Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology

Abstract

Cells from the telomerase knockout mouse immortalize with an approximately ten million-fold greater frequency than human cells. In this commentary, Wright and Shay discuss the implications of this difference between mice and men and its relationship to cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hayflick, L. & Moorhead, P.S. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  2. Wright, W.E. & Shay, J.W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389 (1992).

    Article  CAS  Google Scholar 

  3. Harley, C.B. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).

    Article  CAS  Google Scholar 

  4. Shay, J.W., Pereira-Smith, O.M. & Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    Article  CAS  Google Scholar 

  5. Hara, E., Tsurui, H., Shinozaki, A., Nakada, S. & Oda, K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun. 179, 528–534 (1991).

    Article  CAS  Google Scholar 

  6. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  Google Scholar 

  7. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  Google Scholar 

  8. Wright, W.E., Brasiskyte, D., Piatyszek, M.A. & Shay, J.W. Experimental elongation of telomeres extends the lifespan of immortal × normal cell hybrids. EMBO J. 15, 1734–1741 (1996).

    Article  CAS  Google Scholar 

  9. Counter, C.M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA 95, 14723–14728 (1998).

    Article  CAS  Google Scholar 

  10. Halvorsen, T.L., Leibowitz, G. & Levine, F. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol. Cell. Biol. 19, 1864–1870 (1999).

    Article  CAS  Google Scholar 

  11. Zhu, J., Wang, H., Bishop, J.M. & Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  Google Scholar 

  12. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  Google Scholar 

  13. Zalvide, J. & DeCaprio, J.A. Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation. Mol. Cell. Biol. 15, 5800–5810 (1995).

    Article  CAS  Google Scholar 

  14. Kamijo, T. et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res. 59, 2464–2469 (1999).

    CAS  PubMed  Google Scholar 

  15. Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  Google Scholar 

  16. Robles, S.J. & Adami, G.R. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123 (1998).

    Article  CAS  Google Scholar 

  17. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  18. Zhu, J., Woods, D., McMahon, M. & Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  Google Scholar 

  19. Rubin, H. Cell aging in vivo and in vitro. Mech. Ageing Dev. 98, 1–35 (1997).

    Article  CAS  Google Scholar 

  20. Loo, D.T., Fuquay, J.I., Rawson, C.L. & Barnes, D.W. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236, 200–202 (1987).

    Article  CAS  Google Scholar 

  21. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996).

    Article  CAS  Google Scholar 

  22. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  23. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996).

    Article  CAS  Google Scholar 

  24. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 17, 423–430 (1997).

    Article  CAS  Google Scholar 

  25. Westphal, C.H. et al. Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints. Cancer Res. 57, 1664–1667 (1997).

    CAS  PubMed  Google Scholar 

  26. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  Google Scholar 

  27. Greenberg, R.A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97, 515–525 (1999).

    Article  CAS  Google Scholar 

  28. Shay, J.W. & Wright, W.E. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen. Exp. Cell Res. 184, 109–118 (1989).

    Article  CAS  Google Scholar 

  29. Shay, J. W., Van der Haegen, B. A., Ying, Y. & Wright, W. E. The frequency of immortalization of human fibroblast and mammary epithelial cells transfected with SV40 large T-antigen. Exp. Cell Res. 209, 45–52 (1993).

    Article  CAS  Google Scholar 

  30. Kiyono, T. et al. Both Rb/p16ink4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  Google Scholar 

  31. Shay, J. W., Tomlinson, G., Piatyszek, M. A. & Gollahon, L. S. Spontaneous in vitro immortalization of breast epithelial cells from a Li-Fraumeni patient. Mol. Cell. Biol. 15, 425–432 (1995).

    Article  CAS  Google Scholar 

  32. de Lange, T. & Jacks, T. For better or worse? Telomerase inhibition and cancer. Cell 98, 273–275 (1999).

    Article  CAS  Google Scholar 

  33. Hahn, W.C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nature Med. 5, 1164–1170 (1999).

    Article  CAS  Google Scholar 

  34. Herbert, B-S et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Nat. Acad. Sci. USA 96, 14276–14281 (1999).

    Article  CAS  Google Scholar 

  35. Holt, S.E., Wright, W.E. & Shay, J.W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 16, 2932–2939 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Collins, C.J. Sherr and R.A. Weinberg for reviewing the manuscript. J.W.S. is a senior scholar of the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, W., Shay, J. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 6, 849–851 (2000). https://doi.org/10.1038/78592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/78592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing