of higher-order neurons. a, Confocal serial optical sections of 

the brain of a JO-all > GFP fly (coronal confocal sections, medial to the left). Top: Zones of the AMMC, 

colour-coded using AMIRA (Visage Imaging). Zones C and E are not distinguished here as they are more 

contiguous compared to the other zones8. Counterstaining with nc82 antibody is shown in greyscale. Numbers in 

the lower left indicate the distance of the section (in m) from the entrance point of the axons of JO neurons in 

the brain. Bottom: confocal coronal optical sections of the GAL4 fly strains that label higher-order neurons (see 

Fig. 6a,b) at the same anteroposterior level as the above sections. Zones (dotted lines) were identified based on 

the structural features revealed by counterstaining with nc82 (magenta). Arborisations of the higher order 

neurons (arrows) visualised with GAL4 driver lines enter the respective zones indicated in Fig. 6a, b. b, Confocal 

optical sections obtained from GAL4 fly strains that label nanchung- and nompC-expressing JO neurons. Coronal 

sections at 70 m from the entrance point of the axons of JO neurons are shown. Whereas nanchung is expressed 

in JO neurons innervating all zones of the AMMC, nompC is expressed only in those neurons that arborise zones 

A and B. Genotypes in a: 1st and 2nd panels, NP1046; UAS-GFP S65T (T2). 3rd panel, NP2802/UAS-GFP S65T 

(T2). 4th panel, NP1593/UAS-GFP S65T (T2). 5th panel, NP6250/UAS-GFP S65T (T2). Genotype in b: 

F-GAL4/UAS > CD2, y > CD8::GFP; eyFLP/+ and eyFLP/UAS > CD2, y > CD8::GFP; nompC-GAL4.25/+. 

Figure S7 | Commissures connecting AMMC zones. a, Schematic 3D reconstruction (left) and fluorescent 

signal of the JO neurons in the AMMC (right). White rectangle: the area shown in the sections below. b-d, 

Bodian silver-stained paraffin sections at three dorsoventral levels of the AMMC. Silver staining was performed 

as described8. Left: diagrams of the structures indicated in the sections. Middle: Bodian sections with outlines of 

zones and commissures. Right: Same sections without overlay. b, Section at the level slightly above the 

oesophagus. Thick commissural bundles of AMMC-A1 and -B1 connect zones A and zones B of both 

hemispheres, respectively. These neural fibres form a single bundle, the superior AMMC commissure 

(sAMMCc), which crosses the midline above the oesophagus. c, Section at the bottom level of the oesophagus. 
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The thick commissural bundle of AMMC-B2 connects zones B of both hemispheres. At the midline, these neural 

fibres form the inferior AMMC commissure (iAMMCc) that runs below the oesophagus. d, Section at the level 

slightly below the oesophagus. A small number of axons from JO neurons runs through zones CE and reaches 

the midline. Though some of these fibres cross the midline via the commissure of JO neurons (cJON), most of 

them terminate in the area near the midline and seldom reach the core part of the contralateral zones CE8. A thin 

commissure runs just posterior to cJON. Neural fibres of this para AMMC commissure (paraAMMCc) run 

through zones CE and zone D and arborise in the area posterior lateral to the AMMC (white shaded area with 

dotted circle). This commissure therefore does not connect the zones CE of both hemispheres. 
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Figure S6 | AMMC zones and the target areas of higher-order neurons. a, Confocal serial optical sections of 

the brain of a JO-all > GFP fly (coronal confocal sections, medial to the left). Top: Zones of the AMMC, 

colour-coded using AMIRA (Visage Imaging). Zones C and E are not distinguished here as they are more 

contiguous compared to the other zones8. Counterstaining with nc82 antibody is shown in greyscale. Numbers in 

the lower left indicate the distance of the section (in m) from the entrance point of the axons of JO neurons in 

the brain. Bottom: confocal coronal optical sections of the GAL4 fly strains that label higher-order neurons (see 

Fig. 6a,b) at the same anteroposterior level as the above sections. Zones (dotted lines) were identified based on 

the structural features revealed by counterstaining with nc82 (magenta). Arborisations of the higher order 

neurons (arrows) visualised with GAL4 driver lines enter the respective zones indicated in Fig. 6a, b. b, Confocal 

optical sections obtained from GAL4 fly strains that label nanchung- and nompC-expressing JO neurons. Coronal 

sections at 70 m from the entrance point of the axons of JO neurons are shown. Whereas nanchung is expressed 

in JO neurons innervating all zones of the AMMC, nompC is expressed only in those neurons that arborise zones 

A and B. Genotypes in a: 1st and 2nd panels, NP1046; UAS-GFP S65T (T2). 3rd panel, NP2802/UAS-GFP S65T 

(T2). 4th panel, NP1593/UAS-GFP S65T (T2). 5th panel, NP6250/UAS-GFP S65T (T2). Genotype in b: 

F-GAL4/UAS > CD2, y > CD8::GFP; eyFLP/+ and eyFLP/UAS > CD2, y > CD8::GFP; nompC-GAL4.25/+. 

Figure S7 | Commissures connecting AMMC zones. a, Schematic 3D reconstruction (left) and fluorescent 

signal of the JO neurons in the AMMC (right). White rectangle: the area shown in the sections below. b-d, 

Bodian silver-stained paraffin sections at three dorsoventral levels of the AMMC. Silver staining was performed 

as described8. Left: diagrams of the structures indicated in the sections. Middle: Bodian sections with outlines of 

zones and commissures. Right: Same sections without overlay. b, Section at the level slightly above the 

oesophagus. Thick commissural bundles of AMMC-A1 and -B1 connect zones A and zones B of both 

hemispheres, respectively. These neural fibres form a single bundle, the superior AMMC commissure 

(sAMMCc), which crosses the midline above the oesophagus. c, Section at the bottom level of the oesophagus. 
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The thick commissural bundle of AMMC-B2 connects zones B of both hemispheres. At the midline, these neural 

fibres form the inferior AMMC commissure (iAMMCc) that runs below the oesophagus. d, Section at the level 

slightly below the oesophagus. A small number of axons from JO neurons runs through zones CE and reaches 

the midline. Though some of these fibres cross the midline via the commissure of JO neurons (cJON), most of 

them terminate in the area near the midline and seldom reach the core part of the contralateral zones CE8. A thin 

commissure runs just posterior to cJON. Neural fibres of this para AMMC commissure (paraAMMCc) run 

through zones CE and zone D and arborise in the area posterior lateral to the AMMC (white shaded area with 

dotted circle). This commissure therefore does not connect the zones CE of both hemispheres. 

E
C

A
B

A
B

A
B

E

D

C

D

E
C

AA
BB

CECE

Optic lobeOptic lobeOptic lobeOptic lobeOptic lobeOptic lobeOptic lobe

DD
paraAMMCcparaAMMCc

50 µm50 µm

Optic lobeOptic lobeOptic lobeOptic lobeOptic lobeOptic lobeOptic lobeDD

iAMMCciAMMCc
Optic lobeOptic lobeOptic lobeOptic lobeOptic lobeOptic lobeOptic lobe

DDD

AACECE
BB

sAMMCcsAMMCc

AABB
CECE

D

presumable arborisation 
area of paraAMMCc
presumable arborisation 
area of paraAMMCc

Zone CE
Zone A

Zone D

Dorsal

VentralMidline

b

Horizontal section slightly below the oesophages

c 

d

Horizontal section slightly above the oesophages
Silver section (with overlay) Silver section (without overlay)

cJONcJON

Horizontal section at the bottom level of the oesophages

AMMC-B1
AMMC-A1

AMMC-B1
AMMC-A1

Zone D

Oesophagus

Zone B
Zone CE

AMMC-B2AMMC-B2

Oesophagus

Optic lobe

Optic lobe

cJON

paraAMMCc

sAMMCc

iAMMCc

a Schematic 3D reconstruction and fluorescent signal of the JO neurons in the AMMC

Optic lobe
AMMC-B1
AMMC-A1

AMMC-B1
AMMC-A1

AMMC-B2AMMC-B2

50 µm50 µmZone AZone AZone BZone B
Zone CEZone CE

Zone DZone D

Horizontal section



11www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature07810

The neural basis of Drosophila gravity sensing and hearing: Supplementary Information 

– 12 – 

 

Supplementary Table S1 

Fly strains N= f0, Hz Q E, kbT E, zJ Keff, N/m <X >, nm  

Experimental        

JO-all > cam2.1 5 267±35 1.50±0.34 7.22±1.14 25.6±4.7 2.18±0.91 1087±432 

JO-B > cam2.1 6 265±36 1.35±0.32 8.74±1.24 31.8±5.1 1.67±0.27 1054±106 

JO-AB (hetero) > cam2.1 4 250±67 1.10±0.00 5.81±2.21 19.8±9.1 2.97±2.24   928±547 

JO-AB (homo) > cam2.1 8 307±62 0.88±0.08** 3.41±1.26*   9.9±5.2* 7.28±5.19*   439±237* 

JO-CE > cam2.1 5 242±29 1.66±0.80 7.93±2.29 28.5±9.4 1.73±0.89 1331±615 

Control        

Canton-S 7 253±53 1.39±0.31 8.90±3.05 32.5±12.5 1.94±1.75 1438±748 

 

Table S1 | Principal parameter values of fits of a damped harmonic oscillator model to receiver 

fluctuations. The performance of the antennal receiver was examined by measuring the free fluctuations of the 

arista-tip in the absence of external stimulation1,2. By fitting the power spectrum of the fluctuations with a simple 

harmonic oscillator model, the resonance frequency (f0), the tuning sharpness (quality factor) (Q), the mean total 

energy (E), the energy contributed by the mechanical activity of JO neurons ( E), the effective receiver stiffness 

(Keff), and the total fluctuation power in the frequency range between 100 and 1500 Hz (<X >) were determined 

(for a detailed description, see Göpfert et al.1). Significant differences (*p < 0.05; **p < 0.01) from 

corresponding values of wild-type Canton-S flies are shown (Two-tailed Mann-Whitney U-test with the 

Sidak-Bonferroni correction was used for the determination of significance). In JO-AB > cam2.1 homozygous 

flies, the tuning sharpness (quality factor) (Q), the total fluctuation power (<X >), and the mean total energy (E) 

of the receiver were significantly lower than in controls. The effective stiffness (Keff) was significantly increased, 

leading to a drop in the mechanical susceptibility of their receivers. Interestingly, also the neural energy 

contribution ( E) was reduced in these flies, documenting that function of JO neurons is impaired. No 

significant differences were obtained between other experimental flies (JO-all > cam2.1, JO-B > cam2.1, JO-AB 

> cam2.1 heterozygous flies, and JO-CE > cam2.1) and controls. N indicates the number of measured animals.  
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Supplementary Video 1 

This movie shows the spatial activation of the JO somata array (outlined in white line) in a JO-all > cam2.1 fly to 

five types of mechanical stimuli: static deflections towards anterior and posterior, pulse song, and 244- and 

19-Hz sinusoids. Stimulus duration is indicated by the red square at the top-left (QuickTime; 1.3 MB). 

Supplementary Video 2 

This movie shows the 3D structure of the zones in the AMMC. Reconstruction was generated from the serial 

section data shown in Supplementary Video 3 by manually painting the arborisation areas of each zone using 

Amira 3.1 Software (Visage Imaging) (QuickTime; 4.7 MB). 

Supplementary Video 3 

This movie shows the serial section of AMMC from the anterior to posterior. The first half of the movie shows 

the GFP signal (green) in the JO-all > GFP fly, counterstained with the nc82 antibody (magenta). In the second 

half, the labelled areas were painted according to the zone structure of AMMC (QuickTime; 8.9 MB). 

Supplementary Video 4 

This movie shows the counter-current apparatus in action. Actual experiments were performed in pitch darkness. 

Under bright light condition, flies show both negative-gravitaxis and phototaxis, leading to a high partition 

coefficient Cf. Note that some parts of the movie are played at 10x speed (QuickTime; 4.2 MB). 

Supplementary Video 5 

This movie shows the response of the flies to a synthesized courtship pulse song. The left and right chambers 

house flies with intact and ablated antennae, respectively. Behaviours observed in the absence of sound and the 

presence of mild and loud sounds are shown. Excerpt from 10-min recording (QuickTime; 7.9 MB). 
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SUPPLEMENTARY METHODS 

Equipment and settings. For calcium imaging analysis (Figs 1, 2, and Supplementary Figs S1 and S3), a 

cameleon 2-filter set (455 nm DCLP, 515 nm DCLP, 535/30 nm emission filter, 485/40 nm emission filter; part 

#71007, Chroma Technology) and a beam-splitter device Dual View (Photometrics) were used for detecting the 

EYFP and ECFP images simultaneously with a single CCD chip. Pseudocolour images were constructed using a 

Pseudocolour lookup table available in MetaMorph software (Molecular Devices). Contrast of digital images 

was adjusted with Photoshop CS software (Adobe Systems). For confocal images (Figs 1b, 2b, 5, 6, and 

Supplementary Figs S2, S5a-d, S6, and S7a), serial optical sections at 0.5-1.2 m intervals were taken with LSM 

510 confocal microscopes (Carl Zeiss) equipped with a water-immersion 40x Plan-Apochromat objective (NA = 

1.2; Figs 1b, 2b, 5b, and Supplementary Figs S2 and S7a) and a 63x Plan-Apochromat objective (NA = 1.2; Fig. 

6a, b, and Supplementary Fig. S6), with an LSM 510 META confocal microscope (Carl Zeiss) equipped with a 

20x Plan-Apochromat objective (NA = 0.75; Supplementary Fig. S5a-d), and with a FV1000 confocal 

microscope (Olympus) equipped with an oil-immersion 60x UPLSAPO objective (NA = 1.35; Fig. 5a). Confocal 

datasets were processed with 3D-reconstruction software Volocity 3.0 (Improvision; Fig 1b), Amira 3.1 (Visage 

Imaging; Fig. 2b and Supplementary Figs S2 and S7a), and Imaris 2.7 (Bitplane AG; Fig. 6a, b). GFP, Alexa 

Fluor 488-conjugated goat anti-rabbit IgG, and TUNEL signals were excited at 488 nm and detected via a 

500–540 nm band-pass filter. Alexa Fluor 546-conjugated anti-mouse IgG (Supplementary Fig. S5d) was excited 

at 543 nm and detected via a 560-615 nm band-pass filter. Alexa Flour 633-conjugated goat anti-mouse IgG 

signal (Figs 2b, 5b and Supplementary Figs S6 and S7a) was excited at 633 nm and detected via a 650 nm 

long-pass filter. The resolution of a single confocal section was 1024 x 1024 pixels (Figs 6a, b, and 

Supplementary Figs S2, S5 and S6) and 512 x 512 pixels (Figs 1b, 2b, 5 and Supplementary Fig. S7a). For Fig 

2b and Supplementary Figs S2, S6 and S7a, images of serial confocal sections were painted manually using 

Amira 3.1 software (Visage Imaging) to show the arborisation areas of each zone. For visualising the 

morphology of individual neurons in Fig. 6, signals of other labelled cells were erased manually from the 

confocal data set17. To do this, a series of TIFF-format confocal images was imported to ImageReady software 

(Adobe Systems) and, by comparing the neighbouring sections, signals attributed to other labelled cells were 

painted in background colour. For silver-stained sections (Supplementary Fig. S7b-d), images were taken with a 

40x Plan-Apochromat objective lens (n.a. 1.3) with Nomarski optics using an Axioplan microscope (Carl Zeiss) 

and an AxioCam HRc digital camera (Carl Zeiss). For each 7- m paraffin section, a series of 3 images of 2560 x 

2048 pixels were taken at slightly different focal planes and overlaid using Image-J (NIH) with StackReg and 

Stack Focuser plug-ins to achieve broader depth of focus. The size, contrast, and brightness of the resulting 

images were adjusted with Photoshop CS software (Adobe Systems).  



14www.nature.com/nature

doi: 10.1038/nature07810 SUPPLEMENTARY INFORMATIONThe neural basis of Drosophila gravity sensing and hearing: Supplementary Information 

– 15 – 

 

REFERENCES FOR SUPPLEMENTARY INFORMATON 

1. Göpfert, M.C., Humphris, A.D., Albert, J.T., Robert, D. & Hendrich, O. Power gain exhibited by motile 

mechanosensory neurons in Drosophila ears. Proc. Natl. Acad. Sci. USA 102, 325-330 (2005). 

2. Albert, J.T., Nadrowski, B. & G pfert, M.C. Mechanical signatures of transducer gating in the Drosophila 

ear. Curr. Biol. 17, 1000-1006 (2007). 

3. Bennet-Clark, H.C. Acoustics of insect song. Nature 234, 255-259 (1971). 

4. Eberl, D.F., Duyk, G.M. & Perrimon, N. A genetic screen for mutations that disrupt an auditory response in 

Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94, 14837-14842 (1997). 

5. Göpfert, M.C., Albert, J.T., Nadrowski, B. & Kamikouchi, A. Specification of auditory sensitivity by 

Drosophila TRP channels. Nat. Neurosci. 9, 999-1000 (2006). 

6. Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl. Acad. Sci. 

USA 58, 1112-1119 (1967). 

7. Bacon, J.P. & Strausfeld, N.J. The dipteran ‘Giant fibre’ pathway: neurons and signals. J. Comp. Physiol. A 

158, 529-548 (1986). 

8. Kamikouchi, A., Shimada, T. & Ito, K. Comprehensive classification of the auditory sensory projections in 

the brain of the fruit fly Drosophila melanogaster. J. Comp. Neurol. 499, 317-356 (2006). 

9. Hudspeth, A.J. Hearing: in Principles of Neural Science (eds Kandel, E.R., Schwartz, J.H. & Thomas, M.J.) 

590-613 (McGraw-Hill, New York, 2000). 

10. Goldberg, M.E. & Hudspeth, A.J. The Vestibular System: in Principles of Neural Science (eds Kandel, E.R., 

Schwartz, J.H. & Thomas, M.J.) 801-815 (McGraw-Hill, New York, 2000). 

11. Cant, N.B. & Benson, C.G. Parallel auditory pathways: projection patterns of the different neuronal 

populations in the dorsal and ventral cochlear nuclei. Brain. Res. Bull. 60, 457-474 (2003). 

12. Büttner-Ennever, J.A. A review of otolith pathways to brainstem and cerebellum. Ann. N. Y. Acad. Sci. 871, 

51-64 (1999). 

13. Barmack, N.H. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain. Res. Bull. 60, 

511-541 (2003). 

14. Phelan, P. et al. Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber 

system. J. Neurosci. 16, 1101-1113 (1996). 

15. Todi, S.V., Sharma, Y. & Eberl, D.F. Anatomical and molecular design of the Drosophila antenna as a 

flagellar auditory organ. Microsc. Res. Tech. 63, 388-389 (2004). 

16. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81-84 (2003). 

17. Otsuna, H. & Ito, K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. 

Lobula-specific pathways. J. Comp. Neurol. 497, 928-958 (2006). 

 


