Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermosensory activation of insular cortex

Abstract

Temperature sensation is regarded as a submodality of touch, but evidence suggests involvement of insular cortex rather than parietal somatosensory cortices. Using positron emission tomography (PET), we found contralateral activity correlated with graded cooling stimuli only in the dorsal margin of the middle/posterior insula in humans. This corresponds to the thermoreceptive- and nociceptive-specific lamina I spinothalamocortical pathway in monkeys, and can be considered an enteroceptive area within limbic sensory cortex. Because lesions at this site can produce the post-stroke central pain syndrome, this finding supports the proposal that central pain results from loss of the normal inhibition of pain by cold. Notably, perceived thermal intensity was well correlated with activation in the right (ipsilateral) anterior insular and orbitofrontal cortices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regression plots.
Figure 2: Comparison of the statistical maps of rCBF activation for three different analyses at 12 of the 18 axial levels examined.
Figure 3
Figure 4: Localization of thermosensory cortex in the dorsal margin of left (contralateral) insular cortex (coordinates=−36, −22, 24), identified by regression analysis of rCBF activation with stimulus temperature, in frontal, axial and sagittal views.
Figure 5: Localization of the evaluative regions in right anterior insular and orbitofrontal cortices, identified by regression analysis of rCBF activation with subjects' ratings, in frontal, axial and sagittal views.

Similar content being viewed by others

References

  1. Darian-Smith, I. in Handbook of Physiology, Section 1, The Nervous System, Vol. III, Sensory Processes (ed. Darian-Smith, I.) 879–913 (American Physiological Society, Bethesda, 1984).

    Google Scholar 

  2. Craig, A. D., Zhang, E. T. & Blomqvist, A. A distinct thermoreceptive subregion of lamina I in nucleus caudalis of the owl monkey. J. Comp. Neurol. 404, 221–234 (1999).

    Article  CAS  Google Scholar 

  3. Yarnitsky, D. & Ochoa, J. L. Release of cold-induced burning pain by block of cold-specific afferent input. Brain 113, 893–902 (1990).

    Article  Google Scholar 

  4. Craig, A. D., Reiman, E. M., Evans, A. & Bushnell, M. C. Functional imaging of an illusion of pain. Nature 384, 258–260 (1996).

    Article  CAS  Google Scholar 

  5. Craig, A. D. A new version of the thalamic disinhibition hypothesis of central pain. Pain Forum 7, 1–14 (1998).

    Article  Google Scholar 

  6. Boivie, J., Leijon, G. & Johansson, I. Central post-stroke pain—A study of the mechanisms through analyses of the sensory abnormalities. Pain 37, 173–185 (1989).

    Article  CAS  Google Scholar 

  7. Pagni, C. A. Central Pain: A Neurosurgical Challenge. (Ediziona Minerva Medica S. P. A., Turin, 1998).

  8. Schmahmann, J. D. & Leifer, D. Parietal pseudothalamic pain syndrome: Clinical features and anatomic correlates. Arch. Neurol. 49, 1032–1037 (1992).

    Article  CAS  Google Scholar 

  9. Mesulam, M.-M. & Mufson, E. J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J. Comp. Neurol. 212, 38–52 (1982).

    Article  CAS  Google Scholar 

  10. Allen, G. V., Saper, C. B., Hurley, K. M. & Cechetto, D. F. Organization of visceral and limbic connections in the insular cortex of the rat. J. Comp. Neurol. 311, 1–16 (1991).

    Article  CAS  Google Scholar 

  11. Augustine, J. R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Rev. 22, 229–244 (1996).

    Article  CAS  Google Scholar 

  12. Craig, A. D., Bushnell, M. C., Zhang, E.-T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773 (1994).

    Article  CAS  Google Scholar 

  13. Craig, A. D. in Forebrain Areas Involved in Pain Processing. (eds. Besson, J.-M., Guilbaud, G. & Ollat, H.) 13–26 (John Libbey, Paris, 1995).

    Google Scholar 

  14. Davis, K. D. et al. Thalamic relay site for cold perception in humans. J. Neurophysiol. 81, 1970–1973 (1999).

    Article  CAS  Google Scholar 

  15. Craig, A. D. & Bushnell, M. C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    Article  CAS  Google Scholar 

  16. Dostrovsky, J. O. & Craig, A. D. Cooling-specific spinothalamic neurons in the monkey. J. Neurophysiol. 76, 3656–3665 (1996).

    Article  CAS  Google Scholar 

  17. Christensen, B. N. & Perl, E. R. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J. Neurophysiol. 33, 293–307 (1970).

    Article  CAS  Google Scholar 

  18. Dostrovsky, J. O. & Hellon, R. F. The representation of facial temperature in the caudal trigeminal nucleus of the cat. J. Physiol. (Lond.) 277, 29–47 (1978).

    Article  CAS  Google Scholar 

  19. Han, Z.-S., Zhang, E.-T. & Craig, A. D. Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nat. Neurosci. 1, 218–225 (1998).

    Article  CAS  Google Scholar 

  20. White, J. C. & Sweet, W. H. Pain and the Neurosurgeon: A Forty-Year Experience 1000 (Thomas, Springfield, Massachusetts, 1969).

  21. Norrsell, U. Behavioural thermosensitivity after unilateral, partial lesions of the lateral funiculus in the cervical spinal cord of the cat. Exp. Brain Res. 78, 369–373 (1989).

    CAS  PubMed  Google Scholar 

  22. Norrsell, U. & Craig, A. D. Behavioral thermosensitivity after lesions of thalamic target areas of a thermosensory spinothalamic pathway in the cat. J. Neurophysiol. 82, 611–625 (1999).

    Article  CAS  Google Scholar 

  23. Dostrovsky, J. O., Wells, F. E. B. & Tasker, R. R. in Processing and Inhibition of Nociceptive Information, International Congress Series 989 (eds. Inoka, R., Shigenaga, Y. & Tohyama, M.) 115–120 (Excerpta Medica, Amsterdam, 1992).

    Google Scholar 

  24. Lenz, F. A. et al. Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res. 623, 235–240 (1993).

    Article  CAS  Google Scholar 

  25. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  26. Adams, R. W. & Burke, D. Deficits of thermal sensation in patients with unilateral cerebral lesions. Electroencephalogr. Clin. Neurophysiol. 73, 443–452 (1989).

    Article  CAS  Google Scholar 

  27. Yasui, Y., Breder, C. D., Saper, C. B. & Cechetto, D. F. Autonomic responses and efferent pathways from the insular cortex in the rat. J. Comp. Neurol. 303, 355–374 (1991).

    Article  CAS  Google Scholar 

  28. Pritchard, T. C., Hamilton, R. B., Morse, J. R. & Norgren, R. Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J. Comp. Neurol. 244, 213–228 (1986).

    Article  CAS  Google Scholar 

  29. Shi, C. J. & Cassell, M. D. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J. Comp. Neurol. 399, 440–468 (1998).

    Article  CAS  Google Scholar 

  30. Beckstead, R .M., Morse, J. R. & Norgren, R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 190, 259–282 (1980).

    Article  CAS  Google Scholar 

  31. Kinomura, S. et al. Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Res. 659, 263–266 (1994).

    Article  CAS  Google Scholar 

  32. Benkelfat, C. et al. Functional neuroanatomy of CCK4-induced anxiety in normal healthy volunteers. Am. J. Psychiatry 152, 1180–1184 (1995).

    Article  CAS  Google Scholar 

  33. Casey, K. L., Minoshima, S., Morrow, T. J. & Koeppe, R. A. Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J. Neurophysiol. 76, 571–581 (1996).

    Article  CAS  Google Scholar 

  34. King, A. B., Menon, R. S., Hachinski, V. & Cechetto, D. F. Human forebrain activation by visceral stimuli. J. Comp. Neurol. 413, 572–582 (1999).

    Article  CAS  Google Scholar 

  35. Reiman, E. M. The application of positron emission tomography to the study of normal and pathological emotions. J. Clin. Psychiatry 58, 4–12 (1997).

    PubMed  Google Scholar 

  36. Denton, D. et al. Neuroimaging of genesis and satiation of thirst and an interoceptor-driven theory of origins of primary consciousness. Proc. Natl. Acad. Sci. USA 96, 5304–5309 (1999).

    Article  CAS  Google Scholar 

  37. Tataranni, P. A. et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 4569–4574 (1999).

    Article  CAS  Google Scholar 

  38. Derbyshire, S. W. G. & Jones, A. K .P. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76, 127–135 (1998).

    Article  CAS  Google Scholar 

  39. Stoleru, S. et al. Neuroanatomical correlates of visually evoked sexual arousal in human males. Arch. Sex. Behav. 28, 1–21 (1999).

    Article  CAS  Google Scholar 

  40. Phillips, M. L. et al. A specific neural substrate for perceiving facial expressions of disgust. Nature 389, 495–498 (1997).

    Article  CAS  Google Scholar 

  41. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    CAS  PubMed  Google Scholar 

  42. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981 (1999).

    Article  CAS  Google Scholar 

  43. Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain 312 (Putnam, New York, 1993).

  44. Mower, G. Perceived intensity of peripheral thermal stimuli is independent of internal body temperature. J. Comp. Physiol. Psychol. 90, 1152–1155 (1976).

    Article  CAS  Google Scholar 

  45. Francis, S. et al. The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10, 453–459 (1999).

    Article  CAS  Google Scholar 

  46. Volkow, N. D., Mullani, N., Gould, L. K., Adler, S. S. & Gatley, S. J. Sensitivity of measurements of regional brain activation with oxygen-15-water and PET to time of stimulation and period of image reconstruction. J. Nucl. Med. 32, 58–61 (1991).

    CAS  PubMed  Google Scholar 

  47. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. Comparing functional (PET) images: the assessment of significant change. J. Cereb. Blood Flow Metab. 11, 690–699 (1991).

    Article  CAS  Google Scholar 

  48. Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918 (1992).

    Article  CAS  Google Scholar 

  49. Woods, R. P., Cherry, S. R. & Mazziotta, J. C. Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr. 16, 620–633 (1992).

    Article  CAS  Google Scholar 

  50. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

Download references

Acknowledgements

We thank S. Goodwin, J. Frost and D. Andrew for technical assistance. This study was supported by the Robert S. Flinn Foundation and the Atkinson Pain Research Fund administered by the Barrow Neurological Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, A., Chen, K., Bandy, D. et al. Thermosensory activation of insular cortex. Nat Neurosci 3, 184–190 (2000). https://doi.org/10.1038/72131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing