Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures

Abstract

Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistive switching and structure of the Ta2O5−x/TaO2−x device.
Figure 2: Electrical characterization of TaOx devices.
Figure 3: Anti-serial stacked properties with switch function.
Figure 4: Analysis of TaO2−x base layer and Ta2O5−x switching layer.

Similar content being viewed by others

References

  1. Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, H. K. Ultra-high-density phase-change storage and memory. Nature Mater. 5, 383–387 (2006).

    Article  CAS  Google Scholar 

  2. Setter, N. et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  Google Scholar 

  3. Liu, H. et al. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97, 242510 (2010).

    Article  Google Scholar 

  4. Moller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S. R. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003).

    Article  Google Scholar 

  5. Lee, M-J. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009).

    Article  CAS  Google Scholar 

  6. International Technology Roadmap for Semiconductors: 2009 Edition—Emerging Research Devices (ITRS, 2009); available via http://go.nature.com/87GMpF.

  7. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  8. Lee, M-J. et al. A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73–76 (2007).

    Article  CAS  Google Scholar 

  9. Ahn, S-E. et al. Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 20, 924–928 (2008).

    Article  CAS  Google Scholar 

  10. Fujimoto, M. et al. TiO2 anstase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Appl. Phys. Lett. 89, 223509 (2006).

    Article  Google Scholar 

  11. Baek, I. G. et al. Highly scalable non-volatile memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEEE Int. Electron Dev. Meet. Tech. Dig. 04, 587–590 (2004).

    Google Scholar 

  12. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  13. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  14. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    Article  CAS  Google Scholar 

  15. Lee, M. J. et al. Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory. J. Appl. Phys. 103, 013706 (2008).

    Article  Google Scholar 

  16. Zhang, L. Unipolar TaOx-based resistive change memory realized with electrode engineering. IEEE Electron Dev. Lett. 31, 966–968 (2010).

    Article  Google Scholar 

  17. Seo, S. et al. Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004).

    Article  CAS  Google Scholar 

  18. Hur, J. H. et al. Modeling for bipolar resistive memory switching in transition-metal oxides. Phys. Rev. B 82, 155321 (2010).

    Article  Google Scholar 

  19. Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nature Mater. 9, 403–406 (2010).

    Article  CAS  Google Scholar 

  20. Yang, J. J. et al. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010).

    Article  Google Scholar 

  21. Yoshida, C., Kinoshita, K., Yamasaki, T. & Sugiyama, Y. Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008).

    Article  Google Scholar 

  22. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006).

    Article  CAS  Google Scholar 

  23. Kim, K. M. & Hwang, C. S. The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. Appl. Phys. Lett. 94, 122109 (2009).

    Article  Google Scholar 

  24. Kwon, D-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010).

    Article  CAS  Google Scholar 

  25. Wei, Z. et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. IEEE Int. Electron Dev. Meet. Tech. Dig. 293, 5671467 (2008).

    Google Scholar 

  26. Rosezin, R. et al. Integrated complementary resistive switches for passive high-density nanocrossbar arrays. IEEE Electron Dev. Lett. 32, 191–193 (2011).

    Article  CAS  Google Scholar 

  27. Goux, L. et al. Evidences of oxygen-mediated resistive-switching mechanism in TiN/HfO2/Pt cells. Appl. Phys. Lett. 97, 243509 (2010).

    Article  Google Scholar 

  28. Lee, S-Y. et al. Polycrystalline silicon–germanium heating layer for phase-change memory applications. Appl. Phys. Lett. 89, 053517 (2006).

    Article  Google Scholar 

  29. Zheng, J. F. et al. MOCVD Ge3Sb2Te5 for PCM applications. IEEE Electron Dev. Lett. 31, 999–1001 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to SAIT colleagues Y. K. Cha, K. J. Park and C. Y. Moon for assistance in with experiments, G. S. Park for TEM analysis assistance and Kyunghee University’s K. R. Park for photograph imaging assistance.

Author information

Authors and Affiliations

Authors

Contributions

M-J.L., S.S., and D.H.S. designed this work and prepared the manuscript. The experiment and electrical measurements were carried out by M-J.L., C.B.L., D.L., S.R.L. and M.C. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Myoung-Jae Lee or Chang-Jung Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MJ., Lee, C., Lee, D. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nature Mater 10, 625–630 (2011). https://doi.org/10.1038/nmat3070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing