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Although hydrogen is the simplest of atoms, it
does not form the simplest of solids or liquids.
Quantum effects in these phases are considerable
(a consequence of the light proton mass) and they
have a demonstrable and often puzzling influence
on many physical properties [1], including spatial
order. To date, the structure of dense hydrogen
remains experimentally elusive [2]. Recent stud-
ies of the melting curve of hydrogen [3, 4] indicate
that at high (but experimentally accessible) pres-
sures, compressed hydrogen will adopt a liquid
state, even at low temperatures. In reaching this
phase, hydrogen is also projected to pass through
an insulator-to-metal transition. This raises the
possibility of new state of matter: a near ground-
state liquid metal, and its ordered states in the
quantum domain. Ordered quantum fluids are
traditionally categorized as superconductors or
superfluids; these respective systems feature dis-
sipationless electrical currents or mass flow. Here
we report an analysis based on topological argu-
ments of the projected phase of liquid metallic
hydrogen, finding that it may represent a new
type of ordered quantum fluid. Specifically, we
show that liquid metallic hydrogen cannot be cat-
egorized exclusively as a superconductor or su-
perfluid. We predict that, in the presence of a
magnetic field, liquid metallic hydrogen will ex-
hibit several phase transitions to ordered states,
ranging from superconductors to superfluids.

Hydrogen constitutes more than 90% of all atoms in
the visible universe and contributes three quarters of its
mass. It is widely accepted that hydrogen is abundant in
the interiors of Saturn and Jupiter where it is both liquid
and metallic [5], and the origin of their magnetospheres.
The conditions in these planets, particularly those of el-
evated temperatures, impel a view of dense hydrogen as
a classical liquid metal [6]. In what follows, a quite dif-
ferent view is taken for low temperatures where, for a
range of densities, hydrogen is projected to take up a
state which may be described as a quantum liquid metal.
The notion originates both with the light mass of the
proton and the form of the electronically screened, and
hence density dependent, proton-proton interactions.

The proton has one fourth the mass of 4He, which in a
condensed phase at normal conditions is a classic perma-

nent liquid, a consequence of high zero-point energy com-
pared with relatively weak ordering energies arising from
interactions. Similarly, zero-point energies of protons in

a dense environment are also high, and at elevated com-
pressions there is a shift of electron density from intra-
molecular regions to inter-molecular, and with it a pro-
gressive decline in the effective inter-proton attractions
(both within proton pairs, and between). Because of this
there is also a decline of ordering energies from interac-
tions relative to protonic zero-point energies, and argu-
ments have therefore been advanced [2] first to suggest
the occurence of a melting point maximum in compressed
hydrogen, but second that there may also be a range of
densities where, as in 4He, hydrogen may choose a fluid
phase for its ground state. En route it passes through
an insulator-metal transition and the phase will aptly
be described as liquid metallic hydrogen, a translation-
ally invariant two-component fermionic liquid. There is
preliminary experimental evidence that a melting point
maximum may indeed exist [3] and it has received recent
theoretical backing [4]. Experimentally a 12.4 fold com-
pression of hydrogen has already been achieved at around
320 GPa. Estimates suggest that LMH should appear at
13.6 fold compression at pressure in the vicinity of 400
GPa [4], whereas hydrogen alloys may exhibit metallic-
ity at significantly lower pressures [7]. A predicted key
feature of LMH at low temperature is the coexistence of

superconductivity of proton-proton and electron-electron

Cooper pairs [8]. These condensates are independently
conserved, since electronic Coopers pairs cannot be con-
verted to protonic Cooper pairs. Thus, there is no in-
trinsic Josephson coupling between the two condensates.
This sets LMH apart from multi-component electronic
condensates such as MgB2. We therefore address some
possible novel and experimentally observable physics of
this new state of matter. Our goal is to discuss effects
independent of pairing mechanism or other microscopic
details. So in a search for qualitatively new physics we
base our analysis solely on the topology of the proton-
electron superconducting condensate.

The free energy appropriate for LMH will be described
by the following Ginzburg-Landau (GL) model

F =
|(∇+ ieA)Ψe|

2

2me

+
|(∇− ieA)Ψp|

2

2mp

+V (|Ψe,p|
2) +

B2

2
; B = ∇×A. (1)

the condensate order parameters are complex fields de-
noted by Ψα = |Ψα|e

iφα , where α = p, e, with p and
e referring to protonic and electronic Cooper pairs and
V (|Ψα|

2) = bα|Ψα|
2 + cα

2
|Ψα|

4 + d|Ψp|
2|Ψe|

2. We have
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introduced the masses me and mp of the electronic and
protonic Cooper-pairs, respectively, and ±e is the effec-
tive charge of the Cooper-pairs in the two condensates.
Apart from the Josephson term Ψ∗

eΨp + h.c. which is
forbidden, as noted above, (1) may include other terms
which merely introduce small quantitative changes to the
effects discussed in this paper, and which thus may be
omitted. The GL free energy can be rewritten as [9, 10]

F =
1
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−e
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|Ψe|
2

me
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2

mp

)

A

}2

+
B2

2
. (2)

The first term is recognised as the kinetic term of Gross-
Pitaevskii functional for liquid 4He, since no coupling
to a vector potential A is present. This term may be
thought of as describing an electrically neutral mode
in the system, and is nothing but dissipationless co-

directed currents of electrons and protons carrying zero

net charge. The second term is equivalent to a gauge-
invariant gradient term in an ordinary superconductor
describing a charged mode in the system.
From the point of view of electronic pairing it has been

suggested that at certain densities metallic hydrogen is
a type-II superconductor [11, 12] i.e. magnetic flux may
penetrate it in the form of vortices. When both pro-
tonic and electronic pairings occur the interesting physi-
cal question centers on whether there is a vortex structure
for both, and there are several distinct possibilities. The
main features of the ground state of vortex matter in this
model are: (i) If the vortices of both components share
the same core, such a composite vortex is characterized
by phase windings (∆φe = ±2π, ∆φp = ∓2π), and then
it has a finite energy per unit length, and carries one flux
quantum [10]. Only these types of composite vortices
can actually be induced by a magnetic field. By a phase
winding, we mean here the line integral of a phase gra-
dient around a closed contour. In contrast, the vortices
(∆φe = ±2π, ∆φp = 0) and (∆φe = 0, ∆φp = ±2π)
carry a fraction of flux quantum and then a logarithmi-
cally divergent energy per unit length [10]. (ii) In the
absence of an external magnetic field, the phase tran-
sitions in (1) are driven by a proliferation of thermally
excited closed loops of vortices (∆φe = 2π, ∆φp = 0) and
(∆φe = 0, ∆φp = 2π) at critical temperatures T e

c and T p
c ,

respectively [13, 14]. We stress that in zero applied field
the system is superconducting at all temperatures below
T e
c .
Next, we point out that application of an external mag-

netic field can change the physical state of LMH dramat-
ically and may result in a novel type of quantum fluid.

We first consider the type-II regime. We emphasize that
LMH should allow great flexibility in changing the GL
parameter κ both for protons and electrons by varying
the applied pressure and temperature [11, 12]. In a super-
conductor with only one type of Cooper pair, a lattice of
Abrikosov vortices melts in a first-order phase transition
at a temperature TM (B) which decreases with increasing
magnetic field [13]. The physical possibilities for LMH
are far richer, as we shall see. At zero temperature in an
external field the system allows only composite vortices
with φp = −φe [for such a vortex the first term in (2) is
zero]. However, because of thermal fluctuations, at T 6= 0
a vortex (∆φe = 2π,∆φp = −2π) can split locally into
two elementary vortices (∆φe = 2π,∆φp = 0) + (∆φe =
0,∆φp = −2π) as shown in Fig. 1. Such a splitting

)N B
)N B

e

p

=2
=-2

)N Be=2)N Bp=-2

FIG. 1: Local splitting of a composite vortex line in LMH. The
blue and red colors represent electronic and protonic vortices,
respectively. The length scales are chosen almost equal for
graphical convenience.

would result in a nontrivial contribution to the Ginzburg-
Landau energy from the first term in (2), in the area in
between two branches, since segments of such a loop at-
tract each other logarithmically [10, 14]. The system
(1) therefore possesses a characteristic “vortex ioniza-

tion” temperature at which a composite flux line (∆φe =
2π,∆φp = −2π) completely splits into two elementary
vortices (∆φe = 2π,∆φp = 0) + (∆φe = 0,∆φp = −2π).
Such a splitting leads to a “plasma” of line vortices in-
teracting with a logarithmic potential. This topological
transition is in the 3D XY universality class, and should
not be confused with topological phase transitions in two-
dimensional superconductors. In Fig.1 the protonic and
electronic vortices are represented by thin and thick lines
respectively. Of the two, the protonic vortex fluctuates
more because it has a smaller stiffness |Ψp|

2/mp due to
larger mass mp ≫ me. It carries a smaller fraction of
flux quantum Φ = Φ0|Ψp|

2/mp[|Ψp|
2/mp + |Ψe|

2/me]
−1

[10] and thus has smaller energy per unit length. This
leads to a “role inversion” in vortex matter: vortices in
the condensate of heavier particles cost less energy per
unit length than vortices of condensates of lighter par-
ticles. At low temperatures, the core size of a protonic
vortex is expected to be much smaller than that of an
electronic vortex because of the much larger mass of the
former. However such a picture is not applicable in the
immediate vicinity of critical temperature for protons,
where the protonic coherence length diverges. We now
proceed to discuss the LMH phase diagram at low and
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high magnetic fields.
LMH in low magnetic fields. Let us first consider

the low-field regime in Fig. 2, when the characteristic
temperature required to split a composite vortex line,
TSLM , is much smaller than the melting temperature
of the lattice of electronic vortices, T e

M . Such a regime
should be realizable in external fields much smaller than
the upper critical magnetic field He

c2 for the electronic
condensate. Here, when the splitting of the field-induced
composite vortex line (∆φe = 2π,∆φp = −2π) →
(∆φe = 2π,∆φp = 0) + (∆φe = 0,∆φp = −2π) becomes
of order of intervortex distances, the logarithmic interac-
tion of the split vortices would be screened in a manner
similar to that expected in an ensemble of positively and
negatively charged strings. When T < TSLM ≪ T e

M we
therefore have an Abrikosov lattice of composite vortices,
which we may call a superconducting superfluid because
of the coexistence of a neutral and charged modes, de-
noted SSF in Fig. 2. However, upon transition to the
“vortex-ionized” state, T > TSLM , we have a lattice of

electronic vortices immersed in a liquid of protonic vor-

tex lines. There has been a vortex sublattice melting, pro-

tonic superconductivity and the composite neutral mode
disappear in this state, but the system remains in an
electronic superconducting state so long as the electronic
vortex lattice remains intact, i.e. for T < T e

M [13]. This
phase is denoted ESC in Fig. 2; the phase transition
separating SSF from ESC, as well as the phase ESC
itself, have no counterparts so far in ordinary supercon-
ductors. One of the consequences of the presence of a
background protonic vortex liquid is that electronic vor-
tices carry only a fraction of the flux quantum, given by
[10] Φ = Φ0|Ψe(T )|

2/me[|Ψe(T )|
2/me+ |Ψp(T )|

2/mp]
−1,

where Φ0 is the flux quantum. This fraction will be
temperature dependent and with increasing temperature
should reach the value Φ0 when |Ψp| = 0. In addition
to the temperatures TSLM and T e

M , the system possesses
characteristic temperatures T p

L(Ψp(B)) and T e
L(Ψe(B))

of thermally driven proliferation of protonic and elec-
tronic vortex loops, respectively, where T p,e

L (Ψp,e(B)) >
TSLM . The zero-field limit of T p,e

L (Ψp,e(B)) corresponds
to the temperatures T p,e

c introduced below (2), see Fig.
2.

FIG. 2: A schematic phase diagram of LMH as a function of applied magnetic field B and temperature T. Phase SSF:
Composite vortex lattice, which is a superconducting superfluid state. Phase MSF: Composite vortex liquid, which is a
nonsuperconducting metallic superfluid state. The transition from SSF to MSF is a superconductor-superfluid transition, and

distinguishes LMH from any other known quantum fluid. Phase ESC: Electronic vortex lattice immersed in a protonic vortex
line liquid. This is a superconducting, but not superfluid state. Phase NF: Vortex line plasma, which emerges when composite
vortex lines are fully “ionized” into an electronic as well as a protonic vortices, neither of which is arranged in a lattice. It
features nonzero resistivity as well as viscosity. The low-temperature vortex-liquid phase at very low magnetic fields is not
shown.

LMH in strong magnetic fields. Here the charac-
teristic temperature required to split a composite vortex
line, TLP , is much larger than the melting temperature
of the lattice of composite vortices, T c

M . Such a situation
occurs when (i) the bare phase-stiffness of the electronic
condensate |Ψe|

2/me is suppressed by the external mag-
netic field down to being of the same order of magnitude
as the protonic stiffness, and (ii) the characteristic tem-
perature of the melting of the lattice of composite vor-
tices is significantly lower than protonic and electronic
critical temperatures (e.g. the electronic GL parameter

κ should be large, which should be achievable through
choice of density [11, 12]). The phase diagram then fea-
tures the following hierarchy of characteristic tempera-
tures: (i) T c

M - the melting temperature of the lattice
of composite vortices, (ii) TLP > T c

M - the “vortex liq-
uid” to “vortex plasma” transition temperature associ-
ated with fluxline splitting (∆φe = 2π,∆φp = −2π) →
(∆φe = 2π,∆φp = 0) + (∆φe = 0,∆φp = −2π). As
noted, this transition has a 3D XY universality class.
We emphasise that this transition is very different from
the sublattice melting transition considered above.
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Next, we examine the physical consequences of this
hierarchy of characteristic temperatures. At low temper-
atures, the magnetic properties are controlled solely by
the charged mode, which is described by the second term
in (2). That is, at magnetic fields below the T c

M (B) line,
the system exhibits a phase which is a field-induced lat-

tice of composite vortices (∆φe = 2π,∆φp = −2π) for
which φp = −φe and the first term in (2) is exactly zero.
This corresponds to the superconducting superfluid dis-
cussed above. However, increasing the magnetic field to
cross the T c

M (B) line now leads to a first order melting
transition from a lattice to a liquid of composite vortices.
This transition is completely decoupled from the neutral
superfluid mode, while superconductivity is destroyed. It
is therefore a first order phase transition from a super-

conductor to a superfluid. This distinguishes LMH from
any other known quantum fluid. It naturally requires
a revision of current classification schemes of quantum
fluids into the two categories of superconductors and su-
perfluids. Indeed, the metallic superfluid state, denoted
MSF in Fig. 2, acquires all the attributes of superfluid-
ity of neutral atoms like 4He even though microscopically
it originates in a liquid of charged Cooper pairs.

We note that SSF phase is characterized by off-
diagonal long-range order (ODLRO) in both fields
lim|r−r

′|→∞ < Ψα(r)Ψ
+
α (r

′) > 6= 0 for α = p, e. In the
MSF state, the phases of both fields are disordered and
there is no ODLRO for superconducting order param-
eters (lim|r−r

′|→∞ < Ψα(r)Ψ
+
α (r

′) >= 0). In contrast,
the neutral mode retains ODLRO, manifested by the pre-
served order in the phase sum (φp+φe). From this follows
a counterpart to the Onsager-Penrose criterion [15] for

metallic superfluidity: lim|r−r
′|→∞ < Ψp(r)Ψ

+
e (r

′) > 6= 0.
Under such circumstances, the system is incapable of sus-
taining a dissipationless charge current, yet is capable of
sustaining dissipationless massflow and consequently a
vortex lattice induced by rotation as is possible in super-
fluid 4He. A rotation of a high-pressure diamond cell
with hydrogen can be performed in an experiment in the
presence of a cooling system, making such a rotating su-
perfluid state experimentally accessible in principle. An
even more intriguing possibility appears in case a rota-
tion of liquid metallic deuterium since the deuteron has
also spin degrees of freedom. Increasing the tempera-
ture further produces an “ionization” of composite vor-
tices. Eventually superfluidity also disappears and we
are left with a metallic normal fluid; this corresponds to
the phase denoted by NF in Fig. 2.

These observations should be of importance in experi-
mentally establishing that hydrogen may indeed take up
a low temperature liquid metallic state. Experimental
probes of the states of systems confined to high presure
diamond cells are limited, but nonetheless application of
external fields as well as the use of induction coils have
already been successfully used to detect superconductiv-
ity at high pressures. The latter technique should also

permit flux noise experiments.

Our main points may be summarized as follows. (i)
The vortex matter in LMH is principally different from
vortex matter in ordinary metallic superconductors. Our
analysis shows that starting from a system of two types of
fermions which form two distinct types of Cooper pairs,
we arrive at what can be viewed as a “dual condensed
matter of vortices”. The vortices can be mapped onto
a system of two types of charged strings which may be
viewed as “extended line particles” with “reversed” roles,
namely the electronic vortices playing the role of “heavy
particles” and protonic vortices being “light particles”.
Then, the Abrikosov lattice of composite vortices may
be interpreted as a molecular crystalline state, which,
at strong external fields undergoes at T c

M a transition
into a “molecular liquid” and at higher temperature to
a “plasma” state. In contrast, at weak external fields we
find a “sublattice melting” transition, an intermediate
state of vortexmatter which has a counterpart in classical
condensed matter physics as e.g. atomic sublattice melt-
ing in AgI. (ii) A particularly intriguing circumstance is
that our analysis shows that an experimental realization
of LMH would mean that we have at hand a genuinely
novel system which exhibits a phase transition from a

superconductor to a superfluid, or vice versa, driven by a

magnetic field. This counterintuitive fact may require a
revision of the standard classification scheme of quantum
liquids into superconductors and superfluids.
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