Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD27 is required for generation and long-term maintenance of T cell immunity

Abstract

The Traf-linked tumor necrosis factor receptor family member CD27 is known as a T cell costimulatory molecule. We generated CD27−/− mice and found that CD27 makes essential contributions to mature CD4+ and CD8+ T cell function: CD27 supported antigen-specific expansion (but not effector cell maturation) of naïve T cells, independent of the cell cycle–promoting activities of CD28 and interleukin 2. Primary CD4+ and CD8+ T cell responses to influenza virus were impaired in CD27−/− mice. Effects of deleting the gene encoding CD27 were most profound on T cell memory, reflected by delayed response kinetics and reduction of CD8+ virus-specific T cell numbers to the level seen in the primary response. This demonstrates the requirement for a costimulatory receptor in the generation of T cell memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tnfrsf7-targeting strategy and result.
Figure 2: CD27 does not affect T cell division.
Figure 3: CD27 is important for generation of T cell immunity to influenza virus.
Figure 4: CD27 is required for T cell memory.
Figure 5: CD27 contributes to the antigen-specific CD4+ T cell response.

Similar content being viewed by others

References

  1. Arch, R. H., Gedrich, R. W. & Thompson, C. B. Tumor necrosis factor receptor-associated factors (TRAFs)- a family of adapter proteins that regulates life and death. Genes Dev. 12, 2821–2830 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gravestein, L. A. & Borst, J. Tumor necrosis factor receptor family members in the immune response. Sem. Immunol. 10, 423–434 (1998).

    Article  CAS  Google Scholar 

  3. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-10. J. Exp. Med. 184, 741–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Grell, M. et al. Induction of cell death by tumor necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J. 18, 3034–3043 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, Y., Cheng, G. & Baltimore, D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 5, 407–415 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Yeh, W.-C. et al. Early lethality, functional NF-κB activation & increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S. Y., Reichlin, A., Santana, A., Sokol. K. A. Nussenzweig, M. C. & Choi, Y. TRAF2 is essential for JNK but not NF-κB activation and regulates lymphocyte proliferation and survival. Immunity 7, 703–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Rothe, M., Pan, M.G., Henzel, W. J., Ayres, T. M. & Goeddel, D. V. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Z.-G. Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87 , 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Camerini, D., Walz, G., Loenen, W. A. M., Borst, J. & Seed, B. The T cell activation antigen CD27 is a member of the NGF/TNF receptor gene family. J. Immunol. 147, 3165–3169 (1991).

    CAS  PubMed  Google Scholar 

  12. Gravestein, L. A. et al. Cloning and expression of murine CD27: comparison with 4-1BB another lymphocyte-specific member of the nerve growth factor receptor family . Eur. J. Immunol. 23, 943– 950 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Goodwin, R.G. et al. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor . Cell 73, 447–456 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Bowman, M.R. et al. The cloning of CD70 and its identification as the ligand for CD27. J. Immunol. 152, 1756– 1761 (1994).

    CAS  PubMed  Google Scholar 

  15. Tesselaar, K., Gravestein, L. A., van Schijndel, G. M.W., Borst, J. & van Lier, R.A. W. Characterizaton of murine CD70, the ligand of the TNF receptor family member CD27. J. Immunol. 159, 4959–4965 ( 1997).

    CAS  PubMed  Google Scholar 

  16. Oshima, H. et al. Characterization of murine CD70 by molecular cloning and mAb . Int. Immunol. 10, 517– 526 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lens, S. M., Tesselaar, K., van Oers, M. H. J. & van Lier, R.A. W. Control of lymphocyte function through CD27–CD70 interactions. Sem. Immunol. 10, 491–499 (1998).

    Article  CAS  Google Scholar 

  18. Van Lier, R.A. W. et al. Tissue distribution and biochemical and functional properties of Tp55 (CD27), an novel T cell differentiation antigen. J. Immunol. 139, 1589–1596 ( 1987).

    CAS  PubMed  Google Scholar 

  19. Hintzen, R. Q., de Jong, R., Lens, S. M.A. & van Lier, R.A. W. CD27: marker and mediator of T-cell activation. Immunol. Today 15, 307–311 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  20. Gravestein, L. A., Nieland, J. D., Kruisbeek, A. M. & Borst, J. Novel mAbs reveal potent co-stimulatory activity of murine CD27. Int. Immunol. 7, 551–557 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186 , 1–12 (1997).

    Article  Google Scholar 

  22. Maurer, D. et al. IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J. Immunol. 148, 3700–3705 (1992).

    CAS  PubMed  Google Scholar 

  23. Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vinay, D. S. & Kwon, B. S. Role of 4-1BB in immune responses . Sem. Immunol. 10, 481– 489 (1998).

    Article  CAS  Google Scholar 

  25. Weinberg, A. D., Vella, A. T. & Croft, M. OX-40: life beyond the effector T cell stage. Sem. Immunol. 10, 471–480 (1998).

    Article  CAS  Google Scholar 

  26. Hintzen, R.Q. et al. CD70 represents the human ligand for CD27. Int. Immunol. 6, 477–480 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  27. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobata, T., Agematsu, K., Kameoka, J., Schlossman, S. F., Morimoto, C. CD27 is a signal-transducing molecule involved in CD45RA+ naïve T cell costimulation. J. Immunol. 153, 5422–5432 ( 1994).

    CAS  PubMed  Google Scholar 

  29. Hintzen, R.Q. et al. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J. Immunol. 154, 2612–2623 (1995).

    CAS  PubMed  Google Scholar 

  30. Brown, G. R., Meek, K., Nishioka, Y. & Thiele, D. L. CD27-CD27ligand/CD70 interactions enhance alloantigen-induced proliferation and cytolytic activity in CD8+ T lymphocytes. J. Immunol. 154 , 3686–3695 (1995).

    CAS  PubMed  Google Scholar 

  31. Agematsu, K. et al. Generation of plasma cells from peripheral blood memory B cells: Synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 91, 173–180 ( 1998).

    CAS  PubMed  Google Scholar 

  32. Lenschow, D. J., Walunas, T. L. & Bluestone, J.A. CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol. 14: 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Flynn, K.J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Haanen, J. B.A. G. Wolkers, M., Kruisbeek, A. M. & Schumacher, T. N.M. Selective expansion of cross-reactive CD8+ memory T cells by viral variants. J. Exp. Med. 190, 1319– 1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gravestein, L. A., van Ewijk, W., Ossendorp, F. & Borst, J. CD27 cooperates with the pre-T cell receptor in the regulation of murine T cell development. J. Exp. Med. 184, 675– 685 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Gravestein, L.A. et al. The Tumor Necrosis Factor receptor family member CD27 signals to Jun N-terminal kinase via Traf-2. Eur. J. Immunol 28, 2208–2216 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Akiba, H. et al. CD27, a member of the Tumor Necrosis Factor receptor superfamily, activates NF-kappaB and Stress-activated protein kinase/c-Jun N-terminal kinase via TRAF-2, TRAF-5 and NF-kappaB-inducing kinase. J. Biol. Chem. 273, 13353–13358 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  38. Nakano, H. et al. Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc. Natl. Acad. Sci. USA 96, 9803–9808 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grewal, I.S Xu, J. & Flavell, R.A. Impairment of antigen-specific T cell priming in mice lacking CD40 ligand. Nature 378, 617– 620 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Schoenberger, S. P., Toes, R. E. M., van der Voort, E. I. H. Offringa, R. & Melief, C. J. M. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Bennett, S. R. M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling . Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. DeBenedette, M., Wen T., Bachmann, M., Ohashi, P. S., Barber, B. H., Stocking, K. L., Peschon, J. J. & Watts, T. Analysis of 4-1BB Ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol. 163, 4833–4841 (1999).

    CAS  PubMed  Google Scholar 

  43. Tan, J. T., Whitmire, J. K., Ahmed, R., Pearson, T. C. & Larsen, C. P. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses . J. Immunol. 163, 4859– 4868 (1999).

    CAS  PubMed  Google Scholar 

  44. Kopf, M., Ruedl, C., Schmitz, N., Gallimore, A., Lefrang, K., Ecabert, B., Odermatt, B. & Bachmann, M.F. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection . Immunity 11, 699–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Murata, K., Ishii, N., Takano, H., Miura, S., Ndhlovu, L. C., Nose, M., Noda, T. & Sugamura, K. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191 , 365–374 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609– 612 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Whitmire, J.K. et al. CD40 ligand-deficient mice generate a normal primary cytotoxic T-lymphocyte response but a defective humoral response to a viral infection . J. Virol. 70, 8375–8381 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oxenius, A. et al. CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J. Exp. Med. 183, 2209–2218 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y., Wenger, R. H., Zhao, M. & Nielsen, P.J. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T cell responses. J. Exp. Med. 185, 251– 262 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lumsden, J. M., Roberts, J. M., Harris, N. L., Peach, R. J. & Ronchese, F. Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to influenza virus. J. Immunol. 164, 79– 85 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, A. I., McAdam, A. J., Buhlmann, J. E., Scott, S., Lupher, M. L., Greenfield, E. A., Baum, P. R., Fanslow, W. C., Calderhead, D. M., Freeman, G. J. & Sharpe, A.H. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11, 689–698 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Borrow P., Tishon, A., Lee, S., Xu, J., Grewal, I. S., Oldstone, B. A. & Flavell, R. A. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183, 2129–2142 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Maxwell, J. R., Weinberg, A., Prell, R. A. & Vella, A. T. Danger and OX40 receptor synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol. 164, 107 –112 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Walker, L.S. K. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115– 1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Tanger, M. Timpico, L. Tolkamp, T. Schrauwers, H. Starrevelt and other staff of the Animal Facility of the Netherlands Cancer Institute for biotechnical assistance and maintenance of the mice; A. A. M. Hart for expert statistical analysis; G. Rimmelzwaan for virus preparations and advice; E. Noteboom and A. Pfauth for assistance with flow cytometry; P. Krimpenfort, J. Haanen, G. Dingjan, R. Hendriks and J. Kirberg for experimental advise and assistance; and A. M. Kruisbeek for reading the manuscript. Supported by The Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannie Borst.

Supplementary information

Web Figure 1

CD27 does not contribute to cytolytic effector cell maturation. Cytotoxicity of spleen cells from infected mice. Spleen cells collected from CD27 +/+ (closed squares) and CD27-/- (open squares) mice infection were cultured for 7 days with NP(366-374) peptide and IL-2. Next, cells were tested for specific cytotoxicity towards EL-4 thymoma cells, loaded with NP(366-374) peptide in a standard 5-h 51Cr-release assay at the indicated effector (E) to target (T) cell ratios. Activity on EL-4 targets without peptide was negligible. Values represent means and standard deviations of triplicate samples in one experiment. The experiment is representative of three. Spleen cells were collected from mice at day 14 after primary infection (upper panel) or at day 11 after secondary infection (lower panel).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendriks, J., Gravestein, L., Tesselaar, K. et al. CD27 is required for generation and long-term maintenance of T cell immunity . Nat Immunol 1, 433–440 (2000). https://doi.org/10.1038/80877

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing