Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the BMP-2–BRIA ectodomain complex

Abstract

Bone morphogenetic proteins (BMPs) belong to the large transforming growth factor-β (TGF-β) superfamily of multifunctional cytokines. BMP-2 can induce ectopic bone and cartilage formation in adult vertebrates and is involved in central steps in early embryonal development in animals. Signaling by these cytokines requires binding of two types of transmembrane serine/threonine receptor kinase chains classified as type I and type II. Here we report the crystal structure of human dimeric BMP-2 in complex with two high affinity BMP receptor IA extracellular domains (BRIAec). The receptor chains bind to the ‘wrist’ epitopes of the BMP-2 dimer and contact both BMP-2 monomers. No contacts exist between the receptor domains. The model reveals the structural basis for discrimination between type I and type II receptors and the variability of receptor–ligand interactions that is seen in BMP–TGF-β systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the BMP-2–BRIAec complex.
Figure 2: Sequence alignment of TGF-β superfamily receptor type I and II ectodomains.
Figure 3: Stereo view of the interface between BMP-2 and BRIAec.
Figure 4: Stereo view of the hydrophobic pocket around BRIAec residue Phe 85.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Massagué, J. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  Google Scholar 

  2. Liu, F., Ventura, F., Doody, J. & Massague, J. Mol. Cell. Biol. 15, 3479–3486 (1995).

    Article  CAS  Google Scholar 

  3. ten Dijke, P. et al. J. Biol. Chem. 269, 16985–16988 (1994).

    Article  CAS  Google Scholar 

  4. Mittl, P.R. et al. Protein Sci. 5, 1261–1271 (1996).

    Article  CAS  Google Scholar 

  5. Scheufler, C., Sebald, W. & Hülsmeyer, M. J. Mol. Biol. 287, 103–115 (1999).

    Article  CAS  Google Scholar 

  6. Hinck, A.P. et al. Biochemistry 35, 8517–8534 (1996).

    Article  CAS  Google Scholar 

  7. Griffith, D.L., Keck, P.C., Sampath, T.K., Rueger, D.C. & Carlson, W.D. Proc. Natl. Acad. Sci. USA 93, 878–883 (1996).

    Article  CAS  Google Scholar 

  8. Daopin, S., Piez, K.A., Ogawa, Y. & Davies, D.R. Science 257, 369–373 (1992).

    Article  CAS  Google Scholar 

  9. Schlunegger, M.P. & Grutter, M.G. Nature 358, 430–434 (1992).

    Article  CAS  Google Scholar 

  10. Eigenbrot, C. & Gerber, N. Nature Struct. Biol. 4, 435–438 (1997).

    Article  CAS  Google Scholar 

  11. Greenwald, J., Fischer, W.H., Vale, W.W. & Choe, S. Nature Struct. Biol. 6, 18–22 (1999).

    Article  CAS  Google Scholar 

  12. Rees, B. & Bilwes, A. Chem. Res. Toxicol. 6, 385–406 (1993).

    Article  CAS  Google Scholar 

  13. Isaacs, N.W. Curr. Opin. Struct. Biol. 5, 391–395 (1995).

    Article  CAS  Google Scholar 

  14. Wells, J.A. et al. Recent Prog. Horm. Res. 48, 253–275 (1993).

    Article  CAS  Google Scholar 

  15. Hage, T., Sebald, W. & Reinemer, P. Cell 97, 271–281 (1999).

    Article  CAS  Google Scholar 

  16. Huang, S.S., Zhou, M., Johnson, F.E., Shieh, H.S. & Huang, J.S. J. Biol. Chem. 274, 27754–27758 (1999).

    Article  CAS  Google Scholar 

  17. Gray, P.C. et al. J. Biol. Chem. 275, 3206–3212 (2000).

    Article  CAS  Google Scholar 

  18. Lux, A., Attisano, L. & Marchuk, D.A. J. Biol. Chem. 274, 9984–9992 (1999).

    Article  CAS  Google Scholar 

  19. Wiesmann, C. et al. Cell 91, 695–704 (1997).

    Article  CAS  Google Scholar 

  20. Wiesmann, C., Ultsch, M.H., Bass, S.H. & de Vos, A.M. Nature 401, 184–188 (1999).

    Article  CAS  Google Scholar 

  21. Ruppert, R., Hoffmann, E. & Sebald, W. Eur. J. Biochem. 237, 295–302 (1996).

    Article  CAS  Google Scholar 

  22. Kirsch, T., Nickel, J. & Sebald, W. FEBS Lett. 468, 215–219 (2000).

    Article  CAS  Google Scholar 

  23. Kabsch, W. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  24. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  25. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Carson, M. J. Applied Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  28. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  29. Corpet, F. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Knaus for critical reading of the manuscript and M. Gottermeier for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias K. Dreyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, T., Sebald, W. & Dreyer, M. Crystal structure of the BMP-2–BRIA ectodomain complex. Nat Struct Mol Biol 7, 492–496 (2000). https://doi.org/10.1038/75903

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing