Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism

Abstract

Leptospira interrogans are zoonotic pathogens that have been linked to a recent increased incidence of morbidity and mortality in highly populated tropical urban centers. They are unique among invasive spirochetes in that they contain outer membrane lipopolysaccharide (LPS) as well as lipoproteins. Here we show that both these leptospiral outer membrane constituents activate macrophages through CD14 and the Toll-like receptor 2 (TLR2). Conversely, it seems that TLR4, a central component for recognition of Gram-negative LPS, is not involved in cellular responses to L. interrogans. We also show that for intact L. interrogans, it is LPS, not lipoprotein, that constitutes the predominant signaling component for macrophages through a TLR2 pathway. These data provide a basis for understanding the innate immune response caused by leptospirosis and demonstrate a new ligand specificity for TLR2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gel mobility and protein profile of LPS preparations.
Figure 2: Activation of NF-κB by leptospiral LPS is CD14-dependent.
Figure 3: Cell stimulation by leptospiral LPS requires TLR2.
Figure 4: Activation of THP-1.hCD14 cells with leptospiral LPS and whole, heat-killed L. interrogans.
Figure 5: CD14 and TLR2 mediate activation of THP-1.hCD14 cells in response to leptospiral LPS or intact L. interrogans.
Figure 6: Activation of THP-1.hCD14 cells by whole B. burgdorferi is TLR2-dependent and unaffected by polymyxin B.
Figure 7: Activation of THP-1.hCD14 cells by LipL32 is CD14- and TLR2-dependent, abrogated by proteinase K, but unaffected by polymyxin B.
Figure 8: TLR2-deficient mice do not to respond to leptospiral LPS.

Similar content being viewed by others

References

  1. Pereira, M. M. et al. A clonal subpopulation of Leptospira interrogans sensu stricto is the major cause of leptospirosis outbreaks in Brazil. J. Clin. Microbiol. 38, 450–452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barnett, J. K. et al. Expression and distribution of leptospiral outer membrane components during renal infection of hamsters. Infect. Immun. 67, 853–861 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Faine, S. Adler, B., Bolin, C. & Perolat, P. Leptospira and Leptospirosis 2nd edn (Monash University Press, Melbourne, Australia, 1999).

    Google Scholar 

  4. Chu, K. M., Rathinam, R., Namperumalsamy, P. & Dean, D. Identification of Leptospira species in the pathogenesis of uveitis and determination of clinical ocular characteristics in South India. J. Infect. Dis. 177, 1314–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Adler, B. & Faine, S. The antibodies involved in the human immune response to leptospiral infection. J. Med. Microbiol. 11, 387–400 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. de Souza, L. & Koury, M. C. Isolation and biological activities of endotoxin from Leptospira interrogans. Can. J. Microbiol. 38, 284–289 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Mitchison, M. et al. Identification and characterization of the dTDP-rhamnose biosynthesis and transfer genes of the lipopolysaccharide-related rfb locus in Leptospira interrogans serovar copenhageni. J. Bacteriol. 179, 1262–1267 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalambaheti, T., Bulach, D. M., Rajakumar, K. & Adler, B. Genetic organization of the lipopolysaccharide O-antigen biosynthetic locus of Leptospira borgpetersenii serovar hardjobovis. Micro. Pathogen. 27, 105–117 (1999).

    Article  CAS  Google Scholar 

  9. Bulach, D. M., Kalambaheti, T., da la Pena-Moctezuma, A. & Adler, B. Functional analysis of genes in the rfb locus of Leptospira borgpetersenii serovar hardjo subtype hardjobovis. Infect. Immun. 68, 3793–3798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bulach, D. M., Kalambaheti, T., de la Pena-Moctezuma, A. & Adler, B. Lipopolysaccharide biosynthesis in Leptospira. J. Mol. Microbiol. Biotechnol. 2, 375–380 (2000).

    CAS  PubMed  Google Scholar 

  11. Haake, D. A. et al. Characterization of leptospiral outer membrane lipoprotein LipL36: downregulation associated with late log-phase growth and mammalian infection. Infect. Immun. 66, 1579–1587 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shang, E. S., Summers, T. A. & Haake, D. A. Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect. Immun. 64, 2322–2330 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haake, D. A. et al. The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect. Immun. 68, 2276–2285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ulevitch, R. J. & Tobias, P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Ulevitch, R. J. Toll gates for pathogen selection. Nature 401, 755–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Ulevitch, R. J. Endotoxin opens the Toll gates of innate immunity. Nature Med. 5, 144–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Beutler, B. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12, 20–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis, J. J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tapping, R. I., Akashi, S., Miyake, K., Godowski, P. & Tobias, P. S. Toll-like receptor 4, but not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella LPSs. J. Immunol. 165, 5780–5787 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Leturcq, D. J. et al. Antibodies against CD14 protect primates from endotoxin-induced shock. J. Clin. Invest. 98, 1533–1538 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heine, H. et al. Cutting edge: cells that carry a null allele for toll-like receptor 2 are capable of responding to endotoxin. J. Immunol. 162, 6971–6975 (1999).

    CAS  PubMed  Google Scholar 

  24. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    CAS  PubMed  Google Scholar 

  25. Kirschning, C. J., Wesche, H., Merrill, A. T. & Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 2091–2097 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lien, E. et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419–33425 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Sellati, T. J. et al. Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide. J. Immunol. 160, 5455–5464 (1998).

    CAS  PubMed  Google Scholar 

  28. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Akashi, S. et al. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J. Immunol. 164, 3471–3475 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Radolf, J. D. et al. Lipoproteins of Borrelia burgdorferi and Treponema pallidum activate cachectin/tumor necrosis factor synthesis. Analysis using a CAT reporter construct. J. Immunol. 147, 1968–1974 (1991).

    CAS  PubMed  Google Scholar 

  31. Manthey, C. L. & Vogel, S. L. Elimination of trace endotoxin protein from rough chemotype LPS. J. Endotoxin Res. 1, 84–91 (1994).

    Article  CAS  Google Scholar 

  32. Isogai, E., Kitagawa, H., Isogai, H., Kurebayashi, Y. & Ito, N. Phagocytosis as a defense mechanism against infection with Leptospira. Zentralbl Bakteriol Mikrobiol Hyg [A] 261, 65–74 (1986).

    CAS  Google Scholar 

  33. Vinetz, J. M., Glass, G. E., Flexner, C. E., Mueller, P. & Kaslow, D. C. Sporadic urban leptospirosis. Ann. Intern. Med. 125, 794–798 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Arean, V. M. The pathologic anatomy and pathogenesis of fatal human leptospirosis (Weils disease). Am. J. Pathol. 40, 393–423 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vinh, T., Adler, B. & Faine, S. Ultrastructure and chemical composition of lipopolysaccharide extracted from Leptospira interrogans serovar copenhageni. J. Gen. Microbiol. 132, 103–109 (1986).

    CAS  PubMed  Google Scholar 

  36. Vinh, T. U., Shi, M. H., Adler, B. & Faine, S. Characterization and toxonomic significance of lipopolysaccharides of Leptospira interrogans serovar hardjo. J. Gen. Microbiol. 135, 2663–2673 (1989).

    CAS  PubMed  Google Scholar 

  37. Norgard, M. V. et al. Activation of human monocytic cells by Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides proceeds via a pathway distinct from that of lipopolysaccharide but involves the transcriptional activator NF-kappa B. Infect. Immun. 64, 3845–3852 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Beutler, B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr. Opin. Microbiol. 3, 23–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  40. Takeuchi, O. et al. Differential roles of Toll-like receptor (TLR) 2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baril, C. & Saint Girons I. Sizing of the Leptospira genome by pulsed-field agarose gel electrophoresis. FEMS Microbiol. Lett. 71, 100 (1990).

    Article  Google Scholar 

  44. Zuerner, R. L., Knudtson, W., Bolin, C. A. & Trueba, B. Characterization of outer membrane and secreted proteins of Leptospira interrogans serovar pomona. Microb. Pathog. 10, 311–322 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Ellinghausen, H. C. & McCulloch, W. G. Nutrition of Leptospira pomona and growth of 13 other serotypes: fractionation of oleic albumin complex and a medium of bovine albumin and polysorbate 80. Am. J. Vet. Res. 26, 45–51 (1965).

    CAS  PubMed  Google Scholar 

  47. Johnson, R. C. & Harris, V. G. Differentiation of pathogenic and saprophytic leptospires. I. Growth at low temperatures. J. Bacteriol. 94, 27–31 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Westphal, O. & Jann, K. Bacterial lipopolysaccharides: extraction with phenol-water and further application of the procedure. Methods in Carbohydrate Chem. 5, 83–91 (1965).

    CAS  Google Scholar 

  49. Mathison, J. C. et al. Adaptation to bacterial lipopolysaccharide (LPS) controls LPS-induced tumor necrosis factor production in rabbit macrophages. J. Clin. Invest. 85, 1108–1118 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, C.-H. & Tsai, C.-M. Quantification of bacterial lipopolysaccharides by the purpald assay: measuring formaldehyde generated from 2-keto-deoxyoctonate and heptose at the inner core by periodate oxidation. Anal. Biochem. 267, 161–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 (1970).

    Article  CAS  PubMed  Google Scholar 

  52. Tsai, C.-M. & Frasch, C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119, 115–119 (1982).

    Article  CAS  PubMed  Google Scholar 

  53. Kirkland, T. N. et al. Analysis of lipopolysaccharide binding by CD14. J. Biol. Chem. 268, 24818–24823 (1993).

    CAS  PubMed  Google Scholar 

  54. Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Pugin, J. et al. Cell activation mediated by glycosylphosphatidylinositol-anchored or transmembrane forms of CD14. Infect. Immun. 66, 1174–1180 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kravchenko, V. V. et al. Platelet-activating factor induces NF-κB activation through a G protein-coupled pathway. J. Biol. Chem. 270, 14928–14934 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Kravchenko, V. V., Steinemann, S., Kline, L., Feng, L. & Ulevitch, R. J. Endotoxin tolerance is induced in Chinese hamster ovary cell lines expressing human CD14. Shock 5, 194–201 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants AI-15136, GM-28485 and GM-37696 from the National Institutes of Health (to R. J. U.), a Beginning Grant-in-Aid from the American Heart Association Western States Affiliate (to R. I. T.) and by a postdoctoral fellowship from North Atlantic Treaty Organization (to C. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Ulevitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werts, C., Tapping, R., Mathison, J. et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2, 346–352 (2001). https://doi.org/10.1038/86354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing