Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High temperatures in the Late Cretaceous Arctic Ocean

Abstract

To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposits are usually inaccessible beneath a cover of floating ice. A shallow piston core taken from a drifting ice island in 1970 fortuitously retrieved unconsolidated Upper Cretaceous organic-rich sediment from Alpha ridge1,2,3,4, a submarine elevated feature of probable oceanic origin5. A lack of carbonate in the sediments from this core has prevented the use of traditional oxygen-isotope palaeothermometry. Here we determine Arctic palaeotemperatures from these Upper Cretaceous deposits using TEX86, a new palaeothermometer that is based on the composition of membrane lipids derived from a ubiquitous component of marine plankton, Crenarchaeota6. From these analyses we infer an average sea surface temperature of 15 °C for the Arctic Ocean about 70 million years ago7. This calibration point implies an Equator-to-pole gradient in sea surface temperatures of 15 °C during this interval and, by extrapolation, we suggest that polar waters were generally warmer than 20 °C during the middle Cretaceous ( 90 million years ago).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Arctic Ocean.
Figure 2: Suggested stratigraphic relationships of Campanian–Maastrichtian biogenic sediments of the Alpha ridge, Arctic Ocean.
Figure 3: Proxy palaeotemperature curve for the Arctic Ocean.
Figure 4: Northern Hemisphere view of the Arctic Ocean during the Late Cretaceous (Turonian).

Similar content being viewed by others

References

  1. Clark, D. L. Early history of the Arctic Ocean. Paleoceanography 3, 539–550 (1988)

    Article  ADS  Google Scholar 

  2. Clark, D. L., Byers, C. W. & Pratt, L. M. Cretaceous black mud from the central Arctic Ocean. Paleoceanography 1, 265–271 (1986)

    Article  ADS  Google Scholar 

  3. Mudie, P. J. & Blasko, S. M. in Initial Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge (eds Jackson, H. R., Mudie, P. J. & Blasko, S. M.) 59–99 (Paper 84–22, Geol. Surv. Canada, Ottawa, 1985)

    Google Scholar 

  4. Firth, J. V. & Clark, D. L. An early Maastrichtian organic-walled phytoplankton cyst assemblage from an organic-walled black mud in Core Fl-533, Alpha Ridge: evidence for upwelling conditions in the Cretaceous Arctic Ocean. Mar. Micropaleont. 34, 1–27 (1998)

    Article  ADS  Google Scholar 

  5. Jokat, W. Seismic investigations along the western sector of Alpha Ridge, Central Arctic Ocean. Geophys. J. Int. 152, 185–201 (2003)

    Article  ADS  Google Scholar 

  6. Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Gradstein, F. M. et al. A Mesozoic time scale. J. Geophys. Res. B 99, 24051–24074 (1994)

    Article  ADS  Google Scholar 

  8. Dell'Agnese, D. J. & Clark, D. L. Siliceous microfossils from the warm Late Cretaceous and Early Cenozoic Arctic Ocean. J. Paleontol. 68, 31–47 (1994)

    Article  Google Scholar 

  9. Stoffyn-Egli, P. Iron and manganese micro-precipitates with a Cretaceous biosiliceous ooze from the Arctic Ocean: possible hydrothermal source. Geo-Mar. Lett. 7, 223–231 (1987)

    Article  ADS  CAS  Google Scholar 

  10. Mudie, P. J. in Initial Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge (eds Jackson, H. R., Mudie, P. J. & Blasko, S. M.) 148–174 (Paper 84–22, Geol. Surv. Canada, Ottawa, 1985)

    Google Scholar 

  11. Barron, J. A. in Initial Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge (eds Jackson, H. R., Mudie, P. J. & Blasko, S. M.) 137–148 (Paper 84–22, Geol. Surv. Canada, Ottawa, 1985)

    Google Scholar 

  12. Bukry, D. in Initial Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge (eds Jackson, H. R., Mudie, P. J. & Blasko, S. M.) 125–135 (Paper 84–22, Geol. Surv. Canada, Ottawa, 1985)

    Google Scholar 

  13. Sinninghe Damsté, J. S. et al. The rise of the rhizosolenid diatoms. Science 304, 584–587 (2004)

    Article  ADS  Google Scholar 

  14. Holba, A. G. et al. Application of 24-norcholestanes for constraining source ages of petroleum. Org. Geochem. 29, 1269–1283 (1998)

    Article  CAS  Google Scholar 

  15. Kitchell, J. A. & Clark, D. L. Late Cretaceous–Paleogene paleogeography and paleocirculation: evidence of north polar upwelling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 135–165 (1982)

    Article  Google Scholar 

  16. Schouten, S. et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology 31, 1069–1072 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Barron, E. J. A warm, equable Cretaceous: the nature of the problem. Earth Sci. Rev. 19, 305–338 (1983)

    Article  ADS  Google Scholar 

  18. Barrera, E. & Savin, S. M. in Evolution of the Cretaceous Ocean–Climate System (eds Barrera, E. & Johnson, C. C.) 245–282 (Spec. Paper 332, Geol. Soc. Am., Boulder, Colorado, 1999)

    Book  Google Scholar 

  19. Wilson, P. A. & Opdyke, B. N. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology 24, 555–558 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Huber, B. T., Hodell, D. A. & Hamilton, C. P. Mid- to Late Cretaceous climate of the southern high latitudes. Stable isotopic evidence for minimal equator-to-pole thermal gradients. Bull. Geol. Soc. Am. 107, 1164–1191 (1995)

    Article  Google Scholar 

  21. Jenkyns, H. C., Gale, A. S. & Corfield, R. M. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag. 131, 1–34 (1994)

    Article  ADS  Google Scholar 

  22. Clarke, L. J. & Jenkyns, H. C. New oxygen-isotope evidence for long-term Cretaceous climate change in the Southern Hemisphere. Geology 27, 699–702 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Morton, J. F. Fruits of Warm Climates (Creative Resources Systems, Miami, 1987)

    Google Scholar 

  24. Nathorst, A. G. Ueber die Reste eines Brotfruchtbaums ARTOCARPUS DICKSONI n. sp., aus den cenomanen Kreideablagerungen Grönlands. Kongl. Svenska Vetenskaps-Akad. Hand 24, 2–9 (1890)

    Google Scholar 

  25. Tarduno, J. A. et al. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282, 2241–2244 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Huber, B. T. Tropical paradise at the Cretaceous poles? Science 282, 2199–2200 (1998)

    Article  CAS  Google Scholar 

  27. Herman, A. B. & Spicer, R. A. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380, 330–333 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Spicer, R. A. & Parrish, J. T. Late Cretaceous–early Tertiary palaeoclimates of northern high latitudes: a quantitative view. J. Geol. Soc. Lond. 147, 329–341 (1990)

    Article  Google Scholar 

  29. Wuchter, C., Schouten, S. & Sinninghe Damsté, J. S. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry. Paleoceanography (in the press)

  30. Schouten, S., Hopmans, E. & Sinninghe Damsté, J. S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Org. Geochem. 35, 567–571 (2004)

    Article  CAS  Google Scholar 

  31. Hay, W. W., Eicher, D. L. & Diner, R. in Evolution of the Western Interior Basin (eds Caldwell, W. G. E. & Kauffman, E. G.) 297–318 (Spec. Pap. 39, Geol. Ass. Canada, St John's, Newfoundland, 1993)

    Google Scholar 

Download references

Acknowledgements

We thank D. Clark for indicating the whereabouts of core Fl-533, and T. Simo for locating it in the Department of Geology and Geophysics of the University of Wisconsin at Madison. S. Rampen and J. Ossebaar (Royal NIOZ) are thanked for analytical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh C. Jenkyns.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkyns, H., Forster, A., Schouten, S. et al. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004). https://doi.org/10.1038/nature03143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03143

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing