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Genetics of Brugada syndrome
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The Brugada syndrome is characterized by unique ‘coved-type’ ST-segment elevation in the right precordial leads of

electrocardiogram and ventricular fibrillation, and is responsible for 4 to 12% of sudden cardiac death in the general population.

The frequency is higher in Southeast Asia including Japan compared with Western countries. Brugada syndrome is an inherited

disease usually transmitted in an autosomal-dominant manner, and incomplete penetrance is frequently seen within affected

families. To date, 20 genes have been associated with Brugada syndrome, but pathogenic mutations in the genes are identified

in only about 30% of patients. The genetic background includes mutations in genes encoding sodium channel, calcium

channels and potassium channels, as well as proteins affecting ion channels. Mutations in SCN5A, encoding the cardiac

predominant sodium channel α-subunit, account for 20 to 30% of patients with Brugada syndrome and mutations in other

genes only account for about 5% of patients. Furthermore, a recent genome-wide association study has identified new loci

associated with the susceptibility of Brugada syndrome.

Journal of Human Genetics (2016) 61, 57–60; doi:10.1038/jhg.2015.97; published online 30 July 2015

CLINICAL CHARACTERISTICS

The Brugada syndrome is characterized by unique ‘coved-type’
ST-segment elevation in the right precordial leads (V1–V3) of the
12-lead electrocardiogram and episodes of ventricular fibrillation and
sudden cardiac death (Figure 1).1 It is responsible for 4 to 12% of
sudden cardiac death in the general population and about 20% of
sudden cardiac death in patients with structurally normal hearts.2

Brugada syndrome is more common in Southeast Asia including
Japan, with the estimated prevalence of 12/10 000 individuals, com-
pared with western countries, with the estimated prevalence of 1 to
5/10 000 individuals.3 The age at diagnosis is around 40 years and 70 to
80% of patients are men.4–7 A family history of unexplained sudden
death is present in 20 to 30% of patients with Brugada syndrome.4,5

Arrhythmia events resulted from ventricular fibrillation mainly
occur during sleep, at rest and after meal.8 The annual incidence of
arrhythmia recurrences in survivors of ventricular fibrillation is 7 to
8%.4,5 In addition to the susceptibility to ventricular fibrillation, atrial
fibrillation occurs in 10 to 20% of patients.9 Conduction abnormalities
at the His-Purkinje system and the right ventricular outflow tract are
sometimes evident.
The characteristic ‘coved-type’ ST-segment elevation is dynamic,

and the amplitude and the existence of ST-segment elevation varies.
ST-segment elevation augments after pause and during bradycardia,
and sometimes disappears. ST-segment elevation becomes most
prominent just before the development of ventricular fibrillation,
supporting the arrhythmogenicity of ST-segment elevation.1 Because
the electrocardiographic changes can occasionally disappear, sodium
channel blockers are used to provoke the diagnostic Brugada electro-
cardiographic pattern in patients with suspected disease.

GENETIC BASIS

Similar to other arrhythmia syndromes such as long QT syndrome
and catecholaminergic polymorphic ventricular tachycardia, Brugada
syndrome is an inherited disease usually transmitted in an autosomal-
dominant manner.10 Incomplete penetrance is frequently seen within
affected families, and up to 60% of patients are sporadic.11 To date,
20 genes have been associated with Brugada syndrome (Table 1).
The genetic background includes mutations in genes encoding
sodium channel, calcium channels and potassium channels, as well
as proteins affecting ion channels. Although there have been a
number of causative genes identified, only about 30% of patients are
identified to have pathogenic mutations. Mutations in SCN5A,
encoding the cardiac predominant pore-forming sodium channel
α-subunit, account for 20 to 30% of patients with Brugada syndrome
and mutations in other genes only account for about 5% of
patients.3,12,13

Sodium channel genes
Sodium channel is composed of single pore-forming α-subunit and
accessory proteins such as β-subunits that regulate channel function.
Mutations in SCN5A are the most frequent genotype of Brugada
syndrome and account for about 80% of genotype-positive
patients.3,12 Other genes including sodium channel β-subunit genes
(SCN1B,14 SCN2B,15 SCN3B16), GPD1L,17 MOG1,18 SLMAP19 and
PKP220 encoding proteins that modify SCN5A channel (Nav1.5)
function are also causative genes of Brugada syndrome.
Functional studies mainly using heterologous expression systems

demonstrate that loss-of-sodium channel dysfunction by mutations in
sodium channel genes and sodium channel-associated genes is the
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main mechanism of Brugada syndrome.10,21,22 These pathogenic
mutations usually result in either or both of (1) decreased expression
of the sodium channel protein because of failure to traffic to the cell
membrane or expression of non-functional channels or (2) decreased
inward sodium current by altered channel gating because of delayed
activation, earlier inactivation, faster inactivation, enhanced slow
inactivation and delayed recovery from inactivation.
Dominant-negative effects caused by mutations in ion channel

genes are frequently found in ion channels formed by multiple

α-subunits, such as potassium channel genes that account for long QT
syndrome.23 Although cardiac sodium channel α-subunit is not
known to oligomerize, α-subunit interaction of sodium channels
and dominant-negative effects have been reported.24 Two N-terminal
mutant channels have caused dominant-negative effects on wild-type
channels, and mutations in SCN5A with dominant-negative effects
may result in severe phenotypes.
Mutations in SCN10A, encoding the sodium channel α-subunit

mainly expressed in the sensory neurons of dorsal root ganglia and
weakly expressed in the hearts, has recently been associated with
Brugada syndrome.25,26 Although mutations in SCN10A caused
decreased sodium currents, SCN10A channel dysfunction may not
solely cause Brugada syndrome because of very low levels of SCN10A
expression in cardiomyocytes.25 Recent studies have provided the
possible mechanisms by which mutations in SCN10A cause Brugada
syndrome.26,27 In a previous study using chromatin immunoprecipita-
tion sequencing analysis, SCN10A locus regulates SCN5A expression.27

In heterologous expression systems, both expressing SCN5A and
SCN10A, wild-type SCN10A increases sodium currents, but SCN10A
mutations reduce sodium currents.26

Calcium channel genes
Similar to sodium channel, calcium channel is composed of
single pore-forming α-subunit and accessory proteins. Mutations
in the α1- (CACNA1C), β2- (CACNB2) and α2δ- (CACNA2D1)
subunit genes of cardiac L-type channels are account for 2 to 4% of
patients with Brugada syndrome.13,28,29 L-type calcium channel
regulates action potential dome and thus calcium channel dysfunction
can result in abnormal action potential (QT interval) duration.
Actually, L-type calcium channel gene is one of the causative genes
of long QT syndrome. Mutations in L-type calcium channel genes
were initially identified in patients with overlapping phenotypes of
Brugada syndrome and short QT syndrome,28 and then were
identified in those with Brugada syndrome and normal QT
interval.13,29 The frequency of mutations in L-type calcium channel
genes is high in patients with overlapping phenotypes of Brugada
syndrome and short QT syndrome, but is rare in those with Brugada
syndrome without short QT interval. Functional analysis data of
mutant L-type calcium channels is very limited. Mutations identified
in patients with overlapping phenotypes of Brugada syndrome
and short QT syndrome and those in patients with Brugada syndrome
without short QT interval similarly cause decreased calcium
current.28,30

In addition to mutations resulting in substitution of amino acids, a
synonymous mutation in CACNA1C, which does not change amino
acids, has been associated with Brugada syndrome.31 mRNA levels of
CACNA1C are decreased in mutation carriers compared with those in
a non-carrier within a family affected by Brugada syndrome.

Potassium channel genes
Seven potassium channel genes and one gene encoding semaphorin
3A, which blocks potassium channel, are causative genes of Brugada
syndrome.32–40 Although there are multiple causative genes of Brugada
syndrome affecting potassium channel function, the frequency of
mutations in these genes is very rare.
Loss of the action potential dome is one of the proposed

mechanisms for Brugada syndrome. Transient outward potassium
channel, which creates action potential notch, is composed of an
α-subunit encoded by KCND3 and a β-subunit encoded by KCNE3.
Mutations in KCND3 and KCNE3 identified in patients with Brugada
syndrome result in the increase of transient outward potassium

V1

V2

V3

Healthy individual Brugada syndrome

Figure 1 Electrocardiogram showing typical coved-type ST-segment elevation
in lead V1 and V2 in a healthy individual and a patient with Brugada
syndrome.

Table 1 Genetic basis of Brugada syndrome

Gene Frequency Functional abnormalities

Na+ channel dysfunction
SCN5A 20–30% INa+↓

SCN10A Rare INa+↓

SCN1B Rare INa+↓

SCN2B Rare INa+↓

SCN3B Rare INa+↓

GPD1L Rare INa+↓

MOG1 Rare INa+↓

SLMAP Rare INa+↓

PKP2 Rare INa+↓

Ca2+ channel dysfunction
CACNA1C 1–3% ICa2+↓

CACNB2 1–3% ICa2+↓

CACNA2D1 Rare ICa2+↓

K+ channel dysfunction
HCN4 Rare IK+↑

KCNE3 Rare IK+↑

KCNE5 Rare IK+↑

KCND3 Rare IK+↑

ABCC9 Rare IK+↑

KCNJ8 Rare IK+↑

KCNH2 Rare IK+↑

PKP2 Rare IK+↑

Others
TRPM4 Rare Abnormal resting potential

Abbreviations: Ca2+, inward voltage-dependent calcium current; IK, inward potassium current;
INa, inward sodium current.
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current, possibly resulting in deep action potential notch and loss of
the action potential dome.32,37 Furthermore, KCNE5 encoding another
potassium channel β-subunit is a causative gene of Brugada syndrome
and mutations in KCNE5 also result in increase of transient outward
potassium current and loss of the action potential dome.38 Sema-
phorin 3A inhibits transient outward potassium current. Mutations in
SEMA3A have recently been identified in patients with Brugada
syndrome and mutant semaphorin fails to inhibit transient outward
potassium current, resulting in the increase of transient outward
potassium current.39

ATP-sensitive potassium channel is composed of an α-subunit
encoded by KCNJ8/KCNJ11 and a β-subunit encoded by ABCC9.
Gain-of-function mutations in KCNJ8 and ABCC9 have been
identified in patients with Brugada syndrome, but the precise
mechanism is unknown.40,41

KCNH2 encoding the rapid component of delayed rectifier potas-
sium channel, which is an important determinant of action potential
repolarization, and thus is one of the major causative genes of long QT
syndrome and short QT syndrome. Gain-of-function mutations in
KCNH2 have initially been identified in patients with Brugada
syndrome and normal QT interval, and then have been identified in
those with Brugada syndrome and short QT interval.33,34 Mutant
channels show increase of potassium current and change of voltage
dependence in functional analysis, and produce loss of action potential
dome in simulation model.

Genetic modifiers
In addition to rare variants, common variants have also been
associated with Brugada syndrome. A common polymorphism in
SCN5A, H558R, on a different allele to a pathogenic mutation in
SCN5A has been shown to restore trafficking defect of mutant sodium
channels resulting in normalized sodium current, and individuals
carrying both the polymorphism and the mutation do not have
Brugada phenotype in a family affected by the disease.42

A genome-wide association study is used to examine the association
of many common genetic variants selected from the whole genome
with a trait. Genome-wide association study typically focuses on
associations of single-nucleotide polymorphisms with major traits. In
the cardiovascular field, genome-wide association study has been
performed for electrocardiographic indices such as PR interval and QT
interval in electrocardiogram and for common diseases such as
hypertension and atrial fibrillation. However, a recent genome-wide
association study for Brugada syndrome has succeeded to identify two
common genetic variants in SCN5A-SCN10A and HEY2 associated
with the rare disease.43 SCN5A is the major causative gene and
SCN10A is also one of the causative genes in Brugada syndrome as
shown above. HEY2 encodes a transcriptional repressor in the
cardiovascular system, and has been shown to regulate cardiac
electrophysiology. However, the mechanism by which variants in
HEY2 affects the disease susceptibility is unclear.
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