Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Advanced optics in a jellyfish eye

Abstract

Cubozoans, or box jellyfish, differ from all other cnidarians by an active fish-like behaviour and an elaborate sensory apparatus1,2. Each of the four sides of the animal carries a conspicuous sensory club (the rhopalium), which has evolved into a bizarre cluster of different eyes3. Two of the eyes on each rhopalium have long been known to resemble eyes of higher animals, but the function and performance of these eyes have remained unknown4. Here we show that box-jellyfish lenses contain a finely tuned refractive index gradient producing nearly aberration-free imaging. This demonstrates that even simple animals have been able to evolve the sophisticated visual optics previously known only from a few advanced bilaterian phyla. However, the position of the retina does not coincide with the sharp image, leading to very wide and complex receptive fields in individual photoreceptors. We argue that this may be useful in eyes serving a single visual task. The findings indicate that tailoring of complex receptive fields might have been one of the original driving forces in the evolution of animal lenses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The eyes of the box jellyfish Tripedalia cystophora.
Figure 2: Optical properties of the lenses.
Figure 3: Modelling of receptive fields of individual photoreceptors in the retina of the upper and lower eyes.

Similar content being viewed by others

References

  1. Buskey, E. J. Behavioral adaptations of the cubozoan medusa Tripedalia cystophora for feeding on copepods (Dioithona oculata) swarms. Mar. Biol. 142, 225–232 (2003)

    Article  Google Scholar 

  2. Berger, E. W. The histological structure of the eyes of cubomedusae. J. Comp. Neurol. 8, 223–230 (1898)

    Article  Google Scholar 

  3. Laska, G. & Hündgen, M. Morphologie und Ultrastuktur der Lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool. Jb. Anat. 108, 107–123 (1982)

    Google Scholar 

  4. Coates, M. M. Visual ecology and functional morphology of the Cubozoa. Integr. Comp. Biol. 43, 542–548 (2003)

    Article  PubMed  Google Scholar 

  5. Nilsson, D.-E. Eye evolution: a question of genetic promiscuity. Curr. Opin. Neurobiol. 14, 407–414 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Arendt, D., Tessmar-Raible, K., Snyman, H., Dorrestein, A. W. & Wittbrodt, J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869–871 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Stewart, S. E. Field behavior of Tripedalia cystophora (Class Cubozoa). Mar. Freshwater Behav. Physiol. 27, 175–188 (1996)

    Article  Google Scholar 

  8. Martin, V. J. Photoreceptors of cnidarians. Can. J. Zool. 80, 1703–1722 (2002)

    Article  CAS  Google Scholar 

  9. Piatigorsky, J. & Kozmik, Z. Cubozoan jellyfish: an evo/devo model for eyes and other sensory systems. Int. J. Dev. Biol. 48, 719–729 (2004)

    Article  PubMed  Google Scholar 

  10. Laska, G. & Hündgen, M. Die Ultrastruktur des neuromuskulären Systems der Medusen von Tripedalia cystophora und Carybdea marsupialis (Coelenterata, Cubozoa). Zoomorphology 104, 163–170 (1984)

    Article  Google Scholar 

  11. Piatigorsky, J., Horwitz, J. & Norman, B. L. J1-crystallins of the cubomedusan jellyfish lens constitute a novel family encoded in at least three intronless genes. J. Biol. Chem. 268, 11894–11901 (1993)

    CAS  PubMed  Google Scholar 

  12. Piatigorsky, J. et al. J3-crystalline of the jellyfish lens: Similarity to saposins. Proc. Natl Acad. Sci. USA 98, 12362–12367 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Land, M. F. & Nilsson, D.-E. Animal Eyes (Oxford Univ. Press, Oxford, 2002)

    Google Scholar 

  14. Kröger, R. H. H., Campbell, C. W., Munger, R. & Fernald, R. D. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni. Vision Res. 34, 1815–1822 (1994)

    Article  PubMed  Google Scholar 

  15. Werner, B., Cutress, C. E. & Studebaker, J. P. Life cycle of Tripedalia cystophora Conant (Cubomedusae). Nature 232, 582–583 (1971)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Jagger, W. S. & Sands, P. J. A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res. 39, 2841–2852 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Fletcher, A., Murphy, T. & Young, A. Solutions of two optical problems. Proc. R. Soc. Lond. A 223, 216–225 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  18. Stange, G. The ocellar component of flight equilibrium control in dragonflies. J. Comp. Physiol. A 141, 335–347 (1981)

    Article  Google Scholar 

  19. DeAngelis, G. C., Ghose, G. M., Ohzawa, I. & Freeman, R. D. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19, 4046–4064 (1999)

    Article  CAS  Google Scholar 

  20. Suder, K. et al. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalmocortical feedforward activity. Exp. Brain Res. 144, 430–444 (2002)

    Article  PubMed  Google Scholar 

  21. Schweigart, G. & Eysel, U. T. Activity dependent receptive field changes in the surround of adult cat visual cortex lesions. Eur. J. Neurosci. 15, 1585–1596 (2002)

    Article  PubMed  Google Scholar 

  22. Bartels, A. & Zeki, S. The theory of multistage integration in the visual brain. Proc. R. Soc. Lond. B 265, 2327–2332 (1998)

    Article  CAS  Google Scholar 

  23. Nilsson, D.-E., Andersson, M., Hallberg, E. & McIntyre, P. A micro-interferometric method for analysis of rotation-symmetric refractive-index gradients in intact objects. J. Microsc. 132, 21–29 (1983)

    Article  Google Scholar 

  24. Warrant, E. J. & Nilsson, D.-E. Absorption of white light in photoreceptors. Vision Res. 38, 195–207 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. J. Warrant and M. F. Land for comments on the manuscript, and Rita Wallén for technical assistance. This work was supported by grants from the Swedish Research Council (to D.-E.N.), the National Science Foundation USA (to M.M.C.) and the Danish Research Council (to A.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-E. Nilsson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, DE., Gislén, L., Coates, M. et al. Advanced optics in a jellyfish eye. Nature 435, 201–205 (2005). https://doi.org/10.1038/nature03484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03484

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing